

International Journal of Scientific Research in _ Mathematical and Statistical Sciences Volume-5, Issue-6, pp.137-142, December (2018)

E-ISSN: 2348-4519

Perfect 3-Colorings on 4-Regular Graph of Order 8

S. Maity^{1*}, Sk. R. Islam¹

¹Dept. of Mathematics, Indian Institute of Technology Patna, Patna, India

*Corresponding Author: sayantanmaity100@gmail.com, Ph.: +919523256701

Available online at: www.isroset.org

Received: 20/Nov/2018, Accepted: 06/Dec/2018, Online: 31/Dec/2018

Abstract— We study the perfect 3-colorings (also known as the equitable partitions into three parts) on 4-regular graphs of order 8. A perfect n-coloring of a graph is a partition of its vertex set into n parts $A_1, A_2, ..., A_n$ such that for all p, $q \in \{1, 2, ..., n\}$, each vertex of A_p is adjacent to a_{pq} number of vertices of A_q . The matrix $A = (a_{pq})_{n \times n}$ is called quotient matrix or parameter matrix. The concept of a perfect coloring generalizes the concept of completely regular code introduced by P. Delsarte. In particular, we classify all the realizable parameter matrices of perfect 3-colorings on 4-regular graphs of order 8.

Keywords— Perfect colorings; equitable partition; regular graph.

I. INTRODUCTION

We consider only undirected finite simple graphs. Let *G* be a connected graph then we define *x*, $y \in V(G)$, d(x, y) := dist(x, y) in *G* (i.e the minimum number of edges in a path joining *x* and *y* in *G*). The diameter of *G*, diam(*G*) = $max_{x,y} \in V(G) d(x, y) = r(say)$.

For $X \subseteq V(G)$, the induced subgraph G[X] is a graph with vertex set X and edge set $E(G[X]) = \{e = (x, y) \in E(G) : x, y \in X\}$. For $x \in V(G)$, $G_i(x) = \{y \in V(G) : d(x, y) = i\}$, where $i \in \{1, 2, ..., r\}$ and $G_{-1}(x) = G_{r+1}(x) = \varphi$. We will write G(x) instead of $G_1(x)$.

A connected graph *G* with diameter *r* is called distance-regular graph if there exist integers x_i , y_i , z_i , where $i \in \{1, 2, ..., r\}$ such that for every $x, y \in V(G)$ and d(x, y) = i, and z_i neighbors of x in $G_{i-1}(y)$ and y_i neighbors of x in $G_{i+1}(y)$ and $x_i = y_0 - y_i - z_i$. The numbers x_i , y_i , z_i , where $i \in \{1, 2, ..., r\}$ are called the intersection number and the array $\{y_0, y_1, ..., y_{r-1}; z_1, ..., z_r\}$ is called the intersection array of the distance-regular graph *G*.

For a graph *G* and a positive integer *n*, the mapping $T: V(G) \rightarrow \{1, 2, ..., n\}$ is called a perfect *n*-coloring with matrix $A = (a_{ij})$, where $i, j \in \{1, 2, ..., n\}$, if it is surjective and for all *i*, *j* for every vertex of color *i*, the number of its neighbors of color *j* is equals to a_{ij} . The matrix *A* is called the parameter matrix or quotient matrix of a perfect coloring. In other words perfect *n* coloring is the equitable partitions of the vertex set into *n* disjoint parts.

A non empty set $C \subseteq V(G)$ is called a code. Elements of *C* are called codewords. The distance of $x \in V(G)$ from *C* is $d(x, C) := \min \{d(x, y): y \in C\}$ and the covering radius $\rho_C := \max_X \in V(G) d(x, C)$ of *C*. A code *C* gives a natural partition of V(G) and the partition is $\square = \{G_0(C), G_1(C), \dots, G_{\rho C}(C)\}$. For $x \in V(G), \delta_i(x, C) := |G_i(x) \cap C|$ is called the outer distribution numbers of *C*, where $i \in \{1, 2, \dots, r\}$. A code *C* in the distance-regular graph *G* is called completely regular code if $\delta_i(x, C)$ only depends on *i* and d(x, C). Note that a code *C* is completely regular iff \square is perfect ($\rho_C + 1$)-coloring, see [2]. So perfect coloring is a generalization of completely regular codes.

The existence of completely regular codes in graphs is a historical problem in mathematics. In 1973, Delsarte [4] conjectured the non-existence of nontrivial perfect codes in Johnson graphs. Therefore, some effort has been made on enumerating the parameter matrices of some Johnson graphs, including J(4, 2), J(5, 2), J(6, 2), J(6, 3), J(7, 3), J(8, 3), J(8, 4) and J(v, 3) (v odd) (see [1], [12], [13], [14]). Fon-Der-Flass enumerated the parameter matrices (perfect 2-colorings) of n-dimensional hypercube Q_n for n < 24. He also obtained some constructions and a necessary condition for the existence of perfect 2-colorings of the n- dimensional cube with a given parameter matrix (see [7], [8], [9]). Aleiyan and

Meherbani [10] obtained perfect 3- colorings of cubic graphs on 10 vertices. M. Alaeiyan and H. Karami [11] obtained perfect 2-colorings of generalised Petersen graph. In this paper we discuss about perfect 3-colorings on 4-regular graphs of order 8.

II. PRELIMINARIES

In [6], it is shown that the number of connected 4-regular graphs with 8 vertices is 6. The graphs are given below:

For perfect 3-colorings, n = 3. We called first color white, second color black and third color red. We generally denote a parameter matrix by $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$.

We consider all perfect 3-colorings up to renaming the colors, i.e. identify the perfect 3-color with the matrices

[e	d	f_1	ſi	h	<i>g</i>]	[a	С	bJ	[e	f	d]	ſi	9	h	
b	а	c ;	f	е	d ;	9	i	h ;	h	i	$\begin{bmatrix} d \\ g \\ a \end{bmatrix};$	c	а	b	
Lh	9	i]	l _c	b	a	ld	f	e	lb	с	a	lf	d	еJ	(<i>I</i>)

Obtained by switching the colors with the original coloring.

The simplest necessary condition for the existences of perfect 3-colorings of 4-regular connected graph with the matrix A is

a + b + c = d + e + f = g + h + i = 4.(II) Note that the diagonal elements *a*, *e*, *i* of parameter matrix *A* could not be 4 (as degree of the degree regular graph is 4).

We mean by eigenvalue of a graph is the eigenvalue of the adjacency matrix of this graph.

III. MAIN RESULT

Proposition 1: If *T* is perfect coloring of a graph *G* in *n* colors then any eigenvalue of *T* is an eigen value of *G*. (see [3])

Now, without lost of generality, we can assume that $|W| \le |B| \le |R|$, where W, B, R represents white, black, red color respectively.

Proposition 2: Let *T* is perfect 3-coloring of a graph *G* with the parameter matrix $A = \begin{bmatrix} a & b & c \\ d & e & f \\ c & h & i \end{bmatrix}$.

Then

1. |W|b = |B|d

- 2. |W|c = |R|g
- 3. |B|f = |R|h.

Note that |W| + |B| + |R| = |V(G)| = 8 and parameter matrix is symmetric with respect to 0 (i.e if $a_{ij} = 0 \Leftrightarrow a_{ji} = 0$).

Lemma 1.1: Let G be connected 4-regular graph with 8 vertices. And |W| = 1, |B| = 1, |R| = 6 then G has no perfect 3-coloring.

Proof: From proposition 2 we have b = d, c = 6g, f = 6h. |W| = 1 gives a = 0 and |B| = 1 gives e = 0. As c = 6g, $0 \le c \le 4$ and $0 \le g \le 4$ gives g = 0 which imply c = 0. So from condition (II) we get

b = 4. Similarly d = 4, f = 0, h = 0, i = 4. So the parameter matrix can only be $\begin{bmatrix} 0 & 1 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 4 \end{bmatrix}$. Which represent one white vertex adjacent to four black vertices. But there is only one black vertex. So this parameter matrix is not

white vertex adjacent to four black vertices. But there is only one black vertex. So this parameter matrix is not possible. Therefore G has no perfect 3-colorings.

Lemma 1.2: Let G be connected 4-regular graph with 8 vertices. And |W| = 1, |B| = 2, |R| = 5 then G has no perfect 3-coloring.

Proof: similar as Lemma 1.1.

Lemma 1.3: Let G be connected 4-regular graph with 8 vertices. If T is a perfect 3-colorings with the matrix A and $\begin{bmatrix} 0 & 0 & 4 \end{bmatrix}$

|W| = 1, |B| = 3, |R| = 4, then A should be $\begin{bmatrix} 0 & 0 & 4 \\ 0 & 0 & 4 \\ 1 & 3 & 0 \end{bmatrix}$.

Proof: From proposition 2 we have b = 3d, c = 4g, 3f = 4h. |W| = 1 gives a = 0. As b = 3d, $0 \le b \le 4$ then d = 0 or 1. For d = 0 we get b = 0. So by (II) c = 4 which gives g = 1. Now from 3f = 4h and $0 \le f \le 4$ then h = 0 or 3. When h = 0 then f = 0 and h = 3 gives f = 4. So the possible parameter matrices are $\begin{bmatrix} 0 & 0 & 4 \\ 0 & 0 & 4 \\ 1 & 3 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 & 4 \\ 0 & 4 & 0 \\ 1 & 0 & 3 \end{bmatrix}$. For second matrix

e = 4 which is not possible as |B| = 3.

For d = 1 we get b = 3. So by (II) c = 1 this cannot possible as c = 4g. So A is the only possible parameter matrix.

Lemma 1.4: Let G be connected 4-regular graph with 8 vertices. If T is a perfect 3-coloring with the matrix A and

|W| = 2, |B| = 2, |R| = 4, then A should be one of the followings $\begin{bmatrix} 0 & 0 & 4 \\ 0 & 0 & 4 \\ 2 & 2 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 1 & 1 & 2 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix}$.

Lemma 1.5: Let *G* be connected 4-regular graph with 8 vertices. If *T* is a perfect 3-coloring with the matrix *A* and |W| = 2, |B| = 3, |R| = 3, then *A* should be one of the followings $\begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 2 \\ 2 & 2 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 3 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 2 \end{bmatrix}$.

Proof: similar as above.

Note that, we can obtain the second matrix by switching the colors of the first matrix. So we ignore the second one.

So all possible perfect 3-colorings on connected 4-regular graph with 8 vertices are $A_1 = \begin{bmatrix} 0 & 0 & 4 \\ 0 & 0 & 4 \\ 1 & 3 & 0 \end{bmatrix}$,

$$A_{2} = \begin{bmatrix} 0 & 0 & 4 \\ 0 & 0 & 4 \\ 2 & 2 & 0 \end{bmatrix}, A_{3} = \begin{bmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 1 & 1 & 2 \end{bmatrix}, A_{4} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{bmatrix} \text{ and } A_{5} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 2 \\ 2 & 2 & 0 \end{bmatrix}.$$

Now we list all the eigenvalues of A_1 , A_2 , A_3 , A_4 and A_5 in the following table:

Matrix	λ_1	λ2	λ3	
A_1	-4	0	4	
A ₂	-4	0	4	
A ₃	-2	0	4	
A4	0	0	4	
A5	-2.56	1.56	4	

And all the eigenvalues of the graphs G_1 , G_2 , G_3 , G_4 , G_5 and G_6 are listed below:

Graph	λ_1	λ2	λ3	λ_4	λ_5	λ_6	λ7	λ8
G_1	-2.56	-1.62	-1.62	-1	0.62	0.62	1.56	4
G_2	-2	-2	-2	0	0	0	2	4
G_3	-2	-2	-1.41	-1.41	0	1.41	1.41	4
G_4	-2.73	-2	-1.41	0	0	0.73	1.41	4
G_5	-3.24	-2	0	0	0	0	1.24	4
G_6	-4	0	0	0	0	0	0	4

Now by proposition (1) the possible parameter matrices of the above graphs are listed below:

Graph	A_1	A ₂	A_3	A_4	A_5
G_1	×	×	×	×	\checkmark
G_2	×	×	\checkmark	~	×
G_3	×	×	~	~	×
G_4	×	×	~	~	×
G_5	×	×	~	~	×
G_6	✓	✓	×	~	×

Theorem: The parameter matrices of the connected 4-regular graph of order 8 are listed below:

Graph	A_1	A ₂	A ₃	A_4	A_5
G_1	×	×	×	×	✓
G_2	×	×	✓	✓	×
G_3	×	×	✓	×	×
G_4	×	×	✓	✓	×
G_5 G_6	×	×	✓	\checkmark	×
G_6	\checkmark	\checkmark	×	\checkmark	×

Proof: • We know that A_5 is the only possible parameter matrix for G_1 . Now we consider mapping $T_{1,5}$ as

 $T_{1,5}(4) = T_{1,5}(6) = 1$ $T_{1,5}(1) = T_{1,5}(2) = T_{1,5}(8) = 2$ $T_{1,5}(3) = T_{1,5}(5) = T_{1,5}(7) = 3.$

It is clear that $T_{1,5}$ is the perfect 3-colorings of G_1 with the parameter matrix A_5 .

• We know that A_3 and A_4 are the only possible parameter matrices for G_2 . Now we consider mapping $T_{2,3}$ and $T_{2,4}$ as

$$\begin{split} T_{2,3}(6) &= T_{2,3}(8) = 1 \\ T_{2,3}(5) &= T_{2,3}(7) = 2 \\ T_{2,3}(1) &= T_{2,3}(2) = T_{2,3}(3) = T_{2,3}(4) = 3. \\ T_{2,4}(7) &= T_{2,4}(8) = 1 \\ T_{2,4}(5) &= T_{2,4}(6) = 2 \\ T_{2,4}(1) &= T_{2,4}(2) = T_{2,4}(3) = T_{2,4}(4) = 3. \end{split}$$

It is clear that $T_{2,3}$ and $T_{2,4}$ are the perfect 3-colorings of G_2 with the parameter matrices A_3 and

 A_4 respectively.

• We know that A_3 and A_4 are the only possible parameter matrices for G_3 . Now we consider mapping $T_{3,3}$ as

 $T_{3,3}(4) = T_{3,3}(8) = 1$ $T_{3,3}(2) = T_{3,3}(6) = 2$ $T_{3,3}(1) = T_{3,3}(3) = T_{3,3}(5) = T_{3,3}(7) = 3.$

It is clear that $T_{3,3}$ is the perfect 3-colorings of G_3 with the parameter matrix A_3 .

claim: A_4 cannot be parameter matrix for G_3 . A_4 can be parameter matrix when

|W| = 2, |B| = 2, |R| = 4. As in A_4 , i = 2 gives four red vartices form a rectangle. In G_3 there are only two rectangles (1,3,5,7) and (2,4,6,8). For each of this rectangle we cannot color by white and black such that it satisfy A_4 .

• We know that A_3 and A_4 are the only possible parameter matrices for G_4 . Now we consider mapping $T_{4,3}$ and $T_{4,4}$ as

$$\begin{split} T_{4,3}(3) &= T_{4,3}(7) = 1 \\ T_{4,3}(1) &= T_{4,3}(5) = 2 \\ T_{4,3}(2) &= T_{4,3}(4) = T_{4,3}(6) = T_{4,3}(8) = 3. \\ T_{4,4}(2) &= T_{4,4}(6) = 1 \\ T_{4,4}(4) &= T_{4,4}(8) = 2 \\ T_{4,4}(1) &= T_{4,4}(3) = T_{4,4}(5) = T_{4,4}(7) = 3. \end{split}$$

It is clear that $T_{4,3}$ and $T_{4,4}$ are the perfect 3-colorings of G_4 with the parameter matrices

 A_3 and A_4 respectively.

• We know that A_3 and A_4 are the only possible parameter matrices for G_5 . Now we consider mapping $T_{5,3}$ and $T_{5,4}$ as

 $T_{5,3}(1) = T_{5,3}(6) = 1$ $T_{5,3}(2) = T_{5,3}(5) = 2$

© 2018, IJSRMSS All Rights Reserved

 $T_{5,3}(3) = T_{5,3}(4) = T_{5,3}(7) = T_{5,3}(8) = 3.$ $T_{5,4}(3) = T_{5,4}(7) = 1$ $T_{5,4}(4) = T_{5,4}(8) = 2$ $T_{5,4}(1) = T_{5,4}(2) = T_{5,4}(5) = T_{5,4}(6) = 3.$

It is clear that $T_{5,3}$ and $T_{5,4}$ are the perfect 3-colorings of G_5 with the parameter matrices A_3 and

 A_4 respectively.

• We know that A_1 , A_2 and A_4 are the only possible parameter matrices for G_6 . Now we consider mapping $T_{6,1}$, $T_{6,2}$ and $T_{6,4}$ as $T_{6,1}(2) = 1$

 $T_{6,1}(4) = T_{6,1}(6) = T_{6,1}(8) = 2$ $T_{6,1}(1) = T_{6,1}(3) = T_{6,1}(5) = T_{6,1}(7) = 3.$ $T_{6,2}(2) = T_{6,2}(4) = 1$ $T_{6,2}(6) = T_{6,2}(8) = 2$ $T_{6,2}(1) = T_{6,2}(3) = T_{6,2}(5) = T_{6,2}(7) = 3.$ $T_{6,4}(5) = T_{6,4}(6) = 1$ $T_{6,4}(7) = T_{6,4}(8) = 2$ $T_{6,4}(1) = T_{6,4}(2) = T_{6,4}(3) = T_{6,4}(4) = 3.$

It is clear that $T_{6,1}$, $T_{6,2}$ and $T_{6,4}$ are the perfect 3-colorings of G_6 with the parameter matrices A_1 , A_2 and A_4 respectively.

IV. CONCLUTION

In this article, we study perfect 3- colorings of 4-regular graph of order 8. Here we conclude that only parameter matrix for G_1 is A_5 ; G_2 are A_3 , A_4 ; G_3 is A_3 ; G_4 are A_3 , A_4 ; and G_5 are A_1 , A_2 , A_4 .

REFERENCES

- A. L. Gavrilyuk, S. V. Goryainov, "On Perfect 2-Colorings of Johnson Graphs J(v, 3)", Journal of Combinatorial Designs, Vol. 21, Issue 6, pp. 232-252, June 2013.
- [2] A. Neumaier, "Completely regular codes", Discrete Math, Vol. 106/107, pp.353-360, 1992.
- [3] C. Godsil, "Compact graphs and equitable partitions", Linear Algebra and Its Application, Vol. 255, pp. 259-266, 1997.
- [4] P. Delsarte, "An algebraic approach to the association schemes of coding theory", Philips Res. Rep. Suppl, Vol. 10, pp. 1-97, 1973.
- [5] D. B. West, "Introduction To Graph Theory", Pearson, India, 2001.
- [6] M. Meringer, "Fast Generation of Regular Graphs and Construction of Cages", Journal of Graph Theory, Vol. 30, pp. 137-146, 1999.
- [7] D. G. Fon-Der-Flaass, "Perfect 2-colorings of a hypercube", Siberian Mathematical Journal, Vol. 4, pp. 923-930, 2007.
- [8] D. G. Fon-Der-Flaass, "Perfect 2-colorings of 12-dimensional cube that achieve a bound of correlation immunity", Siberian Mathematical Journal, Vol.4, pp. 292-295, 2007.
- [9] D. G. Fon-Der-Flaass, "A bound on correlation immunity", Siberian Electronic Mathematical Reports Journal, Vol. 4, pp. 133-135, 2007.
- [10] M Alaeiyan, A Mehrabani, "Perfect 3-colorings of the cubic graphs of order 10", Electronic Journal of Graph Theory and Applications (EJGTA), Vol. 5, Issue 2, pp. 194-206, 2017.
- [11] M. Alaeiyan, H. Karami, "Perfect 2-colorings of the generalized Petersen graph", Proceedings. Mathematical Sciences, Vol. 126, pp. 1-6, 2016.
- [12] M. Alaeiyan and A. Abedi, "Perfect 2-colorings of Johnson graphs J(4, 3), J(4, 3), J(6, 3) and Petersen graph", Ars Combinatoria, (to appear).
- [13] S.V. Avgustinovich, I. Y. Mogilnykh, "Perfect 2-colorings of Johnson graphs J(6,3) and J(7, 3)".Lecture Notes in Computer Science, pp. 11-19, 2008.
- [14] S.V. Avgustinovich, I. Y. Mogilnykh, "Perfect colorings of the Johnson graphs J(8,3) and J(8, 4). With two colors", Journal of Applied and Industrial Mathematics, Vol. 5, pp. 19 - 30, 2011.