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Abstract— We study the perfect 3-colorings (also known as the equitable partitions into three parts) on 4-regular graphs of 

order 8.  A perfect  n-coloring of a graph is a partition of   its vertex set into n parts A1, A2, ..., An such that for all p, q ϵ {1, 

2,..., n}, each vertex of Ap is adjacent to apq number of vertices of Aq. The matrix A = (apq) n×n is called quotient matrix or 

parameter matrix. The concept of a perfect coloring generalizes the concept of completely regular code introduced by P. 

Delsarte. In particular, we classify all the realizable parameter matrices of perfect 3-colorings on 4-regular graphs of order 8. 
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I. INTRODUCTION 

 

     We consider only undirected finite simple graphs. Let G be a connected graph then we define x, y ϵ V (G), d(x, 

y):= dist(x, y) in G (i.e the minimum number of edges in a path joining x and y in G). The diameter of G, 

diam(G) = maxx,y ϵ V (G) d(x, y) = r (say). 

  For X  V (G), the induced subgraph G[X] is a graph with vertex set X and edge set E(G[X]) =  

  {e = (x, y)  ϵ  E(G) : x, y ϵ X}.  For x ϵ V (G), Gi(x) = {y  ϵ V (G): d(x, y) = i}, where i  ϵ {1, 2, ..., r}  

   and G−1(x) =Gr+1(x) = φ. We will write G(x) instead of G1(x). 

 

A connected graph G with diameter r is called distance-regular graph if there exist integers xi, yi, zi, where i  ϵ {1, 

2,...,r} such that for every x, y ϵ  V (G) and d(x, y) = i, and zi neighbors of x in Gi−1(y) and yi neighbors of x in Gi+1(y) 

and xi = y0 - yi- zi. The numbers xi, yi, zi, where i  ϵ {1, 2,..., r} are called the intersection number and the array {y0, 

y1,..., yr−1; z1, ..., zr} is called the intersection array of the distance-regular graph G. 

 

For  a graph G and a positive integer n, the mapping T : V (G) → {1, 2, ...., n} is called  a perfect n-coloring with matrix A = 

(aij), where i, j ϵ  {1, 2, ..., n}, if it is surjective and  for all i, j for every vertex of color i, the number of its neighbors of 

color j is equals to aij. The matrix A is called the parameter matrix or quotient matrix of a perfect coloring.  In other words 

perfect n coloring is the equitable partitions of the vertex set into n disjoint parts. 

 

A non empty set C  V (G) is called a code. Elements of C are called codewords. The distance of x ϵ V (G) from C is 

d(x, C):= min {d(x, y): y ϵ C} and the covering radius ρC:= maxx ϵ V (G)d(x, C) of C. A code C gives a natural 

partition of V (G) and the partition is  = {G0(C), G1(C),..., GρC (C)}. For x ϵ V (G), δi(x, C):= |Gi(x) ∩ C| is called 

the outer distribution numbers of C, where i ϵ {1, 2, ..., r}. A code C in the distance-regular graph G is called 

completely regular code if δi(x, C) only depends on i and d(x, C). Note that a code C is completely regular iff  is 

perfect (ρC + 1)-coloring, see [2]. So perfect coloring is a generalization of completely regular codes. 

 

The existence of completely regular codes in graphs is a historical problem in mathematics. In 1973, Delsarte [4] 

conjectured the non-existence of nontrivial perfect codes in Johnson graphs. Therefore, some effort has been made on 

enumerating the parameter matrices of some Johnson graphs,  including J(4, 2), J(5, 2), J(6, 2), J(6, 3), J(7, 3), J(8, 3), 

J(8, 4) and J(v, 3) (v odd) (see [1], [12], [13], [14]). Fon-Der-Flass enumerated the parameter matrices (perfect 2-colorings) 

of n-dimensional hypercube Qn for n < 24. He also obtained some constructions and a necessary condition for the existence 

of perfect 2-colorings of the n- dimensional cube with a given parameter matrix (see [7], [8], [9]). Aleiyan and 
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Meherbani [10] obtained perfect 3- colorings of cubic graphs on 10 vertices. M. Alaeiyan and H.  Karami [11] obtained 

perfect 2-colorings of generalised Petersen graph. In this paper we discuss about perfect 3-colorings on 4-regular graphs of 

order 8. 

 

II. PRELIMINARIES 

In [6], it is shown that the number of connected 4-regular graphs with 8 vertices is 6. The graphs are given below: 

 

 

 

     3                                                                                                           7 
  

 

                           5 5 5 

G1 G2 G3 
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                                                                                             7 
 

                                 5 5 5 

G4 G5 G6 

For perfect 3-colorings, n = 3. We called first color white, second color black and third color red. We generally denote 

a parameter matrix by A =  

 

We consider all perfect 3-colorings up to renaming the colors, i.e. identify the perfect 3-color with the matrices 

 ....................(I) 

Obtained by switching the colors with the original coloring. 

The simplest necessary condition for the existences of perfect 3-colorings of 4-regular connected graph with the matrix A is 

a + b + c = d + e + f = g + h + i = 4.                                               ..................(II) 

Note that the diagonal elements a, e, i of parameter matrix A could not be 4 (as degree of the degree regular graph 

is 4). 

We mean by eigenvalue of a graph is the eigenvalue of the adjacency matrix of this graph. 
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III. MAIN RESULT  

Proposition 1: If T is perfect coloring of a graph G in n colors then any  eigenvalue of T is an eigen value of G.  (see [3]) 

 
Now, without lost of generality, we can assume that |W | ≤ |B| ≤ |R|, where W, B, R represents white, black, red color 

respectively. 

 

Proposition 2: Let T is perfect 3-coloring of a graph G with the parameter matrix A =  

Then 

1. |W |b = |B|d 

2. |W |c = |R|g 

3.  |B |f  = |R|h. 

Note that |W | + |B| + |R| = |V (G)| = 8 and parameter matrix is symmetric with respect to 0 (i.e if aij = 0  aji = 0). 

Lemma 1.1: Let G be connected 4-regular graph with 8 vertices. And |W | = 1, |B| = 1, |R| = 6 then G has no perfect 3-

coloring. 

Proof: From proposition 2 we have b = d, c = 6g, f = 6h. |W | = 1 gives a = 0 and |B| = 1 gives e = 0. As c = 6g , 

0 ≤ c ≤ 4 and 0 ≤ g ≤ 4 gives g = 0 which imply c = 0. So from condition (II) we get 

 b = 4. Similarly d = 4, f = 0, h = 0, i = 4. So the parameter matrix can only be  Which represent one 

white vertex adjacent to four black vertices. But there is only one black vertex. So this parameter matrix is not 

possible. Therefore G has no perfect 3-colorings. 

 

Lemma 1.2: Let G be connected 4-regular graph with 8 vertices. And |W | = 1, |B| = 2, |R| = 5 then G has no perfect 3-

coloring. 

Proof: similar as Lemma 1.1. 

Lemma 1.3: Let G be connected 4-regular graph with 8 vertices. If T is a perfect 3-colorings with the matrix A and 

|W | = 1, |B| = 3, |R| = 4, then A should be  

Proof: From proposition 2 we have b = 3d, c = 4g, 3f = 4h. |W | = 1 gives a = 0.  As b = 3d, 0 ≤ b ≤ 4 then d = 0 or 

1. For d = 0 we get b = 0.  So by (II) c = 4 which gives g = 1. Now from 3f = 4h and 0 ≤ f ≤ 4 then h = 0 or 3.  When h 

= 0 then f = 0 and h = 3 gives f = 4. So the possible parameter matrices are  and . For second matrix  

e = 4 which is not possible as |B| = 3. 

For d = 1 we get b = 3. So by (II) c = 1 this cannot possible as c = 4g. So A is the only possible parameter matrix. 

Lemma 1.4: Let G be connected 4-regular graph with 8 vertices. If T is a perfect 3-coloring with the matrix A and 

|W | = 2, |B| = 2, |R| = 4, then A should be one of the followings ,  and . 

Lemma 1.5: Let G be connected 4-regular graph with 8 vertices. If T is a perfect 3-coloring with the matrix A and 

|W | = 2, |B| = 3, |R| = 3, then A should be one of the followings  and . 

Proof: similar as above. 

Note that, we can obtain the second matrix by switching the colors of the first matrix. So we ignore the second one. 
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So all possible perfect 3-colorings on connected 4-regular graph with 8 vertices are A1= ,  

A2 = , A3 = , A4 =  and A5 = . 

 

Now we list all the eigenvalues of A1, A2, A3, A4 and A5 in the following table: 
 

 

 

 

 

 

And all the eigenvalues of the graphs G1, G2, G3, G4, G5 and G6 are listed below: 

 

 

 

 

 

 

 

 

 

 

 

Now by proposition (1) the possible parameter matrices of the above graphs are listed below: 

 

 

 

 

 

 

 

 

Theorem: The parameter matrices of the connected 4-regular graph of order 8 are listed below: 

 

 

 

 

 

Matrix λ1 λ2 λ3 

A1 −4 0 4 

A2 −4 0 4 

A3 −2 0 4 

A4 0 0 4 

A5 −2.56 1.56 4 

Graph λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 

G1 −2.56 −1.62 −1.62 −1 0.62 0.62 1.56 4 

G2 −2 −2 −2 0 0 0 2 4 

G3 −2 −2 −1.41 −1.41 0 1.41 1.41 4 

G4 −2.73 −2 −1.41 0 0 0.73 1.41 4 

G5 −3.24 −2 0 0 0 0 1.24 4 

G6 −4 0 0 0 0 0 0 4 

Graph A1 A2 A3 A4 A5 

G1 × × × ×  

G2 × ×   × 

G3 × ×   × 

G4 × ×   × 

G5 × ×   × 

G6   ×  × 

Graph A1 A2 A3 A4 A5 

G1 × × × ×  

G2 × ×   × 

G3 × ×  × × 

G4 × ×   × 

G5 × ×   × 

G6   ×  × 
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Proof: • We know that A5 is the only possible parameter matrix for G1.  Now we consider mapping T1,5 as 

T1,5(4) = T1,5(6) = 1 

T1,5(1) = T1,5(2) = T1,5(8) = 2 

T1,5(3) = T1,5(5) = T1,5(7) = 3. 

It is clear that T1,5 is the perfect 3-colorings of G1 with the parameter matrix A5. 

• We know that A3 and A4 are the only possible parameter matrices for G2. Now we consider mapping 

T2,3 and T2,4 as 
T2,3(6) = T2,3(8) = 1 

T2,3(5) = T2,3(7) = 2 

T2,3(1) = T2,3(2) = T2,3(3) = T2,3(4) = 3. 

T2,4(7) = T2,4(8) = 1 

T2,4(5) = T2,4(6) = 2 

T2,4(1) = T2,4(2) = T2,4(3) = T2,4(4) = 3. 

It is clear that T2,3 and T2,4 are the perfect 3-colorings of G2 with the parameter matrices A3 and  

A4 respectively. 

• We know that A3 and A4 are the only possible parameter matrices for G3. Now we consider mapping 

T3,3 as 
T3,3(4) = T3,3(8) = 1 

T3,3(2) = T3,3(6) = 2 

T3,3(1) = T3,3(3) = T3,3(5) = T3,3(7) = 3. 

It is clear that T3,3 is the perfect 3-colorings of G3 with the parameter matrix A3. 

claim: A4 cannot be parameter matrix for G3. A4 can be parameter matrix when 

|W | = 2, |B| = 2, |R| = 4. As in A4, i = 2 gives four red vartices form a rectangle. In G3 there are only two rectangles 

(1,3,5,7) and (2,4,6,8). For each of this rectangle we cannot color by white and black such that it satisfy A4. 

• We know that A3 and A4 are the only possible parameter matrices for G4. Now we consider mapping 

T4,3 and T4,4 as 
T4,3(3) = T4,3(7) = 1 

T4,3(1) = T4,3(5) = 2 

T4,3(2) = T4,3(4) = T4,3(6) = T4,3(8) = 3. 

T4,4(2) = T4,4(6) = 1 

T4,4(4) = T4,4(8) = 2 

T4,4(1) = T4,4(3) = T4,4(5) = T4,4(7) = 3. 

It is clear that T4,3 and T4,4 are the perfect 3-colorings of G4 with the parameter matrices 

A3 and A4 respectively. 

• We know that A3 and A4 are the only possible parameter matrices for G5. Now we consider mapping 

T5,3 and T5,4 as 
T5,3(1) = T5,3(6) = 1 

T5,3(2) = T5,3(5) = 2 
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T5,3(3) = T5,3(4) = T5,3(7) = T5,3(8) = 3. 

T5,4(3) = T5,4(7) = 1 

T5,4(4) = T5,4(8) = 2 

T5,4(1) = T5,4(2) = T5,4(5) = T5,4(6) = 3. 

It is clear that T5,3 and T5,4 are the perfect 3-colorings of G5 with the parameter matricesA3 and 

 A4 respectively. 

• We  know that A1, A2 and A4 are the only possible parameter matrices for G6.  Now  we consider mapping T6,1, T6,2 

and T6,4 as 
T6,1(2) = 1 

T6,1(4) = T6,1(6) = T6,1(8) = 2 

T6,1(1) = T6,1(3) = T6,1(5) = T6,1(7) = 3. 

T6,2(2) = T6,2(4) = 1 

T6,2(6) = T6,2(8) = 2 

T6,2(1) = T6,2(3) = T6,2(5) = T6,2(7) = 3. 

T6,4(5) = T6,4(6) = 1 

T6,4(7) = T6,4(8) = 2 

T6,4(1) = T6,4(2) = T6,4(3) = T6,4(4) = 3. 

It is clear that T6,1, T6,2 and T6,4 are the perfect 3-colorings of G6 with the parameter matrices A1, A2 and A4 respectively. 

IV. CONCLUTION  

In this article, we study perfect 3- colorings of 4-regular graph of order 8. Here we conclude that only parameter matrix for 
G1  is A5; G2 are A3, A4; G3 is A3; G4 are A3, A4; and G5 are A1, A2, A4. 

REFERENCES 

[1]  A. L. Gavrilyuk, S. V. Goryainov, “On Perfect 2-Colorings of Johnson Graphs J(v, 3)”, Journal of Combinatorial Designs, Vol. 21, Issue 6, pp. 232-

252, June 2013. 

[2]  A. Neumaier, “Completely regular codes”,  Discrete Math, Vol. 106/107,  pp.353-360, 1992. 

[3] C. Godsil, “Compact graphs and equitable partitions”, Linear Algebra and Its Application, Vol. 255,  pp. 259-266, 1997. 

[4] P. Delsarte, “An algebraic approach to the association schemes of coding theory”, Philips Res.     Rep. Suppl, Vol. 10, pp. 1-97, 1973. 

[5]  D. B. West, “Introduction To Graph Theory”, Pearson,  India, 2001. 

[6]  M. Meringer, “Fast Generation of Regular Graphs and Construction of Cages”, Journal  of Graph Theory, Vol. 30, pp. 137-146, 1999. 

[7]  D. G. Fon-Der-Flaass, “Perfect 2-colorings of a hypercube”, Siberian Mathematical Journal, Vol. 4 , pp. 923-930, 2007. 

[8]  D. G. Fon-Der-Flaass, “Perfect 2-colorings of 12-dimensional cube that achieve a bound of correlation immunity”, Siberian Mathematical Journal, 

Vol.4, pp. 292-295, 2007. 

[9]  D. G. Fon-Der-Flaass, “A bound on correlation immunity”, Siberian Electronic Mathematical Reports Journal, Vol. 4, pp. 133-135, 2007. 

[10] M Alaeiyan, A Mehrabani, “Perfect 3-colorings of the cubic graphs of order 10”, Electronic Journal of Graph Theory and Applications (EJGTA), 

Vol. 5, Issue 2, pp. 194-206, 2017. 

[11] M.  Alaeiyan, H. Karami, “Perfect 2-colorings of the generalized Petersen graph”, Proceedings.Mathematical Sciences, Vol. 126, pp. 1-6, 2016. 

[12] M. Alaeiyan and A. Abedi, “ Perfect 2-colorings of Johnson graphs J(4, 3), J(4, 3), J(6,3) and Petersen graph”, Ars Combinatoria, (to appear). 

[13] S.V. Avgustinovich,  I. Y. Mogilnykh, “ Perfect 2-colorings of Johnson graphs J(6,3) and J(7, 3)”.Lecture Notes in Computer Science, pp. 11-19, 

2008. 

[14] S.V. Avgustinovich,  I. Y. Mogilnykh, “Perfect colorings of the Johnson graphs J(8,3) and J(8, 4).With two colors”, Journal of Applied and 

Industrial Mathematics, Vol. 5, pp. 19 - 30, 2011. 
 


