

International Journal of Scientific Research in ______________________________ Research Paper . Mathematical and Statistical Sciences Vol.6, Issue.4, pp.113-117, August (2019) **E-ISSN:** 2348-4519 *DOI: https://doi.org/10.26438/ijsrmss/v6i4.113117*

Weak -essential Ideals

Raplang Nongsiej¹

¹Dept. of Mathematics, North eastern Hill University, Shillong, India

Corresponding Author: rap890002@gmail.com

Available online at[: www.isroset.org](http://www.isroset.org/)

Received: 02/Jul/2019, Accepted: 12/Aug/2019, Online: 31/Aug/2019

*Abstract***-** W eak X – essential ideals are introduced in this paper which are generalizations of essential ideals and X – essential ideals. Some properties of weak $X -$ essential ideals are investigated. In particular, we proved that the property of weak $X - essential$ is preserved under finite intersection, inverse image and factor rings. We also found out conditions on Noetherian rings which ensure that direct sums of $weak X - essential$ ideals are weak *essential* ideals and vice versa.

Keywords − essential submodule, X-essential submodule, weak X-essential ideal.

I. INTRODUCTION

All rings are commutative with identity unless mentioned otherwise. The notion of essential submodules were first introduced by Johnson [1] way back in 1951 and the name was given by Eckmann and Schopf in 1953[2]. We begin by recalling some of the definitions. A module N is said to be *essential* (or large) [1] in an R module M, abbreviated $N \le M$, in case for any submodule L of M, whenever $N \cap L = 0$ we have $L = 0$. In this paper we generalize the concept of X – essential to the concept of weak $X -$ essential. But in order for the definition to make sense, we introduce weak $X -$ essential ideals which generalise *essential* and $X - essential$ [4] on ideals. Let R be a ring and X, J be ideals of R. An ideal I of R contained in *J* is called weak *X* – essential in *J*(written as $I \subseteq X$ –weak *J*) if for each ideal µ contained in *J*, µ ∩ $I \subseteq X$ we have $\mu^n \subseteq X$ for some $n \in \mathbb{N}$. The purpose of this paper is to investigate the properties of weak $X - essential$ ideals.

Definition 1.1: (S. Safaeeyan and N. Saboori Shirazi [4]) Let R be a ring. Let X and I be ideals of R. An ideal I of R contained in *J* is called $X -$ *essential* in *J* (written $I \subseteq X$ *J*) if for each ideal μ contained in *J*, $\mu \cap I = X$ implies $\mu \subseteq X$.

Definition 1.2: Let R be a ring. Let X and I be ideals of R. An ideal I of R contained in I is called weak $X - essential$ in I (written $I \subseteq_{X-weak} J$) if for each ideal μ contained in $J, \mu \cap I \subseteq X$ implies $\mu^n \subseteq X$ for some $n \in \mathbb{N}$.

Note that $I \subseteq_{X-weak} J$ is also equivalent to saying for every ideal μ with $\mu^n \nsubseteq X$ we have $\mu \cap I \nsubseteq X$.

Definition 1.3: Let I, X be (left)ideals of R. We say that I is weak X – essential if it is weak X – essential in R.

II. X-ESSENTIAL AND WEAK X-ESSENTIAL

Proposition 2.1: Let $X \subseteq I$, J be sub-ideals of K and suppose that J is maximal with respect to the property $I \cap J = X$. Then $I + J \trianglelefteq_X K$.

Proof: Let μ be sub ideal of K such that $(I + J) \cap \mu \subseteq X$, then $I \cap (J + \mu) \subseteq X$. But $X = I \cap J \subseteq I \cap (J + \mu) \subseteq X$ so $I \cap (I + \mu) = X$. By maximality of I we have $I + \mu = I$, i.e., $\mu \subseteq I$ and therefore as $(I + I) \cap \mu \subseteq X$ we have $\mu \subseteq X$.

Proposition 2.2: Let $I, J \subseteq K, X$ be ideals of R. Then

- 1. For $I \subseteq J \subseteq K$ we have $I \trianglelefteq_{X-weak} J$ and $J \trianglelefteq_{X-weak} K$ if $I \trianglelefteq_{X-weak} K$.
- 2. $I \subseteq_{X-weak} K$ and $J \subseteq_{X-weak} K$ if $I \cap J \subseteq_{X-weak} K$.

Proof: Follows easily from definition.

Lemma 2.3: Let $X \subseteq I \subseteq J$ be ideals of R. Then $I \trianglelefteq_{X-weak} J$ if and only if $\frac{I}{X} \trianglelefteq_{X-weak} \frac{I}{X}$ $\frac{1}{x}$.

Proof: Suppose $I \subseteq X - weak J$. Let $\frac{\mu}{X}$ be an ideal of $\frac{R}{X}$ contained in $\frac{J}{X}$ such that $\frac{\mu}{X} \cap \frac{I}{X}$ $\frac{I}{X} = 0$, hence $\mu \cap I = X$. Now since $I \trianglelefteq_{X-weak} J$, we have $\mu^n = X$ and hence $\left(\frac{\mu}{x}\right)$ \int_{X}^{μ} = 0. Therefore $\frac{I}{X} \leq X$ –weak \int_{X}^{Y} $\frac{1}{x}$.

Conversely, let μ be an ideal of R contained in J such that $\mu \cap I \subseteq X$, then $\frac{\mu + X}{X} \cap \frac{I}{X}$ $\frac{1}{x}$ = 0. By hypothesis we get that $\left(\frac{\mu+X}{Y}\right)$ $\left(\frac{+X}{X}\right)^n = 0$ for some $n \in \mathbb{N}$. Therefore $(\mu + X)^n = X$, i.e., $I \trianglelefteq_{X-\text{weak}} J$.

Proposition 2.4: Let R be a ring and I, J, X be ideals of R such that $I, X \subseteq J$. Then $\frac{I+X}{X} \trianglelefteq_{0-weak} \frac{I}{X}$ $\frac{J}{X}$ if $I \trianglelefteq_{X-weak} J$. **Proof:** Since, $I \subseteq X$ _{–weak} J and $I \subseteq I + X \subseteq J$ we have by Proposition 2.2, $I + X \subseteq X$ _{–weak} J . Therefore by Lemma 2.3 it follows that $\frac{I+X}{X} \trianglelefteq_{0-weak} \frac{I}{X}$ $\frac{J}{X}$ if $I \trianglelefteq_{X-weak} J$.

If R is a commutative ring and I an ideal, then the radical of I is an ideal of R such that an element x is in radical of I if some power of x is in I . It is denoted by $Rad(I)$.

Lemma 2.5: Let R be a commutative noetherian ring. Let I be an ideal of R and I, X be sub-ideals of I. Then the following are equivalent:

1. $I \trianglelefteq_{X-weak} J$.

2. For every $a \in J \setminus Rad(X)$, there exists $r \in R$ such that $ra \in I \setminus X$.

Proof: (1) \Rightarrow (2): Let $a \in J \ R ad(X)$. Since $I \subseteq_{X-weak} J$ we have $I \cap aR \nsubseteq X$. Therefore, there exists $r \in R$ such that $ar \in I \setminus X$.

(2) \Rightarrow (1): Let µ be an ideal contained in *J* such that µ ∩ *I* ⊆ *X*. By definition, in order to show *I* ⊴_{*x*-weak} *J*, we have to show that $\mu^n \subseteq X$ for some $n \in N$. Claim that $\mu \in Rad(X)$. If claim is false, then there exists $a \in \mu \setminus Rad(X)$, by (2), there exists $r \in R$ such that $ra \in I \setminus X$. But $ra \in \mu \cap I \subseteq X$, which is a contradiction. Hence the claim. Since R is a commutative noetherian ring, it can be proved that $\mu^n \subseteq X$ for some $\mu \in \mathbb{N}$.

Proposition 2.6: Let R be a commutative noetherian ring. Let J be an ideal of R and I , X be sub-ideals of J . Suppose that for each $a \in J$, $(I : a) \trianglelefteq_{(X:a)-weak} R$, then $I \trianglelefteq_{X-weak} J$.

Proof: Let $a \in J \ R ad(X)$. By hypothesis, $(I : a) \leq_{(X:a)-weak} R$, then by Lemma 2.5 there exists $r \in R$ such that $ra \in I$ $(I: a) \setminus (X: a)$. Therefore, $(ra) a \in I \setminus X$. Thus showing that $I \subseteq_{X-\text{weak}} I$.

Corollary 2.7: Let *I, J* be ideals of a commutative noetherian ring R, such that $I \subseteq J$. Then $I \subseteq_{0-weak} J$ if $(I : a) \trianglelefteq_{ann(a)-weak} R$, for all $a \in J$.

Proposition 2.8: Let *I*, *J* be ideals over a commutative noetherian ring *R* and *P* be a prime ideal. Then for each $a \in J \setminus P$, the following are equivalent:

1. $(I: a) \trianglelefteq_{P-weak} R$.

- 2. $I \trianglelefteq_{P-weak} J$.
- 3. $(l: a) \trianglelefteq_P R$.

Proof: (i) \Rightarrow (ii) : Suppose for each $a \in J$, (I: a) $\mathcal{Q}_{P-\text{weak}} R$. Let $a \in J \setminus Rad(P)$. Since P is prime $P = Rad(P)$ then $a \in J \setminus P$, therefore by assumption, we have (I: a) \mathcal{Q}_{P-weak} R. Also note that $P = (P : a)$. Therefore (I: a) $\mathcal{Q}_{(P:a)-weak}$ R. Hence by Proposition 2.6, I $\trianglelefteq_{P-weak} J$.

(ii) \Rightarrow (i) ∶ Suppose I ⊴_{P-weak} J. Let $a \in J \setminus P$, since P is prime we have $a \notin Rad(P)$. Therefore by Lemma 2.5 there exists $r \in R$ such that $ra \in I \setminus P$, i.e., $(I : a) \not\subseteq P$. Now let μ be an ideal such that, $\mu \cap (I : a) \subseteq P$, then $\mu(I : a) \subseteq \mu \cap (I : a) \subseteq P$. But as P is prime, we have $(I : a) \nsubseteq P$, therefore $\mu \subseteq P$. Hence, $(I : a) \trianglelefteq_{P-weak} R$. (i) or $(ii) \Leftrightarrow (iii)$: clear.

A set of ideals $\{I_i\}_{i=1}^n$ of a ring R is said to be independent if $I_j \cap \sum_{i=1, i \neq j}^n I_i = 0$ for all $j = 1, 2, ..., n$.

Proposition 2.9: Let $\{I_i\}_{i=1}^n$ be a set of independent ideals and $\{I_i\}_{i=1}^n$ another set of independent ideals over a commutative noetherian ring R. Let X be an ideal of R such that $I_i \subseteq_{X-weak} I_i$ for each $i \in \{1,2,...,n\}$, then $\bigoplus_{i=1}^n I_i \subseteq_{X-weak} \bigoplus_{i=1}^n I_i$.

Proof: Let $a \in \bigoplus_{i=1}^{n} J_i \setminus Rad(X)$, then $a = a_1 + a_2 + \cdots + a_n$ where each $a_i \in J_i$ for all $i = 1, 2, \ldots, n$. Therefore there exists at least one $i \in \{1,2,\ldots,n\}$ such that $a_i \notin Rad(X)$. With out any loss $a_1 \notin Rad(X)$. Then $a_1a = a_1^2 \in J_1 \setminus Rad(X)$. Since $I_1 \subseteq_{X-weak} I_1$, by Lemma 2.5, there exists $r \in R$ such that $ra_1a \in I_1 \setminus X$. Therefore, $ra_1a \bigoplus_{i=1}^n I_i \setminus X$. Hence $\bigoplus_{i=1}^n I_i \trianglelefteq_{X-weak} \bigoplus_{i=1}^n J_i.$

Proposition 2.10: Let $\{J_i\}_{i=1}^n$ be set of independent ideals and $\{I_i\}_{i=1}^n$ be another set of ideals over a commutative noetherian ring R such that $I_i \subseteq J_i$ for all $i = 1, 2, ..., n$. Let X be an ideal of R then $I_i \subseteq_{X-weak} J_i$ if and only if $\bigoplus_{i=1}^n I_i \subseteq_{X-weak} \bigoplus_{i=1}^n J_i$. **Proof:** The direct part is done in the previous proposition.

Conversely, let $a_1 \in J_1 \setminus Rad(X)$. Then $a_1 \bigoplus_{i=1}^n J_i$. Therefore by Lemma 2.5, there exists $r \in R$ such that $ra_1 \oplus_{i=1}^n I_i \setminus X$. Then $ra_1 \in I_1 \setminus X$, since $\{J_i\}_{i=1}^n$ is independent set and $I_i \subseteq J_i$ for all $i = 1, 2, ..., n$. Hence $I_1 \trianglelefteq_{X-weak} J_1$. Therefore, it follows that $I_i \trianglelefteq_{X-weak} I_i$ for every $i = 1, 2, ... n$.

Proposition 2.11: Let X be an ideal of a commutative noetherian ring R. Let $\{J_i\}_{i=1}^n$ be the set of ideals satisfying $J_i \cap$ $\sum_{j=i, j=1}^n J_j \subseteq X$ and $\{l_i\}_{i=1}^n$ be another set of ideals of R such that $I_i \subseteq J_i$ and $X \cap J_i \subseteq I_i$ for all $i = 1, 2, ..., n$. Then for all $i = 1, 2, ..., n, I_i \leq X - weak \, J_i$ if and only if $\sum_{i=1}^{n} I_i \leq X - weak \, \sum_{i=1}^{n} J_i$.

Proof: Suppose $I_i \trianglelefteq_{X-weak} I_i$ for all $i = 1, 2, ... n$. Let $a \in \sum_{i=1}^n J_i \setminus Rad(X)$, then $a = a_1 + a_2 + ... + a_n$ where $a_i \in J_i$ for all $i = 1, 2, \dots, n$. Therefore, there exists at least one $i \in \{1, 2, \dots, n\}$ such that $a_i \notin Rad(X)$. Without any loss, let $a_1 \notin Rad(X)$. Clearly, since $J_1 \cap \in \sum_{j=2}^n J_j \subseteq X$, it follows that $a_1a \in J_1 \setminus Rad(X)$. Since $I_1 \trianglelefteq_{X-weak} J_1$, by Lemma 2.5, there exists $r \in R$ such that $ra_1a \in I_1 \setminus X$. Therefore, $ra_1a \in \sum_{i=1}^n I_i \setminus X$. Hence, $\sum_{i=1}^n I_i \preceq_{X-weak} \sum_{i=1}^n J_i$.

Conversely, let $a_1 \in J_1 \setminus Rad(X)$ then $a_1 \in \sum_{i=1}^n J_i \setminus Rad(X)$. Therefore by Lemma 2.5, since $\sum_{i=1}^n I_i \subseteq_{X-\text{weak}} \sum_{i=1}^n J_i$, there exists $r \in R$ such that $ra_1 \in \sum_{i=1}^n I_i \setminus X$. Then $ra_1 \in I_1 \setminus X$, since $J_i \cap \sum_{j \neq i,j=1}^n J_j \subseteq X$, $I_i \subseteq J_i$ and $X \cap J_i \subseteq I_i$ for all $i = 1, 2, ..., n$. Hence $I_1 \trianglelefteq_{X-weak} J_1$. Therefore it follows that $I_i \trianglelefteq_{X-weak} J_i$ for every $i = 1, 2, ..., n$.

Proposition 2.12: Let R be a commutative noetherian ring. Let $X_1 \subseteq I_1 \subseteq I_1$ and $X_2 \subseteq I_2 \subseteq I_2$ be ideals of R satisfying $X_1 \cap X_2 = J_1 \cap J_2$. Then $I_1 + I_2 \trianglelefteq_{X_1 + X_2 - weak} J_1 + J_2$ if and only if $I_1 \trianglelefteq_{X_1 - weak} J_1$ and $I_2 \trianglelefteq_{X_2 - weak} J_2$.

Proof: Suppose $I_1 + I_2 \leq_{X_1+X_2-weak} I_1 + I_2$. Let μ be an ideal of R contained in I_1 such that $\mu \cap I_1 \subseteq X_1$, then $\mu \cap (I_1 + I_2) \subseteq$ $X_1 + X_2$. By assumption, we have $\mu^n \subseteq X_1 + X_2$ for some $n \in \mathbb{N}$, which can be easily proved that $\mu^n \subseteq X_1$. Hence, $I_1 \trianglelefteq_{X_1-weak} I_1$ and similarly $I_2 \trianglelefteq_{X_2-weak} I_2$.

Conversely, $I_1 \subseteq_{X_1-weak} I_1$ and $I_2 \subseteq_{X_2-weak} I_2$. Let $a_1 \in I_1$, $a_2 \in I_2$ such that $a_1 + a_2 \in I_1 + I_2 \setminus Rad(X_1 + X_2)$, then either $a_1 \notin Rad(X_1 + X_2)$ or $a_2 \notin Rad(X_1 + X_2)$. With out any loss, $a_1 \notin Rad(X_1 + X_2)$. As $X_1 \cap X_2 = J_1 \cap J_2$ we can easily verify that $a_1(a_1+a_2) \notin Rad(X_1+X_2)$ then $a_1(a_1+a_2) \notin Rad(X_1)$. Also note that $a_1(a_1+a_2) \in J \setminus Rad(X_1)$, therefore by Lemma 2.5 since $I_1 \subseteq_{X-weak} I_1$, there exist $r \in R$ such that $ra_1(a_1 + a_2) \in I_1 \setminus X_1$. Again by using $X_1 \cap X_2 = I_1 \cap I_2$, we get that $ra_1(a_1+a_2) \notin X_1 + X_2$. Therefore $ra_1(a_1+a_2) \in I_1 + I_1 \setminus X_1 + X_2$. Hence by Lemma 2.5, we have $I_1 + I_2 \trianglelefteq_{X_1+X_2-weak} I_1 + I_2.$

Proposition 2.13: Let R be a commutative ring. Let I, I, X be ideals of R such that $X \subseteq I$ and $f \in Hom(I, I)$. Then *Imf* \mathcal{Q}_{X-weak} *J* if and only if for each $h \in Hom(J, .)$, $ker h \cap Im f \subseteq X$ we have $(Ker h)^n \subseteq X$ for some $n \in N$.

Proof: The direct part is clear. Conversely, let μ be an ideal of R containing in *J* such that $Imf \cap \mu \subseteq X$. Now $h : J \to \frac{J}{J}$ $\frac{1}{\mu}$ by $h(x) = x + \mu$ for all $x \in J$, then clearly $h \in Hom\left(J, \frac{J}{J}\right)$ $\frac{1}{\mu}$) with $Kerh = \mu$. Therefore we see that, $Im f \cap Ker h \subseteq X$, by hypothesis we get, $\mu^n = (Kerh)^n \subseteq X$ for some $n \in N$. Therefore $Imf \trianglelefteq_{X-weak} J$.

Lemma 2.14: Let I, J, K, X be ideals of a commutative ring R. Let $f : R \to R$ be ring homomorphism such that $f^{-1}(K) \subseteq I$. Then $f^{-1}(K) \trianglelefteq_{f^{-1}(X)-weak} I$ if $K \trianglelefteq_{X-weak} J$.

Proof: Let μ be an ideal of R contain in I such that $\mu \cap f^{-1}(K) \subseteq f^{-1}(X)$. Then clearly $f(\mu) \cap K \subseteq X$ and by hypothesis we get $[f(\mu)]^n \subseteq X$ for some $n \in N$. Since f is a homomorphism $\mu^n \subseteq f^{-1}(X)$. Therefore $f^{-1}(K) \trianglelefteq_{f^{-1}(X)-weak} I$.

Corollary 2.15: Let I, J, K be ideals of a commutative ring R such that $K \subseteq J$ and $f : R \to R$ be ring homomorphism. Suppose that $f^{-1}(K) \subseteq I$, then if $K \trianglelefteq_{0-weak} J$, we have $f^{-1}(K) \trianglelefteq_{Kerf-weak} I$. Moreover, if f is an epimorphism, then $K \trianglelefteq_{0-weak} J$ if and only if $f^{-1}(K) \trianglelefteq_{Kerf-weak} I$.

Proof: Suppose $K \trianglelefteq_{0-weak} J$. By Lemma 2.14, we have $f^{-1}(K) \trianglelefteq_{f^{-1}(0)-weak} I$. But $f^{-1}(0) = Ker f$, therefore $f^{-1}(K) \trianglelefteq_{Kerf-weak} I$.

If f is an epimorphism, the direct part is done above. Conversely, let μ be an ideal of R contained in J such that $\mu \cap K = 0$. Then $f^{-1}(K) \cap f^{-1}(\mu) \subseteq Ker f$. Since $f^{-1}(K) \trianglelefteq_{Ker f - weak} I$ we have $[f^{-1}(\mu)]^n \subseteq Ker f$ for some $n \in N$. Again since f is an epimorphism we have $\mu^n = 0$. Therefore $K \leq_{0-weak} J$.

Proposition 2.16: Let R be a commutative noetherian ring, $F = \{1, 2, ..., n\}$ and for every $i \in F$, I_i are non-zero independent ideals of R. Let $I = \bigoplus_{i \in F} I_i$, then for every non-empty subset F' of F we have $\bigoplus_{i \in F} I_i \subseteq_{X-\text{weak}} I$ where $X = \bigoplus_{i \in F \setminus F'} I_i$.

Proof: Let $a \in I \setminus Rad(X)$. Then $a = a_1 + a_2 + \cdots + a_n$ where $a_i \in I_i$ for every $i \in F$. Since $a \notin Rad(X)$, there exists $a_i \in I_i$ for some $i \in F$ such that $a \notin Rad(X)$, therefore $i \in F'$. Taking $r = a_i$ we get $ra = a_i^2 \in I_i \setminus X$. Therefore $ra = \bigoplus_{i \in F'} I_i \setminus X$. Hence $\bigoplus_{i \in F'} I_i \trianglelefteq_{X-weak} I$.

Proposition 2.17: Let R be a commutative ring. Let X be the nil-radical of R . Then for an ideal I with $X \subseteq I$ we have *I* ⊴_{*X*-*weak*} *R* if and only if $\frac{I}{X}$ ≤ $\frac{R}{X}$ $\frac{\pi}{X}$.

Proof: Suppose $I \subseteq X$ –weak R. Let $\frac{\mu}{X}$ be an ideal of R such that $\frac{\mu}{X} \cap \frac{I}{X}$ $\frac{1}{X}$ = 0 then $\mu \cap I = X$. By hypothesis, $\mu^n \subseteq X$ for some $n \in \mathbb{N}$. Since X is nil-radical, therefore it follows that $\mu \subseteq X$. Thus $\mu = X$ and therefore $\frac{\mu}{X} = 0$. Hence $\frac{1}{X} \leq \frac{R}{X}$ $\frac{1}{x}$.

Conversely, suppose $\frac{I}{X} \leq \frac{R}{X}$ $\frac{R}{X}$. Let μ be an ideal such that $\mu \cap I \subseteq X$, then $\frac{\mu + X}{X} \cap \frac{I}{X}$ $\frac{I}{X} = 0$. By assumption, $\frac{\mu + X}{X} = 0$, therefore $\mu + X = X$. Then $\mu \subseteq X$. Hence $I \trianglelefteq_{X-weak} R$.

Proposition 2.18: Let $I, I \subseteq K$ be ideals of a commutative ring R and X its nil-radical (or instead we can take the largest nilideal contain in K). Then

- 1. $I \subseteq_{X-weak} K$ and $J \subseteq_{X-weak} K$ if and only if $I \cap J \subseteq_{X-weak} K$.
- 2. Let $I \subseteq J \subseteq K$. Then $I \trianglelefteq_{X-weak} J$ and $J \trianglelefteq_{X-weak} K$ if and only if $I \trianglelefteq_{X-weak} K$.

Proof: Proof follows easily from definition.

Proposition 2.19: Let R be a commutative ring and X its nil-radical (or instead we can take the largest nil-ideal contain in J). Let J be an ideal of R and I be sub-ideal of J . Then the following are equivalent:

- 1. $I \trianglelefteq_{X-weak} J$.
- 2. For every $a \in J \setminus X$, there exists $r \in R$ such that $ra \in I \setminus X$.
- 3. For each $a \in J \setminus X$, $(I : a) \trianglelefteq_{(X:a)-weak} R$.

Proof: Similar to Lemma 2.5 and Proposition 2.6.

Proposition 2.20: Let I_1, I_2, I_1, I_2 be ideals of a commutative ring R and X its nil-radical. If $I_1 \subseteq_{X-weak} I_1$ and $I_2 \subseteq_{X-weak} I_2$, then $I_1 \cap I_2 \trianglelefteq_{X-weak} I_1 \cap I_2$.

Proof: Let μ be a sub-ideal of $J_1 \cap J_2$ such that $\mu \cap (I_1 \cap I_2) \subseteq X$. Then as X is nil-ideal and $I_2 \trianglelefteq_{X-weak} J_2$, we have $\mu \cap I_1 \subseteq$ X. Also since $I_1 \trianglelefteq_{X-weak} I_1$ we get that $\mu \subseteq X$.

Proposition 2.21: Let I, J, K be ideals of a commutative ring R, X the nil-radical and $f : J \rightarrow K$ be homomorphism. If $I \trianglelefteq_{X-weak} K$, then $f^{-1}(I) \trianglelefteq_{f^{-1}(X)-weak} J$, infact $f^{-1}(I) \trianglelefteq_{f^{-1}(X)} J$.

Proof: Let μ be a sub-ideal of J satisfying $\mu \cap f^{-1}(I) \subseteq f^{-1}(X)$, then $I \cap f(\mu) \subseteq X$. But as $I \subseteq_{X-\text{weak}} K$ and X is nil-ideal, we have $f(\mu) \subseteq X$. Therefore $\mu \subseteq f^{-1}(X)$. Hence $f^{-1}(I) \subseteq_{f^{-1}(X)-weak} J$.

III. SOME EXAMPLES

Example 3.1: An example of ideals which are weak 0-essential but not essential. Take
$$
R = \begin{cases} \begin{pmatrix} a & b & c \\ 0 & a & d \end{pmatrix} | a, b, c, d \in \mathbb{Q} \end{pmatrix}
$$
.
\nThen ideals of R are: $I_1 = R, I_2 = 0, I_3 = \begin{cases} \begin{pmatrix} 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} | c \in \mathbb{Q} \end{cases}$, $I_4 = \begin{cases} \begin{pmatrix} 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix} | b \in \mathbb{Q} \end{cases}$, $I_5 = \begin{cases} \begin{pmatrix} 0 & b & c \\ 0 & 0 & 0 \end{pmatrix} | b, c \in \mathbb{Q} \end{pmatrix}$, $I_6 = \begin{cases} \begin{pmatrix} 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} | c, d \in \mathbb{Q} \end{cases}$, $I_7 = \begin{cases} \begin{pmatrix} 0 & b & b \\ 0 & 0 & 0 \end{pmatrix} | b \in \mathbb{Q} \end{cases}$, $I_8 = \begin{cases} \begin{pmatrix} 0 & b & c \\ 0 & 0 & d \\ 0 & 0 & 0 \end{pmatrix} | b, c, d \in \mathbb{Q} \end{cases}$, $I_9 = \begin{cases} \begin{pmatrix} 0 & b & c \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix} | b, c \in \mathbb{Q} \end{cases}$.
\nHere I_3 and I_4 are weak 0-essential but not essential.

Here I_3 and I_4 are weak 0-essential but not essential. **Example 3.2:**

- 1. If $R = \frac{Z}{r^2}$ $\frac{\mathbb{Z}}{p^2q^2\mathbb{Z}}$, $I=\frac{p^2\mathbb{Z}}{p^2q^2}$ $\frac{p^2\mathbb{Z}}{p^2q^2\mathbb{Z}}, J=\frac{p\mathbb{Z}}{p^2q^2}$ $\frac{p\mathbb{Z}}{p^2q^2\mathbb{Z}}$, $X = \frac{p^2q\mathbb{Z}}{p^2q^2\mathbb{Z}}$ $\frac{p}{p^2 q^2 \mathbb{Z}}$ where p, q are distinct primes. Then $I \subseteq_{X-weak} J$ and also $I \subseteq_{0-weak} J$ but not X -essential in
- 2. Let $R = \frac{\mathbb{Z}}{n^2}$ $\frac{\mathbb{Z}}{p^2qr\mathbb{Z}}, I = \frac{p^2\mathbb{Z}}{p^2qr}$ $\frac{p^2\mathbb{Z}}{p^2qr\mathbb{Z}'}$, $J=\frac{p\mathbb{Z}}{p^2qr}$ $\frac{p\mathbb{Z}}{p^2qr\mathbb{Z}}$, $X = \frac{p^2q\mathbb{Z}}{p^2qr\mathbb{Z}}$ $\frac{p}{p^2 q r \mathbb{Z}}$, where p, q, r are distinct primes. Then $I \subseteq_{X-weak} J$ but I is neither weak 0-essential nor X -essential in I .
- 3. Let $R = \frac{Z}{r^2}$ $\frac{u}{p^2 a \mathbb{Z}}$ where p is a prime number, $a \in N$ is a natural number not divisible by p. If a is composite and q is a prime number dividing *a* then take $I = \frac{p^2 \mathbb{Z}}{p^2 \mathbb{Z}^2}$ $\frac{p^2\mathbb{Z}}{p^2a\mathbb{Z}}, J = \frac{p\mathbb{Z}}{p^2a}$ $\frac{p\mathbb{Z}}{p^2 a \mathbb{Z}}, X = \frac{p^2 q \mathbb{Z}}{p^2 a \mathbb{Z}}$ $\frac{p}{p^2 a \mathbb{Z}}$. Then $I \trianglelefteq_{X-weak} J$ but I is neither weak 0-essential nor X -essential in J .
- 4. Let $R = \frac{\mathbb{Z}}{26}$ $\frac{\mathbb{Z}}{36\mathbb{Z}}, I = \frac{2\mathbb{Z}}{36\mathbb{Z}}$ $\frac{2\mathbb{Z}}{36\mathbb{Z}}, X = \frac{6\mathbb{Z}}{36\mathbb{Z}}$ $\frac{62}{362}$. Then $I \trianglelefteq_{X-weak} R$ and I is also X-essential but $I \trianglelefteq_{0-weak} R$.
- 5. Let $=\frac{\mathbb{Z}}{26}$ $\frac{\mathbb{Z}}{36\mathbb{Z}}$, $I = \frac{2\mathbb{Z}}{36\mathbb{Z}}$ $\frac{2\mathbb{Z}}{36\mathbb{Z}}, X = \frac{9\mathbb{Z}}{36\mathbb{Z}}$ $\frac{3a}{36\pi}$. Then $I \trianglelefteq_{0-weak} R$ but $I \trianglelefteq_{X-weak} R$ and I is not X-essential.

Example 3.3: For every $m, n \in \mathbb{Z}$ we have $m\mathbb{Z} \trianglelefteq_{n\mathbb{Z}-weak} (m\mathbb{Z}+n\mathbb{Z})$. In fact $m\mathbb{Z} \trianglelefteq_{n\mathbb{Z}} (m\mathbb{Z}+n\mathbb{Z})$.

IV. **CONCLUSIONS**

With the generalisation of X – essential and essential ideals, we have found out that when R is a noetherian ring, $I \subseteq_{X-weak} I$ if and only if for every $a \in J \setminus Rad(X)$, there exists $r \in R$ such that $ra \in I \setminus X$. This property helps us in determining if the ideal I is weak $X - essential$ in J without the use of the definition, in other words without using any ideal μ , instead we only needed to focus on an element $a \in J \setminus Rad(X)$. We have proved so many results on this paper with the help of this property. We also proved that if the ideal X is nilradical of the ring R with X containing in I, then $I \subseteq_{X-weak} R$ if and only if $\frac{I}{X} \leq \frac{R}{X}$ $\frac{R}{X}$. Most results in this paper are based on a ring R which is assuming to be noetherian. So there are still questions to discuss and results to be found out for a ring R that is not necessarily be noetherian.

REFERENCES

- [1] R.E. Johnson: "Structure Theory of Faithful Rings", Proc. Amer. Math. Soc. 2(1951), 891-895.
- [2] B. Eckmann and A. Schopf, "Uber Injective Moduln", Archiv der Math 4(1953), 75-78.
- [3] F. W. Anderson and K.R. Fuller : "Rings and Categories of Modules (Graduate Text in Mathematics 13)", Springer -Verlag, Berlin Heldelberg-New York, (1974).
- [4] S. Safaeenyan and N. Saboori Shirazi: "Essential Submodules with respect to an Arbitrary Submodule", Journal of Mathematical Extension, Vol. 7 No. 3, (2013), 15-27.
- [5] M. F. Atiyah and I. G. Macdonald: "Introduction to Commutative Algebras", Addison Wesley, (1972).
- [6] K. R. Goodearl, R. B. Warfield, Jr: "An Introduction to Non commutative Noetherian Rings Second Edition", (1989).