International Journal of Scientific Research in \qquad Mathematical and Statistical Sciences
Volume-5, Issue-6, pp.137-142, December (2018)
E-ISSN: 2348-4519

Perfect 3-Colorings on 4-Regular Graph of Order 8

S. Maity ${ }^{1 *}$, Sk. R. Islam ${ }^{1}$
${ }^{1}$ Dept. of Mathematics, Indian Institute of Technology Patna, Patna, India
*Corresponding Author: sayantanmaity100@gmail.com, Ph.: +919523256701

Available online at: www.isroset.org

Received: 20/Nov/2018, Accepted: 06/Dec/2018, Online: 31/Dec/2018

Abstract

We study the perfect 3-colorings (also known as the equitable partitions into three parts) on 4-regular graphs of order 8. A perfect n-coloring of a graph is a partition of its vertex set into n parts $A_{1}, A_{2}, \ldots, A_{n}$ such that for all $p, q \in\{1$, $2, \ldots, n\}$, each vertex of A_{p} is adjacent to $a_{p q}$ number of vertices of A_{q}. The matrix $A=\left(a_{p q}\right)_{n \times n}$ is called quotient matrix or parameter matrix. The concept of a perfect coloring generalizes the concept of completely regular code introduced by P . Delsarte. In particular, we classify all the realizable parameter matrices of perfect 3-colorings on 4-regular graphs of order 8 .

Keywords-Perfect colorings; equitable partition; regular graph.

I. INTRODUCTION

We consider only undirected finite simple graphs. Let G be a connected graph then we define $x, y \in V(G), d(x$, $y):=\operatorname{dist}(x, y)$ in G (i.e the minimum number of edges in a path joining x and y in G). The diameter of G, $\operatorname{diam}(G)=\max _{X, y} \in V(G) d(x, y)=r$ (say).

For $X \subseteq V(G)$, the induced subgraph $G[X]$ is a graph with vertex set X and edge set $E(G[X])=$ $\{e=(x, y) \in E(G): x, y \in X\}$. For $x \in V(G), G_{i}(x)=\{y \in V(G): d(x, y)=i\}$, where $i \in\{1,2, \ldots, r\}$ and $G_{-1}(x)=G_{r+1}(x)=\varphi$. We will write $G(x)$ instead of $G_{1}(x)$.

A connected graph G with diameter r is called distance-regular graph if there exist integers x_{i}, y_{i}, z_{i}, where $i \in\{1$, $2, \ldots, r\}$ such that for every $x, y \in V(G)$ and $d(x, y)=i$, and z_{i} neighbors of x in $G_{i-1}(y)$ and y_{i} neighbors of x in $G_{i+1}(y)$ and $x_{i}=y_{0}-y_{i^{-}} z_{i}$. The numbers x_{i}, y_{i}, z_{i}, where $i \in\{1,2, \ldots, r\}$ are called the intersection number and the array $\left\{y_{0}\right.$, $\left.y_{1}, \ldots, y_{r-1} ; z_{1}, \ldots, z_{r}\right\}$ is called the intersection array of the distance-regular graph G.

For a graph G and a positive integer n, the mapping $T: V(G) \rightarrow\{1,2, \ldots, n\}$ is called a perfect n-coloring with matrix $A=$ $\left(a_{i j}\right)$, where $i, j \in\{1,2, \ldots, n\}$, if it is surjective and for all i, j for every vertex of color i, the number of its neighbors of color j is equals to $a_{i j}$. The matrix A is called the parameter matrix or quotient matrix of a perfect coloring. In other words perfect n coloring is the equitable partitions of the vertex set into n disjoint parts.

A non empty set $C \subseteq V(G)$ is called a code. Elements of C are called codewords. The distance of $x \in V(G)$ from C is $d(x, C):=\min \{d(x, y): y \in C\}$ and the covering radius $\rho_{C}:=\max \in V(G) d(x, C)$ of C. A code C gives a natural partition of $V(G)$ and the partition is $\Pi=\left\{G_{0}(C), G_{1}(C), \ldots, G_{\rho}(C)\right\}$. For $x \in V(G), \delta_{i}(x, C):=\left|G_{i}(x) \cap C\right|$ is called the outer distribution numbers of C, where $i \in\{1,2, \ldots, r\}$. A code C in the distance-regular graph G is called completely regular code if $\delta_{i}(x, C)$ only depends on i and $d(x, C)$. Note that a code C is completely regular iff Π is perfect $\left(\rho_{C}+1\right)$-coloring, see [2]. So perfect coloring is a generalization of completely regular codes.

The existence of completely regular codes in graphs is a historical problem in mathematics. In 1973, Delsarte [4] conjectured the non-existence of nontrivial perfect codes in Johnson graphs. Therefore, some effort has been made on enumerating the parameter matrices of some Johnson graphs, including $J(4,2), J(5,2), J(6,2), J(6,3), J(7,3), J(8,3)$, $J(8,4)$ and $J(v, 3)(v$ odd $)$ (see [1], [12], [13], [14]). Fon-Der-Flass enumerated the parameter matrices (perfect 2-colorings) of n-dimensional hypercube Q_{n} for $n<24$. He also obtained some constructions and a necessary condition for the existence of perfect 2 -colorings of the n - dimensional cube with a given parameter matrix (see [7], [8], [9]). Aleiyan and

Meherbani [10] obtained perfect 3- colorings of cubic graphs on 10 vertices. M. Alaeiyan and H. Karami [11] obtained perfect 2-colorings of generalised Petersen graph. In this paper we discuss about perfect 3-colorings on 4-regular graphs of order 8.

II. Preliminaries

In [6], it is shown that the number of connected 4-regular graphs with 8 vertices is 6 . The graphs are given below:

For perfect 3-colorings, $n=3$. We called first color white, second color black and third color red. We generally denote a parameter matrix by $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$:

We consider all perfect 3-colorings up to renaming the colors, i.e. identify the perfect 3-color with the matrices

$$
\left[\begin{array}{lll}
e & d & f \\
b & a & c \\
h & g & i
\end{array}\right] ;\left[\begin{array}{lll}
i & h & g \\
f & e & d \\
c & b & a
\end{array}\right]:\left[\begin{array}{lll}
a & c & b \\
g & i & h \\
d & f & e
\end{array}\right] ;\left[\begin{array}{lll}
e & f & d \\
h & i & g \\
b & c & a
\end{array}\right]:\left[\begin{array}{lll}
i & g & h \\
c & a & b \\
f & d & e
\end{array}\right]
$$

Obtained by switching the colors with the original coloring.
The simplest necessary condition for the existences of perfect 3-colorings of 4-regular connected graph with the matrix A is $a+b+c=d+e+f=g+h+i=4$.

Note that the diagonal elements a, e, i of parameter matrix A could not be 4 (as degree of the degree regular graph is 4).

We mean by eigenvalue of a graph is the eigenvalue of the adjacency matrix of this graph.

III. Main Result

Proposition 1: If T is perfect coloring of a graph G in n colors then any eigenvalue of T is an eigen value of G. (see [3])

Now, without lost of generality, we can assume that $|W| \leq|B| \leq|R|$, where W, B, R represents white, black, red color respectively.

Proposition 2: Let T is perfect 3-coloring of a graph G with the parameter matrix $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$.
Then

1. $|W| b=|B| d$
2. $|W| c=|R| g$
3. $|B| f=|R| h$.

Note that $|W|+|B|+|R|=|V(G)|=8$ and parameter matrix is symmetric with respect to 0 (i.e if $a_{i j}=0 \Leftrightarrow a_{j i}=0$).

Lemma 1.1: Let G be connected 4-regular graph with 8 vertices. And $|W|=1,|B|=1,|R|=6$ then G has no perfect 3coloring.

Proof: From proposition 2 we have $b=d, c=6 g, f=6 h$. $|W|=1$ gives $a=0$ and $|B|=1$ gives $e=0$. As $c=6 g$, $0 \leq c \leq 4$ and $0 \leq g \leq 4$ gives $g=0$ which imply $c=0$. So from condition (II) we get
$b=4$. Similarly $d=4, f=0, h=0$, $i=4$. So the parameter matrix can only be $\left[\begin{array}{lll}0 & 4 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 4\end{array}\right]$. Which represent one white vertex adjacent to four black vertices. But there is only one black vertex. So this parameter matrix is not possible. Therefore G has no perfect 3-colorings.

Lemma 1.2: Let G be connected 4-regular graph with 8 vertices. And $|W|=1,|B|=2,|R|=5$ then G has no perfect 3coloring.

Proof: similar as Lemma 1.1.
Lemma 1.3: Let G be connected 4-regular graph with 8 vertices. If T is a perfect 3-colorings with the matrix A and $|W|=1,|B|=3,|R|=4$, then A should be $\left[\begin{array}{lll}0 & 0 & 4 \\ 0 & 0 & 4 \\ 1 & 3 & 0\end{array}\right]$.

Proof: From proposition 2 we have $b=3 d, c=4 g, 3 f=4 h .|W|=1$ gives $a=0$. As $b=3 d, 0 \leq b \leq 4$ then $d=0$ or 1. For $d=0$ we get $b=0$. So by (II) $c=4$ which gives $g=1$. Now from $3 f=4 h$ and $0 \leq f \leq 4$ then $h=0$ or 3 . When h $=0$ then $f=0$ and $h=3$ gives $f=4$. So the possible parameter matrices are $\left[\begin{array}{lll}0 & 0 & 4 \\ 0 & 0 & 4 \\ 1 & 3 & 0\end{array}\right]$ and $\left[\begin{array}{lll}0 & 0 & 4 \\ 0 & 4 & 0 \\ 1 & 0 & 3\end{array}\right]$. For second matrix $\mathrm{e}=4$ which is not possible as $|B|=3$.

For $d=1$ we get $b=3$. So by (II) $c=1$ this cannot possible as $c=4 g$. So A is the only possible parameter matrix.
Lemma 1.4: Let G be connected 4-regular graph with 8 vertices. If T is a perfect 3 -coloring with the matrix A and $|W|=2,|B|=2,|R|=4$, then A should be one of the followings $\left[\begin{array}{lll}0 & 0 & 4 \\ 0 & 0 & 4 \\ 2 & 2 & 0\end{array}\right],\left[\begin{array}{lll}0 & 2 & 2 \\ 2 & 0 & 2 \\ 1 & 1 & 2\end{array}\right]$ and $\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2\end{array}\right]$.
Lemma 1.5: Let G be connected 4-regular graph with 8 vertices. If T is a perfect 3-coloring with the matrix A and $|W|=2,|B|=3,|R|=3$, then A should be one of the followings $\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 2 & 2 \\ 2 & 2 & 0\end{array}\right]$ and $\left[\begin{array}{lll}1 & 3 & 0 \\ 2 & 0 & 2 \\ 0 & 2 & 2\end{array}\right]$.

Proof: similar as above.
Note that, we can obtain the second matrix by switching the colors of the first matrix. So we ignore the second one.

So all possible perfect 3-colorings on connected 4-regular graph with 8 vertices are $A_{1}=\left[\begin{array}{lll}0 & 0 & 4 \\ 0 & 0 & 4 \\ 1 & 3 & 0\end{array}\right]$,
$A_{2}=\left[\begin{array}{lll}0 & 0 & 4 \\ 0 & 0 & 4 \\ 2 & 2 & 0\end{array}\right], A_{3}=\left[\begin{array}{lll}0 & 2 & 2 \\ 2 & 0 & 2 \\ 1 & 1 & 2\end{array}\right], A_{4}=\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2\end{array}\right]$ and $A_{5}=\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 2 & 2 \\ 2 & 2 & 0\end{array}\right]$.

Now we list all the eigenvalues of $A_{1}, A_{2}, A_{3}, A_{4}$ and A_{5} in the following table:

Matrix	λ_{1}	λ_{2}	λ_{3}
A_{1}	-4	0	4
A_{2}	-4	0	4
A_{3}	-2	0	4
A_{4}	0	0	4
A_{5}	-2.56	1.56	4

And all the eigenvalues of the graphs $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}$ and G_{6} are listed below:

Graph	λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	λ_{6}	λ_{7}	λ_{8}
\boldsymbol{G}_{1}	-2.56	-1.62	-1.62	-1	0.62	0.62	1.56	4
\boldsymbol{G}_{2}	-2	-2	-2	0	0	0	2	4
\boldsymbol{G}_{3}	-2	-2	-1.41	-1.41	0	1.41	1.41	4
\boldsymbol{G}_{4}	-2.73	-2	-1.41	0	0	0.73	1.41	4
\boldsymbol{G}_{5}	-3.24	-2	0	0	0	0	1.24	4
\boldsymbol{G}_{6}	-4	0	0	0	0	0	0	4

Now by proposition (1) the possible parameter matrices of the above graphs are listed below:

Graph	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
G_{1}	\times	\times	\times	\times	\checkmark
G_{2}	\times	\times	\checkmark	\checkmark	\times
G_{3}	\times	\times	\checkmark	\checkmark	\times
G_{4}	\times	\times	\checkmark	\checkmark	\times
G_{5}	\times	\times	\checkmark	\checkmark	\times
G_{6}	\checkmark	\checkmark	\times	\checkmark	\times

Theorem: The parameter matrices of the connected 4-regular graph of order 8 are listed below:

Graph	A_{1}	A_{2}	A_{3}	A_{4}	A_{5}
G_{1}	\times	\times	\times	\times	\checkmark
G_{2}	\times	\times	\checkmark	\checkmark	\times
G_{3}	\times	\times	\checkmark	\times	\times
G_{4}	\times	\times	\checkmark	\checkmark	\times
G_{5}	\times	\times	\checkmark	\checkmark	\times
G_{6}	\checkmark	\checkmark	\times	\checkmark	\times

Proof: • We know that A_{5} is the only possible parameter matrix for G_{1}. Now we consider mapping $T_{1,5}$ as

$$
\begin{aligned}
& T_{1,5}(4)=T_{1,5}(6)=1 \\
& T_{1,5}(1)=T_{1,5}(2)=T_{1,5}(8)=2 \\
& T_{1,5}(3)=T_{1,5}(5)=T_{1,5}(7)=3 .
\end{aligned}
$$

It is clear that $T_{1,5}$ is the perfect 3-colorings of G_{1} with the parameter matrix A_{5}.

- We know that A_{3} and A_{4} are the only possible parameter matrices for G_{2}. Now we consider mapping $T_{2,3}$ and $T_{2,4}$ as
$T_{2,3}(6)=T_{2,3}(8)=1$
$T_{2,3}(5)=T_{2,3}(7)=2$
$T_{2,3}(1)=T_{2,3}(2)=T_{2,3}(3)=T_{2,3}(4)=3$.
$T_{2,4}(7)=T_{2,4}(8)=1$
$T_{2,4}(5)=T_{2,4}(6)=2$
$T_{2,4}(1)=T_{2,4}(2)=T_{2,4}(3)=T_{2,4}(4)=3$.
It is clear that $T_{2,3}$ and $T_{2,4}$ are the perfect 3-colorings of G_{2} with the parameter matrices A_{3} and
A_{4} respectively.
- We know that A_{3} and A_{4} are the only possible parameter matrices for G_{3}. Now we consider mapping $T_{3,3}$ as
$T_{3,3}(4)=T_{3,3}(8)=1$
$T_{3,3}(2)=T_{3,3}(6)=2$
$T_{3,3}(1)=T_{3,3}(3)=T_{3,3}(5)=T_{3,3}(7)=3$.
It is clear that $T_{3,3}$ is the perfect 3-colorings of G_{3} with the parameter matrix A_{3}.
claim: A_{4} cannot be parameter matrix for $G_{3} . A_{4}$ can be parameter matrix when
$|W|=2,|B|=2,|R|=4$. As in $A_{4}, i=2$ gives four red vartices form a rectangle. In G_{3} there are only two rectangles $(1,3,5,7)$ and $(2,4,6,8)$. For each of this rectangle we cannot color by white and black such that it satisfy A_{4}.
- We know that A_{3} and A_{4} are the only possible parameter matrices for G_{4}. Now we consider mapping $T_{4,3}$ and $T_{4,4}$ as
$T_{4,3}(3)=T_{4,3}(7)=1$
$T_{4,3}(1)=T_{4,3}(5)=2$
$T_{4,3}(2)=T_{4,3}(4)=T_{4,3}(6)=T_{4,3}(8)=3$.
$T_{4,4}(2)=T_{4,4}(6)=1$
$T_{4,4}(4)=T_{4,4}(8)=2$
$T_{4,4}(1)=T_{4,4}(3)=T_{4,4}(5)=T_{4,4}(7)=3$.
It is clear that $T_{4,3}$ and $T_{4,4}$ are the perfect 3-colorings of G_{4} with the parameter matrices
A_{3} and A_{4} respectively.
- We know that A_{3} and A_{4} are the only possible parameter matrices for G_{5}. Now we consider mapping $T_{5,3}$ and $T_{5,4}$ as
$T_{5,3}(1)=T_{5,3}(6)=1$
$T_{5,3}(2)=T_{5,3}(5)=2$
$T_{5,3}(3)=T_{5,3}(4)=T_{5,3}(7)=T_{5,3}(8)=3$.
$T_{5,4}(3)=T_{5,4}(7)=1$
$T_{5,4}(4)=T_{5,4}(8)=2$
$T_{5,4}(1)=T_{5,4}(2)=T_{5,4}(5)=T_{5,4}(6)=3$.
It is clear that $T_{5,3}$ and $T_{5,4}$ are the perfect 3-colorings of G_{5} with the parameter matrices A_{3} and
A_{4} respectively.
- We know that A_{1}, A_{2} and A_{4} are the only possible parameter matrices for G_{6}. Now we consider mapping $T_{6,1}, T_{6,2}$ and $T_{6,4}$ as
$T_{6,1}(2)=1$
$T_{6,1}(4)=T_{6,1}(6)=T_{6,1}(8)=2$
$T_{6,1}(1)=T_{6,1}(3)=T_{6,1}(5)=T_{6,1}(7)=3$.
$T_{6,2}(2)=T_{6,2}(4)=1$
$T_{6,2}(6)=T_{6,2}(8)=2$
$T_{6,2}(1)=T_{6,2}(3)=T_{6,2}(5)=T_{6,2}(7)=3$.
$T_{6,4}(5)=T_{6,4}(6)=1$
$T_{6,4}(7)=T_{6,4}(8)=2$
$T_{6,4}(1)=T_{6,4}(2)=T_{6,4}(3)=T_{6,4}(4)=3$.
It is clear that $T_{6,1}, T_{6,2}$ and $T_{6,4}$ are the perfect 3-colorings of G_{6} with the parameter matrices A_{1}, A_{2} and A_{4} respectively.

IV. Conclution

In this article, we study perfect 3- colorings of 4-regular graph of order 8. Here we conclude that only parameter matrix for G_{1} is $A_{5} ; G_{2}$ are $A_{3}, A_{4} ; G_{3}$ is $A_{3} ; G_{4}$ are $A_{3}, A_{4} ;$ and G_{5} are A_{1}, A_{2}, A_{4}.

REFERENCES

[1] A. L. Gavrilyuk, S. V. Goryainov, "On Perfect 2-Colorings of Johnson Graphs J(v, 3)", Journal of Combinatorial Designs, Vol. 21, Issue 6, pp. 232252, June 2013.
[2] A. Neumaier, "Completely regular codes", Discrete Math, Vol. 106/107, pp.353-360, 1992.
[3] C. Godsil, "Compact graphs and equitable partitions", Linear Algebra and Its Application, Vol. 255, pp. 259-266, 1997.
[4] P. Delsarte, "An algebraic approach to the association schemes of coding theory", Philips Res. Rep. Suppl, Vol. 10, pp. 1-97, 1973.
[5] D. B. West, "Introduction To Graph Theory", Pearson, India, 2001.
[6] M. Meringer, "Fast Generation of Regular Graphs and Construction of Cages", Journal of Graph Theory, Vol. 30, pp. 137-146, 1999.
[7] D. G. Fon-Der-Flaass, "Perfect 2-colorings of a hypercube", Siberian Mathematical Journal, Vol. 4, pp. 923-930, 2007.
[8] D. G. Fon-Der-Flaass, "Perfect 2-colorings of 12-dimensional cube that achieve a bound of correlation immunity", Siberian Mathematical Journal, Vol.4, pp. 292-295, 2007.
[9] D. G. Fon-Der-Flaass, "A bound on correlation immunity", Siberian Electronic Mathematical Reports Journal, Vol. 4, pp. 133-135, 2007.
[10] M Alaeiyan, A Mehrabani, "Perfect 3-colorings of the cubic graphs of order 10", Electronic Journal of Graph Theory and Applications (EJGTA), Vol. 5, Issue 2, pp. 194-206, 2017.
[11] M. Alaeiyan, H. Karami, "Perfect 2-colorings of the generalized Petersen graph", Proceedings.Mathematical Sciences, Vol. 126, pp. 1-6, 2016.
[12] M. Alaeiyan and A. Abedi, " Perfect 2-colorings of Johnson graphs $\mathrm{J}(4,3), \mathrm{J}(4,3), \mathrm{J}(6,3)$ and Petersen graph", Ars Combinatoria, (to appear).
[13] S.V. Avgustinovich, I. Y. Mogilnykh, " Perfect 2-colorings of Johnson graphs J(6,3) and J(7, 3)".Lecture Notes in Computer Science, pp. 11-19, 2008.
[14] S.V. Avgustinovich, I. Y. Mogilnykh, "Perfect colorings of the Johnson graphs $J(8,3)$ and $J(8,4)$.With two colors", Journal of Applied and Industrial Mathematics, Vol. 5, pp. 19-30, 2011.

