

E-ISSN: 2348-4519

On Neutrosophic Semi-preopen Sets and Semi-preclosed Sets in a Neutrosophic Topological Space

Renu Thomas^{1*}, Anila. S²

¹ Department of Mathematics, Sree Narayana Guru College, K.G.Chavadi, Coimbatore-105, Tamil Nadu, India ²Sree Narayana Guru College, K.G.Chavadi, Coimbatore-105, Tamil Nadu, India

^{*}Corresponding Author: renu7465@gmail.com Tel.:9497824758

Available online at: www.isroset.org

Received: 09/Sept/2018, Accepted:06/Oct/2018, Online: 31/Oct/2018

Abstract - In this paper we introduce the concept of Neutrosophic semi-preopen sets and Neutrosophic semi-preclosed sets in Neutrosophic topological spaces. After giving the fundamental definitions of neutrosophic set, operations on a neutrosophic set and neutrosophic topology, we introduce Neutrosophic semi-preopen sets and Neutrosophic semi-preclosed sets and some of their properties are derived.

Keywords: Neutrosophic set, Neutrosophic topology, Neutrosophic semi-preopen sets, Neutrosophic semi-preclosed sets.

I. INTRODUCTION

The concept of Fuzzy sets was introduced by Zadeh [10] in 1965 where each element had a degree of membership. Later in 1986, K. Atanassov [1,2,3] introduced the concept of Intuitionistic Fuzzy Set. It is a generalization of Fuzzy set where, besides the degree of membership, a degree of nonmembership was also assigned to each element. The Neutrosophic set was introduced by Florentin Smarandache [4,5] as a generalization of Intuitionistic Fuzzy set. Later, A.A.Salama and S.A.Albowi [7,8] introduced Neutrosophic topological spaces.

This paper is organized as follows. The section 1 consists of some basic definitions and properties which are used in later sections. In section 2, we define Neutrosophic Semi-preopen sets and some of their properties are studied. The section 3 deals with the definition and properties of Neutrosophic semi- preclosed sets.

II. PRELIMINARIES

In this section the basic definitions for Neutrosophic sets and its operations are given. **Definition 2.1** [8] Let *X* be a non-empty fixed set. A Neutrosophic set [NS for short] *A* is an object having the form $A = \{ \langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle; x \in X \}$ where $\mu_A(x), \sigma_A(x)$ and $\gamma_A(x)$ represents the degree of membership function, the degree of indeterminacy and the degree of non-membership function respectively of each element $x \in X$ to the set *A*.

Remark 2.2 [8] A Neutrosophic set

 $A = \{ \langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle \} \text{ can be identified to an} \\ \text{ordered triplet } \langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle \text{ in }]^{-}0,1^{+}[\text{ on } X. \end{cases}$

Remark 2.3 [8] For the sake of simplicity, we shall use the symbol $A = \langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle$ for the Neutrosophic set $A = \{ \langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle; x \in X \}.$

Remark 2.4 [8] Every intuitionistic fuzzy set (IFS) *A* of a non empty set *X* is a Neutrosophic set (NS) having the form $A = \{ \langle x, \mu_A(x), 1 - (\mu_A(x) + \gamma_A(x)), \gamma_A(x) \rangle ; x \in X \}.$

In neutrosophic set theory, the empty set 0_N and full set 1_N are defined as follows.

0_N may be defined as:

 $\begin{array}{l} (0_1) \ 0_N = \{ \langle x, \ 0, 0, 1 \rangle : x \in X \} \\ (0_2) \ 0_N = \{ \langle x, \ 0, 1, 1 \rangle : x \in X \} \\ (0_3) \ 0_N = \{ \langle x, \ 0, 1, 0 \rangle : x \in X \} \\ (0_4) \ 0_N = \{ \langle x, \ 0, 0, 0 \rangle : x \in X \} \end{array}$

 1_N may be defined as:

 $\begin{array}{l} (1_1) \ 1_N = \left\{ \ \langle x, \ 1, 0, 0 \rangle \ : \ x \in X \right\} \\ (1_2) \ 1_N = \left\{ \ \langle x, \ 1, 0, 1 \rangle \ : \ x \in X \right\} \\ (1_3) \ 1_N = \left\{ \ \langle x, \ 1, 1, 0 \rangle \ : \ x \in X \right\} \\ (1_4) \ 1_N = \left\{ \ \langle x, \ 1, 1, 1 \rangle \ : \ x \in X \right\} \end{array}$

Definition 2.5 [8] The complement of a NS $A = \langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle$ on X denoted by C(A) can be defined by any one of the following ways:

$$\begin{array}{ll} (C_1) \ \ C(A) = \{ \langle x, \ 1 - \mu_A(x), 1 - \sigma_A(x), 1 - \gamma_A(x) \rangle : \\ & x \in X \} \\ (C_2) \ \ C(A) = \{ \langle x, \ \gamma_A(x), \ \sigma_A(x), \ \mu_A(x) \rangle : \ x \in X \} \\ (C_3) \ \ C(A) = \{ \langle x, \gamma_A(x), 1 - \sigma_A(x), \mu_A(x) \rangle : \ x \in X \} \end{array}$$

Definition2.6 [8] Let $A = \{\langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle : x \in X \}$ and $B = \{\langle x, \mu_B(x), \sigma_B(x), \gamma_B(x) \rangle : x \in X \}$ be two neutrosophic sets of a non empty set *X*. Then we may consider two possible definitions for subsets $(A \subseteq B)$

 $A \subseteq B$ may be defined by any one of the following ways:

- (1) $A \subseteq B \Leftrightarrow \mu_A(x) \le \mu_B(x), \sigma_A(x) \le \sigma_B(x)$ and $\gamma_A(x) \ge \gamma_B(x) \forall x \in X$
- (2) $A \subseteq B \Leftrightarrow \mu_A(x) \le \mu_B(x), \sigma_A(x) \ge \sigma_B(x)$ and $\gamma_A(x) \ge \gamma_B(x) \forall x \in X$

Remark 2.7 [8] For any neutrosophic set A, the following conditions holds:

(1) $0_{N} \subseteq A, 0_{N} \subseteq 0_{N}$ (2) $A \subseteq 1_{N}, 1_{N} \subseteq 1_{N}$

Definition 2.8 [8] Let *X* be any nonempty set, and $A = \{\langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle : x \in X\}$ and $B = \langle x, \mu_B(x), \sigma_B(x), \gamma_B(x) \rangle$ be two NSs on *X*. Then,

(1) $A \cap B$ may be defined by any one of the following ways:

 $\begin{array}{l} (a)A \cap B = \\ \langle x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \land \sigma_B(x), and \gamma_A(x) \lor \gamma_B(x) \rangle \\ (b)A \cap B = \\ \langle x, \mu_A(x) \land \mu_B(x), \sigma_A(x) \lor \sigma_B(x), and \gamma_A(x) \lor \gamma_B(x) \rangle \end{array}$

© 2018, IJCSE All Rights Reserved

Vol. 5(5), Oct 2018, ISSN: 2348-4519

(2) $A \cup B$ may be defined by any one of the following ways:

(a)
$$A \cup B =$$

 $\langle x, \mu_A(x) \lor \mu_B(x), \sigma_A(x) \lor \sigma_B(x), and \gamma_A(x) \land \gamma_B(x) \rangle$
(b) $A \cup B =$
 $\langle x, \mu_A(x) \lor \mu_B(x), \sigma_A(x) \land \sigma_B(x), and \gamma_A(x) \land \gamma_B(x) \rangle$

The operations of intersection and union can be generalized to arbitrary family of NSs as follows:

Definition 2.9 [8]: Let $\{A_i : i \in I\}$ be an arbitrary family of NSs in *X*. Then,

(1) $\bigcap_{i \in I} A_i$ may be defined by any one of the following ways

$$(a) \cap_{i \in I} A_i = \langle x, \wedge_{i \in I} \mu_{A_i}(x), \wedge_{i \in I} \sigma_{A_i}(x), \vee_{i \in I} \gamma_{A_i}(x) \rangle$$

$$(b) \cap_{i \in I} A_i = \langle x, \wedge_{i \in I} \mu_{A_i}(x), \vee_{i \in I} \sigma_{A_i}(x), \vee_{i \in I} \gamma_{A_i}(x) \rangle$$

(2) $\bigcup_{i \in I} A_i$ may be defined by any of the following ways

(a)
$$\cup_{i \in I} A_i = \langle x, \bigvee_{i \in I} \mu_{A_i}(x), \bigvee_{i \in I} \sigma_{A_i}(x), \wedge_{i \in I} \gamma_{A_i}(x) \rangle$$

(b)
$$\cup_{i \in I} A_i = \langle x, \bigvee_{i \in I} \mu_{A_i}(x), \wedge_{i \in I} \sigma_{A_i}(x), \wedge_{i \in I} \gamma_{A_i}(x) \rangle$$

Remark 2.10 [8] The following conditions are satisfied by any two Neutrosophic sets A and B

(1) $C(A \cap B) = C(A) \cup C(B)$ (2) $C(A \cup B) = C(A) \cap C(B)$

Definition 2.11 [8] A neutrosophic topology [NT] on a nonempty set X is a family τ of neutrosophic subsets in X satisfying the following axioms.

(a) 0_N , $1_N \in \tau$,	(b)
$G_1 \cap G_2 \epsilon \tau$ for any G_1 , $G_2 \epsilon \tau$,	(c)
$\bigcup G_i \in \tau \text{for every} \{G_i : i \in J\} \subseteq \tau$	

Then the pair (X, τ) is called a neutrosophic topological space [NTS].

Definition 2.12 [8]: Suppose τ is a neutrosophic topology on a non empty set *X*. Then elements of τ are called neutrosophic open sets [NOS] and the complement of a NOS is called a neutrosophic closed set [NCS].

Example 2.13: Let $X = \{x\}$ and $A = \{\langle x, 0.3, 0.7, 0.8 \rangle : x \in X\}$ $B = \{\langle x, 0.5, 0.6, 0.3 \rangle : x \in X\}$ $\{\langle x, 0.5, 0.7, 0.3 \rangle : x \in X\}$ $D = \{\langle x, 0.3, 0.6, 0.8 \rangle : x \in X\}$ $x \in X$ be the neutrosophic subsets of X.

Then, the family $\tau = \{0_N, A, B, C, D, 1_N\}$ of Neutrosophic sets in *X* is a neutrosophic topology on *X*.

Definition 2.14 [8]: Suppose (X, τ) is a NTS and $A = \langle x, \mu_A(x), \sigma_A(x), \gamma_A(x) \rangle$ is a NS in *X*. Then the neutrosophic closure and neutrosophic interior of *A* is defined as follows

 $NCl(A) = \cap \{K : K \text{ is a } NCS \text{ in } X \text{ and } A \subseteq K\}.$ $NInt(A) = \cup \{G : G \text{ is } NOS \text{ in } X \text{ and } G \subseteq A\}.$ NCl(A) is a NCS and NInt(A) is a NOS in X.

Remark 2.15 [8] For any neutrosophic set A in a NTS(X, τ), we have

(a) NCl(C(A)) = C(NInt(A)),(b) NInt(C(A)) = C(NCl(A)).

Proposition 2.16 [8] Let (X, τ) be a NTS and *A*, *B* be two NSs in *X*. Then the following conditions hold:

(a) $NInt(A) \subseteq A$,	(b)
$A \subseteq NCl(A),$	(c) A ⊆
$B \Rightarrow NInt(A) \subseteq NInt(B),$	(d)
$A \subseteq B \Rightarrow NCl(A) \subseteq NCl(B),$	(e)
NInt(NInt(A)) = NInt(A),	(f)
NCl(NCl(A)) = NCl(A),	(g)
$NInt(A \cap B) = NInt(A) \cap NInt(B),$	(h)
$NCl(A \cup B) = NCl(A) \cup NCl(B),$	(i)
$NInt(0_N) = 0_N,$	(j)
$NInt (1_N) = 1_N,$	
$(k)NCl(0_N) = 0_N,$	
$(1) NCl(1_N) = 1_N,$	(m)
$A \subseteq B \Rightarrow C(B) \subseteq C(A),$	(n) $NCl(A \cap$
$B) \subseteq NCl(A) \cap NCl(B),$	(o) $NInt(A \cup$
$B) \supseteq NInt(A) \cup NInt(B).$	

Definition 2.17: [6,9] Let X be a NTS and A be a NS of X. Then,

(a) A is said to be a neutrosophic semi open [NSO] set if and only if $A \subseteq NCl(NInt(A))$

(b) A is said to be neutrosophic semi closed [NSC] set if and only if $NInt(NCl(A)) \subseteq A$

Vol. 5(5), Oct 2018, ISSN: 2348-4519

(c) A is said to be a neutrosophic preopen [NPO] set if and only if $A \subseteq NInt(NCl(A))$

(d) A is said to be a neutrosophic preclosed [NPC] set if and only if $NCl(NInt(A)) \subseteq A$

III. NEUTROSOPHIC SEMI-PREOPEN SET IN A NEUTROSOPHIC TOPOLOGICAL SPACE.

In this section, the neutrosophic semi-preopen set is introduced and their properties are studied.

Definition 3.1: Let X be a NTS and A be a NS in X. Then, A is said to be a neutrosophic semi-preopen [NSPO] set of X if and only if $A \subseteq NCl(NInt(NCl(A)))$.

Theorem 3.2 Let (X, τ) be a NTS. Then the union of any two NSPO sets in *X* is also a NSPO set in *X*.

Proof: Let *A* and *B* be any two NSPO sets of *X*.

Then,
$$A \subseteq NCl(NInt(NCl(A)))$$
 and
 $B \subseteq NCl(NInt(NCl(B))) \Rightarrow A \cup$
 $B \subseteq NCl(NInt(NCl(A))) \cup NCl(NInt(NCl(B)))$
 $= NCl(NInt(NCl(A)) \cup NInt(NCl(B)))$
 $[by proposition 1.16 (h)]$
 $\subseteq NCl(NInt(NCl(A) \cup NCl(B)))$
 $[by proposition 1.16 (o)]$
 $= NCl(NInt(NCl(A \cup B)))$
 $[by proposition 1.16 (h)]$
 $\therefore A \cup B \subseteq NCl(NInt(NCl(A \cup B))).$

Therefore $A \cup B$ is a NSPO set in X.

Corollary 3.3 Let (X, τ) be a NTS. If $\{A_{\alpha}\}_{\alpha \in \Delta}$ is a collection of NSPO sets in X. Then, $\bigcup_{\alpha \in \Delta} A_{\alpha}$ is a NSPO set in X.

Proof: Let A_{α} be a NSPO set for each $\alpha \in \Delta$. Then for each $\alpha \in \Delta$, $A_{\alpha} \subseteq NCl(NInt(NCl(A_{\alpha}))) \Rightarrow$ $\cup_{\alpha \in \Delta} A_{\alpha} \subseteq \cup_{\alpha \in \Delta} NCl(NInt(NCl(A_{\alpha}))) =$ $NCl(\cup_{\alpha \in \Delta} NInt(NCl(A_{\alpha})))$ [by proposition 1.16 (h)] $\subseteq NCl(NInt(\cup_{\alpha \in \Delta\Delta} NCl(A_{\alpha})))$ [by proposition 1.16 (o)] $= NCl(NInt(Ncl(\cup_{\alpha \in \Delta} A_{\alpha})))$

© 2018, IJCSE All Rights Reserved

140

Int. J. Sci. Res. in Mathematical and Statistical Sciences

Vol. 5(5), Oct 2018, ISSN: 2348-4519

[by proposition 1.16 (h)]

 $:: \cup_{\alpha \in \Delta} A_{\alpha} \subseteq NCl \left(NInt \left(Ncl \left(\cup_{\alpha \in \Delta} A_{\alpha} \right) \right) \right).$ Therefore, $\cup_{\alpha \in \Delta} A_{\alpha}$ is a NSPO set in *X*.

Remark 3.4: The intersection of any two NSPO sets of a neutrosophic topological space need not be a NSPO set as shown in the following example.

Example 3.5: Let $X = \{a, b\}$ and $A = \{\langle 0.3, 0.2, 0.7 \rangle \langle 0.4, 0.1, 0.5 \rangle\}$ $B = \{\langle 0.2, 0.3, 0.4 \rangle \langle 0.5, 0.4, 0.5 \rangle\}$ $C = \{\langle 0.3, 0.3, 0.4 \rangle \langle 0.5, 0.4, 0.5 \rangle\}$ $D = \{\langle 0.2, 0.2, 0.7 \rangle \langle 0.4, 0.1, 0.5 \rangle\}$ Then $\tau = \{0_N, A, B, C, D, 1_N\}$ is a NTS on X. Let $A_1 = \{\langle 0.8, 0.1, 0.5 \rangle \langle 0.4, 0.2, 0.7 \rangle\}$ and $A_2 = \{\langle 0.5, 0.2, 0.3 \rangle \langle 0.6, 0.5, 0.3 \rangle\}$. Here, $NCl \left(NInt(NInt(A_1))\right) = 1_N$ and $NCl \left(NInt(NCl(A_2))\right) = 1_N$. Therefore, A_1 and A_2 are NSPO sets of X. But $A_1 \cap A_2 = \{\langle 0.5, 0.1, 0.5 \rangle \langle 0.4, 0.2, 0.7 \rangle\}$ is not a NSPO

Theorem 3.6: Let A be a NSPO set in a NTS X and suppose $A \subseteq B \subseteq NCl(A)$. Then B is a NSPO set in X.

Proof: *A* is a NSPO set.

set in X.

$$\therefore A \subseteq NCl(NInt(NCl(A)))$$

$$\Rightarrow NCl(A) \subseteq NCl(NCl(NInt(NCl(A))))$$

$$= NCl(NInt(NCl(A)))$$

$$[by proposition 1.16(f)]$$

 $\therefore \ NCl(A) \subseteq NCl(NInt(NCl(A)))$ Given, $A \subseteq B \subseteq NCl(A)$. Hence it follows that $B \subseteq NCl(NInt(NCl(A))).$ We have $A \subseteq B$ $\therefore \ NCl(NInt(NCl(A))) \subseteq NCl(NInt(NCl(B)))$ $[by proposition \ 1.16 \ (c) and 1.16 \ (d)]$ $\therefore \ B \subseteq NCl(NInt(NCl(B))).$ Hence B is a NSPO set.

Theorem 3.7: Every NPO set in a NTS *X* is a NSPO set.

Proof: Let <i>A</i> be a NPO set.	Then
$A \subseteq NInt(NCl(A))$. .

$$NCl(A) \subseteq NCl(NInt(NCl(A)))$$

$$[by proposition 1.16 (d)] We$$
have $A \subseteq NCl(A)$ Therefore,
 $A \subseteq NCl(NInt(NCl(A)))$ Hence A is a
NSPO set in X.

Remark 3.8: Converse of the above theorem need not be true as shown in the example below.

Example 3.9: Let $X = \{a, b\}$ and $A = \{\langle 0.3, 0.2, 0.7 \rangle \langle 0.4, 0.1, 0.5 \rangle\}$ $B = \{\langle 0.2, 0.3, 0.4 \rangle \langle 0.5, 0.4, 0.5 \rangle\}$ $C = \{\langle 0.3, 0.3, 0.4 \rangle \langle 0.5, 0.4, 0.5 \rangle\}$ $D = \{\langle 0.2, 0.2, 0.7 \rangle \langle 0.4, 0.1, 0.5 \rangle\}$ Then $\tau = \{0_N, A, B, C, D, 1_N\}$ is a NTS on X. Let $P = \{\langle 0.3, 0.5, 0.4 \rangle \langle 0.3, 0.4, 0.6 \rangle\}$ Then, P is a NSPO set in X but not a NPO set.

Theorem 3.10: Every NSO set in a NTS *X* is a NSPO set in *X*.

Proof: Suppose A is a NSO set. Then, $A \subseteq NCl(NInt(A))$ we have $A \subseteq NCl(A)$ $\therefore NCl(NInt(A)) \subseteq NCl(NInt(NCl(A)))$ [by proposition 1.16 (c)and1.16(d)] Hence it follows that $A \subseteq NCl(NInt(NCl(A)))$ $\therefore A$ is a NSPO set.

Remark 3.11: Converse of the above theorem need not be true as shown in the following example:

Example 3.12: Let $X = \{a, b\}$ with $A = \{ \langle 0.3, 0.5, 0.4 \rangle \langle 0.6, 0.2, 0.5 \rangle \}$ $B = \{ \langle 0.2, 0.6, 0.7 \rangle \langle 0.5, 0.3, 0.1 \rangle \}$ $C = \{ \langle 0.3, 0.6, 0.4 \rangle \langle 0.6, 0.3, 0.1 \rangle \}$ $D = \{ \langle 0.2, 0.5, 0.7 \rangle \langle 0.5, 0.2, 0.5 \rangle \}$ $\{ 0_N, A, B, C, D, 1_N \}$ is a neutrosophic topology on X.

Then, $P = \{ \langle 0.4, 0.6, 0.4 \rangle \langle 0.5, 0.3, 0.4 \rangle \}$ is a NSPO set but not a NSO set.

Theorem 3.13: Every NOS in a NTS X is a NSPO set in X.

Proof: Suppose *A* is a NOS in X. As every NOS is a NSO set, from theorem 3.10 it easily follows that *A* is a NSPO set.

Remark 3.14: Converse of the above theorem need not be true as shown in the example below:

Example 3.15: Let $X = \{a, b, c\}$ with $A = \{ \langle 0.4, 0.5, 0.2 \rangle \langle 0.3, 0.2, 0.1 \rangle \langle 0.9, 0.6, 0.8 \rangle \}$ $B = \{ \langle 0.2, 0.4, 0.5 \rangle \langle 0.1, 0.1, 0.2 \rangle \langle 0.6, 0.5, 0.8 \rangle \}$ $\tau = \{ 0_N, A, B, 1_N \}$ is a neutrosophic topology on *X*. Then, $C = \{ \langle 0.5, 0.6, 0.1 \rangle \langle 0.4, 0.3, 0.1 \rangle \langle 0.9, 0.8, 0.5 \rangle \}$ is a NSPO set but not a NSO set.

IV. NEUTROSOPHIC SEMI-PRECLOSED SETS IN NEUTROSOPHIC TOPOLOGICAL SPACES.

In this section we introduce the concepts of the neutrosophic semi-preclosed sets and some of their properties are studied.

Definition 4.1: A neutrosophic set *A* of a NTS *X* is aid to be a neutrosophic semi-preclosed set in *X* if and only if $NInt(NCl(NInt(A))) \subseteq A$.

Theorem 4.2: Let (X, τ) be a NTS and *A* be a NS of *X*. Then, *A* is a NSPC set if and only if C(A) is a NSPO set.

Proof: Suppose *A* is a NSPC set in *X*. Then,

 $NInt \left(NCl(NInt(A))\right) \subseteq A \qquad \text{taking}$ $\text{compliments on both sides, we get} \qquad C(A) \subseteq$ $C \left(NInt \left(NCl(NInt(A))\right)\right) \qquad =$ $NCl \left(NInt \left(NCl(C(A))\right)\right) \qquad [by remark \ 1.15]$ $\therefore C(A) \subseteq NCl \left(NInt \left(NCl(C(A))\right)\right)$

hence C(A) is NSPO set in X. Conversely suppose C(A) is a NSPO set in X. Then, $C(A) \subseteq NCl(NInt(NCl(C(A))))$

taking compliments on both sides, we get

$$C\left(NCl\left(NInt\left(NCl(C(A))\right)\right)\right) \subseteq A$$

$$\Rightarrow NInt\left(NCl(NInt(A))\right) \subseteq A$$
[by remark 1.15]

hence it follows that A is a NSPC set in X.

Theorem 4.3: Let (X, τ) be a NTS. Then, the intersection of any two NSPC sets in *X* is also a NSPC set.

Proof: Let *A* and *B* be two NSPC sets in *X*. Then, $NInt(NCl(NInt(A))) \subseteq A$ and $NInt(NCl(NInt(B))) \subseteq B$ Therefore, $NInt(NCl(NInt(A))) \cap NInt(NCl(NInt(B))) \subseteq A \cap B$

now by using proposition 1.16 (g) and 1.16 (n), we get $NInt\left(NCl(NInt(A \cap B))\right) \subseteq A \cap B.$ Hence, $A \cap B$ is a NSPC set.

Remark 4.4: The union of two NSPC sets in a NTS *X* need not be a NSPC as shown in the following example.

Example 4.5: Let $X = \{a\}$ with $A = \{\langle 0.2, 0.5, 0.3 \rangle\}$ $B = \{\langle 0.1, 0.5, 0.7 \rangle\}.$ Then, $\tau = \{0_N, A, B, 1_N\}$ is a neutrosophic topology on X. Let $A_1 = \{\langle 0, 0.5, 0.8 \rangle\}$ and $A_2 = \{\langle 0.1, 0.2, 0.3 \rangle\}.$ $NInt(A_1) = 0_N$ and $NInt(A_2) = 0_N$. Hence, A_1 and A_2 are NSPC sets in X but $A_1 \cup A_2$ is not a NSPC set.

Theorem 4.6: Every NPC set in a NTS *X* is a NSPC set.

Proof: Suppose *A* is a NPC set. Then, $NCl(NInt(A)) \subseteq A$. Now, by using proposition 1.16 (c), we get $NInt(NCl(NInt(A))) \subseteq NInt(A)$ we have $NInt(A) \subseteq A$. Hence it follows that $NInt(NCl(NInt(A))) \subseteq A$ Thus we get that *A* is a NSPC set.

Remark 4.7: The converse of the above theorem need not be true as shown by the following example.

Example 4.8: Let $X = \{a\}$ with $A = \{\langle 0.4, 0.5, 0.3 \rangle\}, B = \{\langle 0.1, 0.5, 0.5 \rangle\}.$ Then, $\tau = \{0_N, A, B, 1_N\}$ is a neutrosophic topology on *X*. Let $C = \{\langle 0.3, 0.6, 0.5 \rangle\}$. Then, *C* is a NSPC set but not a NPC set.

Theorem 4.9: Every NSC set in a NTS *X* is a NSPC set.

Proof: Suppose *A* is a NSC set in *X*. Then, $NInt(NCl(A)) \subseteq A$. We have $NInt(A) \subseteq A$. Therefore by using proposition 1.16(c) and 1.16(d), it

© 2018, IJCSE All Rights Reserved

follows that

 $NInt \left(NCl(NInt(A)) \right) \subseteq NInt(NCl(A))$ Therefore, $NInt \left(NCl(NInt(A)) \right) \subseteq A.$ Thus we get that A is a NSPC set.

Remark 4.10: The converse of the above theorem need not be true as shown in the example below.

Example 4.11: Let $X = \{a\}$ with

 $A = \{ \langle 0.2, 0.5, 0.3 \rangle \}, B = \{ \langle 0.1, 0.5, 0.7 \rangle \}.$

Then, $\tau = \{0_N, A, B, 1_N\}$ is a neutrosophic topology on X. Let $A_1 = \{ \langle 0, 0.5, 0.8 \rangle \}$. A_1 is a NSPC set but not a NSC set.

Theorem 4.12: Every NCS in X is a NSPC set.

Proof: Suppose *A* is a NCS set in *A*. As every NCS set is a NSC set, it follows from the above theorem 4.9 that *A* is a NSPC set

Remark 4.13: The converse of the above theorem need not be true as shown in the following example.

Example 4.14: Let $X = \{a, b, c\}$ with $A = \{ \langle 0.5, 0.6, 0.3 \rangle \langle 0.1, 0.7, 0.9 \rangle \langle 1, 0.6, 0.4 \rangle \}$ $B = \{ \langle 0, 0.4, 0.7 \rangle \langle 0.1, 0.6, 0.9 \rangle \langle 0.5, 0.5, 0.8 \rangle \}$ $\tau = \{ 0_N, A, B, 1_N \}$ is a neutrosophic topology on *X*. Then, $C = \{ \langle 0.2, 0.4, 0.9 \rangle \langle 0, 0.2, 0.9 \rangle \langle 0.3, 0.2, 1 \rangle \}$ is a NSPC set but not a NCS.

Theorem 4.15: If A is NSPC set in a NTS X and suppose $NInt(A) \subseteq B \subseteq A$, then B is also a NSPC set in X.

Proof: *A* is a NSPC set. \therefore *NInt* $(NCl(NInt(A))) \subseteq A$ Then by proposition 1.16 (c) and 1.16 (e) we get $NInt(NCl(NInt(A))) \subseteq NInt(A)$. Given *NInt* $(A) \subseteq B$. Hence it follows that *NInt* $(NCl(NInt(A))) \subseteq B$. Also, $B \subseteq A$. \therefore by using proposition 1.16 (c) and 1.16 (d) $NInt(NCl(NInt(B))) \subseteq NInt(NCl(NInt(A)))$ Thus, *NInt* $(NCl(NInt(B))) \subseteq B$ Hence *B* is a NSPC set.

V. CONCLUSION

The basic aim of this paper is the introduction of two new sets – the semi-preopen set and the semi-preclosed set in a

neutrosophic topological space. Then certain properties of these sets have been studied in detail.

REFERENCES

- K.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 1986: 20: 87-96.
- [2]. K.Atanassov, Intuitionistic fuzzy sets, in V.Sgurev, ed., vii ITKRS Session, Sofia (June 1983 central Sci. and Techn. Library, Bulg.Academy of Sciences (1984)).
- [3]. K.Atanassov, Review and new result on intuitionistic fuzzy sets, preprint IM-MFAIS-1-88, 1988.
- [4]. Florentine Smarandache A Unifying Field in Logic, Neutrosophic Logic, Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Research Press, Rehoboth, NM, 1999.
- [5]. Florentine Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability and statistics, University of New Mexico, Gallup, NM 87301, USA(2002), <u>smarand@unm.edu</u>.
- [6]. P. Iswarya, Dr. K. Bageerathi, On Neutrosophic Semi-open Sets in Neutrosophic Topological Spaces, IJMTT, Vol (37) Number 3 –Sep 2016 214-223.
- [7]. A.A.Salama and S.A.Albowi, Generalized Neutrosophic sets and Generalized Neutrosophic topological spaces, Journal of Computer science and Engineering Vol(2) no:7 (2012)
- [8]. A.A.Salama and S.A.Albowi, Neutrosophic set and Neutrosophic Topological spaces, IOSR.JM. Vol (3) (2012), 31-35.
- [9]. V.Venkateswara Rao, Y. Srinivasa Rao, Neutrosophic Preopen sets and Preclosed sets in Neutrosophic Topological spaces, International journal of ChemTech Research, Vol 10 No:10, 449-458
- [10]. L.A.Zadeh, Fuzzy sets, Inform and Control8 (1965), 338-353.

AUTHORS PROFILE

Ms. Renu Thomas, is currently working as assistant professor and Head at Department of Mathematics, Sree Narayana Guru College, K.G.Chavadi, Coimbatoer-105, Tamil Nadu. She has submitted dissertation and is awaiting Ph.D. degree. The author has also published 18 papers in various international journals.