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Abstract—This article investigates exact desolate wave blend (solutions) for the fractional (3+1) generalized
computational (nonlinear) wave equation (identification) with gas bubbles. Liquids with gas bubbles mainly arise in
manifold or crowded applications like science, engineering, nature, and physics. We explored this model using some well-
known ansatz techniques and the sine-cosine procedure. These procedure or methods yield different periodic and
hyperbolic desalate wave blend (solutions). Moreover, solving the (3+1) Aspect (dimensional) generalized fractional
nonlinear wave equation with gas bubbles is equivalent to solving many physical models, such as the (2+1)-dimensional
Kadomtsev-Petviashvil model with gloomy despair, the (3+1)-dimensional Kadomtsev-Petviashvili model, the (3+1)
dimensional(aspect) nonlinear waves with bubble liquid mixture, and other special cases of the considered model. Finally,
we conspiracy both 2D and 3D as well as the curve plots to understand the physical application of the considered model

using maple.
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l. INTRODUCTION

The inquiry or exploration of computational (nonlinear)
partial differential equation solutions is critical in
understanding various physical fact or situation in many
scientific and engineering applications. As a result,
numerous logical and numerical technique (methods) have
been used to tackle a variety of such problems, including
the generalized Kudryashov[1], sine-cosine [2], sine-
Gordon expansion, extended auxiliary equation [3], direct
algebra [5], Sadar sub-equation [6], and the generalized
Riccati methods, see [7-39] for more details. These
methods heavily depend on wave transformation
techniques. However, other analytical techniques didn’t
depend on the wave transforms approach, among which
were the invariant subspace method [12, 13], Lie
symmetry method [8, 11], reduction method [14, 15], etc.

The study of bubbling liquids and their applications in
various disciplines of engineering and medical sciences has
piqued the interest of numerous scholars for decades. Most
bubbles with uniform radius are explained by a fourth-
order linear partial differential equation for certain physical
phenomena in isothermal bubbly liquids [17, 20].

Fundamental investigation (analysis) of the bubble

dynamics (change) problem was made by Rayleigh and
can be found [16]. Among the interesting models is the
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equation that described the liquid with the gas bubbles
phenomena given as:

(0 + 9,00, + 9,0, + 950, ), + 940, +9:0,, =0, (L.2)

where ¢, and (g, perform a role in the evolution of time
and the steepening of the wave where ( is the wave

amplitude, the bubble liquid dispersion, ¢,,d,,095,d,, an

d g, represent the bubble-liquid-nonlinearity, the bubble
liquid-viscosity, the Yy transverse perturbation, and the
Z transverse perturbation. This is equation is known as the

(3+1)-dimensional generalized nonlinear wave equation
describing liquid with gas bubbles [27, 28]. Assigning
0,=0,=09,=10,=0.=0, the equation (1.1)
reduces to the popular (2+1)-dimensional Kadomtsev-
Petviashvil model with negative dispersion [30] given by:

(a, +qa, +qXXX)x +q,, =0. (1.2)

Also, if you assign @, = -6, g, =1 0;= 0, 0,=05= 3,

the equation (1.1) reduces to the well-known (3+1)-
dimensional (aspect) Kadomtsev-

Petviashvili equation [29], the identify equations is given
as:
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(0, —600, + 0y ), +3(0y, +0, ) =0. (1.3)
Again, ifoneset 9, =9, =1,09,=0,9, =9, =0.5will
obtain the liquid mixture equation given by

(qt 100, + Oy )x +05(qyy +d,, ) =0. (1.4)

This equation is known as the (3+1) —dimensional (aspect)
nonlinear waves with bubble liquid solution (mixture)
given in [31]. The (3+1)-dimensional generalized nonlinear
wave equation describing liquid with gas bubbles is the
generalization of the (2+1)-dimensional (aspect)
Kadomtsev-Petviashvil model with negative dispersion,
the (3+1)-dimensional(aspect) Kadomtsev-Petviashvili
equation, and the (3+1) -dimensional (aspect) nonlinear
waves with bubble liquid mixture. These equations are
paramount in  describing(report) different situation
(phenomena) in mathematical physics and particular
oceanic engineering.

Il. RELATED WORK

Moreover, some studies on the logical and numerical blend
(solution) of generalized nonlinear model (1.1) with gas
bubbles have been investigated in the literature, for
example, the bilinear formalism and soliton solutions using
Hirota bilinear method [21], Assemble mixed rogue wave-
stripe solitons and mixed lump-stripe solitons [23], the
binary Bell polynomials obtaining the bilinear form of this
model [25], and the solitons and lumps solution for the
generalized nonlinear wave [26]. There are several
fractional derivative operators in fractional calculus, such
as the Caputo derivative, Grunwald derivative, Riemann-
Liouville derivative, and so on. Although the research
concentrate on the aforementioned derivatives has been
difficult to apply in reality due to their limitations. Inspired
by Khalil [32], who established a new fractional derivative,
called Immitative Fractional (divided) Derivative, that is
derived based on classical calculus and possesses
semigroup, exponent, and identity features that are useful
for solving the differential system. Scholars have just lately
begun to focus on this field of study. The fractional
derivative is without a doubt another method for improving
the  prediction performance  of the  (3+1)-
dimensional(aspect)generalized nonlinear wave equation
representing liquid with gas bubbles. Therefore, the main
focus of this reseach is to obtain the desolate or lonely
waves for the fractional (3+1)-dimensional(aspect)
generalized nonlinear wave equation describing(report)
liquids with gas bubbles using the sine-cosine method and
other popular ansatz techniques.

Section 2 contains the definitions of some popular
fractional derivatives, properties of the accodant derivative,
and illustration of the used ansatz techniques procedure
(methods). In the next section, the implementation of the
method on the fractional (3+1)-dimensional generalized
nonlinear wave equation report (describing) liquids with
gas bubbles will lead to desolate wave solutions. In section
4, the conspiracy representation will be given for some
achievable solutions.
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I1l. THEDESCRIPTION (ILLUSTRATION) OF
THE ACCORDANT FRACTIONAL DERIVATIVES
AND THE METHOD

This section will start by defining the bulk common
partial(fractional) derivative definitions, like: the Riemann-
Liouville, Caputo, and Grunwald-Letnikov definitions [32].
Definition 1 (Riemann Liouville)

1
I(n-p)

Definition 2 (Caputo)

Fo(0) = [ijn I(x—z)”-ﬂ-lq(z)dz, n-l<pB<n.
dx) 5

F/g(x)= X(x—z)”””lq"(z)dz, n-1<g<n.
F(ﬂ—ﬁ)!
Definition 3 (Grunwald-Letnikov)
|:ﬂ _ i —ﬁ'T i ﬂ .
() = limm > () i q(x—im).
m= i—»0

Definition 4 (Accordant divided (fractional) derivative)
consider a function (:[0,00) =[], then the Accordant

divided (fractional) derivative of § order S is as follow

F/q(z) = Iimw, forall z>0,8¢(0,1].
70 T

Theorem 2.1[32]
Suppose  p(z),q(z) are S — differentiable at a point

z>0and S <(0,1]. Then
1. Ff(ap(z)+bq(z)):a(Ffp(z))+b(qu(z)), forall a,bel.

2. Fzﬁ(zh): hz"”?, forall he .
3. F/ (77) =0, for all constant function q(z) =7.

4. F/ (p(0)4@) = p(2) (F/a@) +40) (F/p@)).
6. If in additon p(z) is differentiable, then

., dp(2)
(F/p)(2)=z e

Now, we will describe the method for the solution of the
fractional (3+1)-dimensional (aspect) generalized nonlinear
(discriminating) wave equation describing liquids with gas
bubbles. In general, given nonlinear divided (fractional)
PDE as follow:

0< A1 p2<1. 2.1)
qx0=U () g:k[axgmy;mz;_v‘;], 22)
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Where k,a,b,C,and Vv are persistant to be decide later.

Moreover, for the first ansatz method, we assumed that the
solution of the ODE (2.2) is given by:

N

U(¢)=2 de'(), (23)
i=0

where d, are persistant to be decide and N to be dictate by

balancing the highest derivative with the elevated nonlinear
terms. In addition, the periodic solution assumes the

function ® (<) to be a periodic function and vice versa to

acquire a structure of algebraic identify. Solving the
algebraic structure using maple or any other computational
software to obtain the values of the unknown constants.
However, for the sine and cosine method, we assumed that
the blend of the fractional PDE is as follow:

U (&) =ysin” (%), or U (&) =y cos” (%), (2.4)
where ¥, i, and & are constants to be determined. The
derivatives of the solution (2.4) are given respectively as:

U (&) =ysin“(9¢),

U"(¢)=7"sin™(9¢),

(U "(5))6 =nduy" cos(9¢)sin™*(9¢),

(U"(@)) =-n*F u’y"sin™ (9€)+ 8%y u(nu-1)sin"™* (9¢),

55

(2.5)
(¢) = ycos” (88),
"(£)=7"cos™ (%),
U"(g))g =-nuy"sin(9€) cos™ ™ (9¢),
u

(2.6)
and so on for the higher-order derivatives. When we
substitute (2.5) or (2.6) into the ODE and steady the
expressions of the sine or cosine function to generate an
algebraic structure of linear equations. Getting the resulting
system using computerized symbolic calculations namely
maple or Mathematica to obtain the values of all the
possible unknowns. The main advantage of these ansatz

2g,a’d,d, —2g,k*a*d, =0,
—6g,k’a*d, + g,a’d? =0,

Solving the system (3.4) using maple to get
Case |
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techniques is easy to apply to the most complicated PDEs
models with less computational cost.

IV. RESULTS AND DISCUSSION (THE
APPLICATION)

This section will present hyperbolic and periodic result for
the fractional (3+1)-dimensional (aspect) generalized
nonlinear (computational) wave equation of liquids with
gas bubbles (1.1). Now, applying the definition of the
accordant fractional derivative in (1.1) to obtain

F/(R'a+0.F " +9,F a+9,F/a)+g.F g +g,Fq=0. (3.1)
Applying the wave transformation (2.2) and integrating the

develop ordinary differential equation over again setting
the integration constant as zero to have

(gga2 +9g,b° + 9. —va)U +gaU%+ga’ku =0. (3.2)
We further balance U *with U "to get N = 2 and suggest
the following solution via (2.3) to get

U (&) =d, +d,sech(&) +d,sech® (&), (3.3)
where ®(&) =sech(&) for the hyperbolic solution. By
taking the derivative of (3.2) and identity the quantity of

sech'(£),i=0,1,2,... to obtain the following linear
algebraic structure

g.c’d, + g,k”a*d, + g,a’d, + 2g,a*d,d, + g,b*d, —avd,,
g.c’d, + g,b%d, +4g,k?*a’d, —avd, + g,a’d,d} + 2g,a’*d,d, + g,a’d, =0,

(3.4)

—d, (—g,b® —g;a* — g,c* +va—g,a’d,)=0.
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3(va-g,a’—g,b’ —g.c? .22 —0a.b?—q.c?
d,=0,d,=0,d, - ( 93 924 95 )’k: lav-g,a gjb 9sC” 35)
29,a 4 g,a
Case Il
=(V3—9332—94b2—9502) d - d:—3(va—gsa2—gAb2—gSCz) (= Egga2+g4b2+95c2—avl 36)
° g,a’ S 20,8° o4 g,a"
Substituting (2.7) into
2
a2 a2 A2
3(av—gga2—g4b2—gscz)sech(\/iav 9,8 . :jb 9 5]
2
X, Y,2,t)= , 3.7
a.(x,y,2,t) 2, (3.7)
2
2 v2 2 1av-ga’-g,b* —gec’
3(av-g,a’ - g,b” - g,c” )sech| - 7 e &
2
X, Y,z,t)= 2.9
a, (X, Y,2,t) 2a'g, (2.9)
2 2 2 2
3(av-g,a* - b - g,c” sech 192 +0.0 tgf’c A,
(va-gaa' - g0 -0’ 4 0,
G(x Y, 2,t)= ; - ; , (3.8)
g 2a’g,
2
19 +g,0°+9.0°-av
3(av-g,a°-g,b° - g.c°Jsech| - [~ =T 5
(va—g3a2—gAb2—gscz) ( 93 9,0 -G ) (\/4 9234 St

X,y,21)= -
q(xy,2.t) o 2y

Again setting @(&) = sec(<) for the hyperbolic solution, by taking the derivative of (3.2) and identify the quantity of
sec'(£),i=0,1,2,...to obtain the following linear algebraic structure

g.c’d, —g,k*a’d, + g,a’d, + 2g,a’d,d, + g,b*d, —avd,,

g.c’d, +g,b’d, —4g,k’a’d, —avd, + g,a*d,d;} +2g,a*d,d, + g,a’d, =0,

2g,a%d,d, +2g,k?*a*d, =0, (3.9)
6g,k*a*d, +g,a’d’ =0,

~d, (~g,0° - g;a° - g,¢* +va—g,a’d, ) =0.

Solving the system (3.9) using maple to get

Case |
3(va-g.,a’—g,b*—g.c’ —g.a2—q.b%—q.c?
d,=0,d,=0,d, = (va-g: 52 % ), k =\/_1 V=04 0.0~ (3.10)
29,a 4 g,a
Case Il
(va-g,a’—g,b° - gsc?) -3(va-g,a’* - g0’ - g,c%)
d, = . ,d,=0,d, = - ,
g,a 29,a
2 2 2
K :\/_1 g;a”+g9,b tgsc —av (3.11)
4 g,a

© 2022, IJSRMSS All Rights Reserved 14
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2
) ) ) 1 av—g,a®—g,b*—g.c?
3(av—93a _g4b —0sC )590(\/—4 . gzaj ° 4

os(x,y,2,t) = , (3.12)

2a’g,

2 2 2 2
4 g,a

X, ¥,z,t)=
0 (X, Y, 2,1) 2a7g,

2 2 7 2

2 2 2 3(av—93a2_g4b2_g502)sec _E g, +94b +4g50 _aV§
(va—gaa - g4b -0,C ) . s
q7(x, y.1t)= 2 - 2 ) (3.13)
o 280,

2
2 2 )
) 3(3"‘9332—94b2—g5cz)sec[— J_igsa 0"+ -y g]

(va-g,a* - g0 - g,¢” g,2"

XY, 2t) = -
qB( y ) glaz zazgl

2
2 2 2
) 3(av_gsa2_g4b2_gscz)590[—\/—i 9.8 +g4b +0:C _avé:]

(va-g,a* - g0’ -g,¢” 02"

qs(xl yl th) - glaz zazgl
Now, for the sine-cosine method, we assumed the (3.2) has the result as follow:
U (&) =ysin” (9¢), (3.14)
Substituting (3.14) and its derivative into (3.2) to obtain the following
(958° + 9,07 + 9,C” —va) ysin® (9€) + g,a’y” sin™ (9) + g,a'k’ (—9 g’y sin* (9E) + & yu(u ~1)sin*? (9&)) =0.
It is obvious that the equation (3.14) is satisfied if the following algebraic system is also satisfied
u—-1+0,
H—2=2pu,
gla27 = _gzk2a4'92/u(/u -1),
(95" +9,b” + gsc” —va) = & ug,k"a”.
Solving the system (3.15) yields the following solutions
Case |

(3.15)

/J:—Z, 7/:

3(av—g.a®—g,b*—g.c? 2 ? 2 -
( g;a” —9,0" —g; ),and 3:\/g3a +9,0"+9:C va (3.16)

24, 49,k?*a’
Case Il

IL[:—Z’ j/:

3(av-g,a’-g,b> - g,c’ ’ 40"~
(av—g:2°—g,b*~0s ),and 9=_J93a 90" +9:C —va (317)

24, 49,k’a’
g,a° +g,b° +g.c*—va B
49,k*a’

3(av—gsa’—g,b’ - gscz)sin*z [\/g3a2 +0,0° +9.c° —vaéz]

For the case | and 11 we obtained the following solution

0,

G (X, Y,2,1) =

20, 4g.k*a’

3(av-gsa’—g,b’ - gscz)sin*z {_\/gga2 +g,0%+g.c’ —vaéJ

Gio (X’ Y, Z’t) =

29, 4g,k*a’®

© 2022, IJSRMSS All Rights Reserved 15
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3(av—-g.a®’—g,b*—g.c?
0, (X, y,z,t) = ( 9.8 ~95 ~0s )cos‘2 \/
29,
3(aV_ gsaz - g4b2 - gscz)
O, (X’ Y, th) =
29,

Vol. 9, Issue.6, Dec 2022

g.a° +g,b° +g.c? —vagJ

49,k’*a’

2 2 2
052 _\/gsa +9g,b°+g.C vag].

49,k?*a’

g.a° +g,b>+g.c*—va g

Similarly, for the case I and 11 we obtained the following solution for — 0,
49,.ka
3(aV—g az_g b2_gcz) . a®+0.b%+0.c2—va
qlS(X' y,z,t) = : : > sinh™ 95 d, Os <l
29, 49,k*a’
O (X, Y, 2,1) = 3(av— 9,3" 0" - g5C2)sinh‘2 _|gza* +g,b° +gsC? —va§
14\ Yy &9 291 492k2a2 )
q (X v,z t) _ 3(3.V_ 93a2 — g4b2 — gscz) Cosh_2 ggaz + g4b2 N g5C2 _Vaé:
" Y Zgl 4gzk2a2 ’
q (X y . t) _ 3(aV— 93a2 — g4b2 — gscz)cosrrz ~ 9332 + g4b2 + 95C2 —Va§ |
16 y Y & Zgl 4ng2a2
V. PHYSICAL EXPLANATION

As we get, we conspired the 2D, 3D, and curves plots of
the proposed solutions. The conspiracy exhibits some
interesting features of the recovered solutions at different
fractional (divided) orders using some appropriate values.

For figures 1-3, we assigned ¢, =10,=4,0,=-4,9,=0.1

0;:=3a=02b=02c=02 p=01y=2z=0.

Also, figures 4-9, we assigned 0,=-10,=20,=-2,0,=3

0:=La=01b=02c=02p=0.1y=2=0. The figures below

showed different forms of soliton structure such as dark,
bright and singular solitons. Moreover, more soliton
structures can be recovered by assigning appropriate values
for the derived solutions.

a. 3D conspiracy of |d;(x,Y,Zt)|

© 2022, IISRMSS All Rights Reserved

b. 3D conspiracy of Re(d,(x,Y,z,1))

c. curves plot of [g(x,y,z,t)|
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hY
\
N a
A /
N 7
A 74
i
W X i
N A1 N I
) 0 0 I
i it A 1
\‘“\ ;;;f,f; 0.4 ‘S\'Q* ,-jf,.fff
Bl N
B A7
N IER W
W W
. 11'.i.l .Lf I\ﬂ&!{ i .
-4 -2 0 2 4
—— =0 — — =04 — — =06 — — =05 — — =01

d. 2D conspiracy of |q7(X, Y, z,t)|

Figure 1: Some conspiracy of the solution ,(X,Y,zt) at

p=1.

-4 -2

|—— =02 — — =04 —— =06 — — =08 — — =0.1]

d. 2D conspiracy of |q7(X, Y, Z,t)|

Figure 2: Some conspiracy of the solution ¢,(X,Y,21) at
f=04.

b. 3D conspiracy of Re(d,(x,Y,z,1)) a. 3D conspiracy of |g;(x,Y,Z,t)|
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-10° _1p

c. curve plot of |q7(x, Y, Z,t)|

s
\ A YA
%ij}/éﬂ \}\\\\ /fé,/
A O L
= Wy i
SN
LW 4
02 \\}\ /,}/f
T T T T T |\§ QI/I
-4 -2 0 2 4
|—— =02 — — =04 — —t=0.6 — — t=0.83 — — =0.1]

d. 2 D conspiracy of |q7(X, Y, Z,t)|

Figure 3: Some conspiracy of the solution @, (X, Y,z,t) at
p=04.
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a. 3D conspiracy of |q6(X, Y, Z,t)|

c. curve plot of [g,(x,y,z,t)
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—_——— — —

-4 20

o
o

|——t=02 =04 —— =06 — =03 — — =0.1]

d. 2D conspiracy of |q6(X, Y, Z,t)|

Figure 4: Some conspiracy of the solution Qg(X,Y,Z,t) at

p=1

b. 3D conspiracy of Re(d,(x,Y,z,1))

© 2022, IISRMSS All Rights Reserved
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4 2 L2 T4

[——&=02 — =04 —— =06 — — =08 ——t=01]

d. 2D conspiracy of |q5(X, Y, Z,t)|

Figure 5: Some conspiracy of the solution 0g(X,Y,z,t) at
f=08.

a. 3D conspiracy of |q6(X, Y, Z,t)|
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b. 3D conspiracy of Re(d,(x,Y,z,t))

c. curve plot of [q(X,Y,2,t)

||r||| 1000
)
[
300 _
J'I | b. 3D conspiracy of Re(dy(x,Y,z,1))
I
'y
| || a00
|
y
II |, 400 +
I
Iy
I 200
ff \
et N
-4 -2 0 2 4
|——L=D.2——1=IZI.4——1,=IJ.6——t=Dx.8——t=D.1|

d. 2D conspiracy of [g(x,¥,z,1)

Figure 6: Some conspiracy of the solution 0,(X, Y,Z,t) at
p=04 c. curve plot of |q9(x, Y, Z,t)|
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1.4 10° I
. |
12 %10° |
|
1.3 10° |
1
8. % 10° |
1
6. % 107 o |
|
43107, |
i |
2. %108 | : I
i
T T T T f T T T
-4 -2 0 2 4
X
|—— =02 — — =04 — — =06 — — t=0.8 — — =0.1] |
d. 2D conspiracy of |q9(X, y,z,t)| 1.4 10° - |
Figure 7: Some conspiracy of the solution G,(X, Y,Z,t) at 12w 100 I
|
1% 10% A |
1
gxifq |
{
&, x 10 - |
|
4% 10% I
21 ] I
{1171 |
Libi
T T T T f T T T
-4 -2 0 2 4
X
[—— 02— — =04 —— =06 — — =08 —— =0.1]

d. 2D conspiracy of |qg(x, Y, Z,t)|
a. 3D conspiracy of |q9(x, Y, Z,t)| Figure 8: Some conspiracy of the solution 0,(X,Y,z,t) at
f=08.

b. 3D conspiracy of Re(qg(x, Y, Z,t)) a. 3D conspiracy of |q9(x, Y, Z,t)|
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b. 3D conspiracy of Re((X,y,z,t))

c. curve plot of [gy(X,Y,2,t)

1.4 % 10° S

12 %107 1

1. % 10°

6. % 10%

4. % 10%

2% 108 S |
1.
|

|
|
|
|
|
|
|
. 10% |
|
|
|
|
|
|
|
|

|
|
J ] L

T T T T T T T T
-4 -2 0 2 4
X
[—— =02 — — =04 —— =06 — —t=0.8 — — t=0.1]

d. 2D conspiracy of [qy(X,Y,2,1)

Figure 9: Some conspiracy of the solution 0,(X,Y,Z,t) at
f=04.

© 2022, IISRMSS All Rights Reserved

Vol. 9, Issue.6, Dec 2022
VI. CONCLUSION

This article investigated the exact desolate (lonely) wave
solutions for the fractional (divided) (3+1) generalized
nonlinear wave identify with gas bubbles using the well-
known ansatz techniques and the sine-cosine method.
Liquids with gas bubbles mainly arise in manifold or
crowded applications like science, engineering and
physics. The methods vyielded different periodic and
hyperbolic desolate (lonely) wave solutions. Moreover,
solving the (3+1)-dimensional (aspect) generalized
fractional nonlinear (discriminate) wave equation with gas
bubbles is equivalent to solving many physical models,
such as the (2+1)-dimensional (aspect) Kadomtsev-
Petviashvil model with negative dispersion, the (3+1)-
dimensional (aspect) Kadomtsev-Petviashvili model, the
(3+1)-dimensional (aspect) nonlinear waves with bubble
liquid mixture, and other special cases of the considered
model. Finally, we conspired both 2D and 3D as well as
the contour plots to understand the physical application of
the considered model using maple.
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