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Abstract—This article investigates exact desolate wave blend (solutions) for the fractional (3+1) generalized 

computational (nonlinear) wave equation (identification) with gas bubbles. Liquids with gas bubbles mainly arise in 

manifold or crowded applications like science, engineering, nature, and physics.  We explored this model using some well-

known ansatz techniques and the sine-cosine procedure. These procedure or methods yield different periodic and 

hyperbolic desalate wave blend (solutions). Moreover, solving the (3+1) Aspect (dimensional) generalized fractional 

nonlinear wave equation with gas bubbles is equivalent to solving many physical models, such as the (2+1)-dimensional 

Kadomtsev-Petviashvil model with gloomy despair, the (3+1)-dimensional Kadomtsev-Petviashvili model, the (3+1) 

dimensional(aspect) nonlinear waves with bubble liquid mixture, and other special cases of the considered model. Finally, 

we conspiracy both 2D and 3D as well as the curve plots to understand the physical application of the considered model 

using maple. 

 

Keywords— Wave equation; gas bubbles; ansatz technique; sine-cosine method, desolate wave blend (solutions)   

 

I.  INTRODUCTION  

 

The inquiry or exploration of computational (nonlinear) 

partial differential equation solutions is critical in 

understanding various physical fact or situation in many 

scientific and engineering applications. As a result, 

numerous logical and numerical  technique (methods) have 

been used to tackle a variety of such problems, including 

the generalized  Kudryashov[1], sine-cosine [2], sine-

Gordon expansion, extended auxiliary equation [3], direct 

algebra [5], Sadar sub-equation [6],  and the generalized 

Riccati methods, see [7-39] for more details. These 

methods heavily depend on wave transformation 

techniques. However, other analytical techniques didn’t 

depend on the wave transforms approach, among which 

were the invariant subspace method [12, 13], Lie 

symmetry method [8, 11], reduction method [14, 15], etc. 

 

The study of bubbling liquids and their applications in 

various disciplines of engineering and medical sciences has 

piqued the interest of numerous scholars for decades. Most 

bubbles with uniform radius are explained by a fourth-

order linear partial differential equation for certain physical 

phenomena in isothermal bubbly liquids [17, 20].  

 

Fundamental investigation (analysis) of the bubble 

dynamics (change) problem was made by Rayleigh and 

can be found [16].  Among the interesting models is the 

equation that described the liquid with the gas bubbles 

phenomena given as: 

 1 2 3 4 5 0,t x xxx x yy zzx
q g qq g q g q g q g q     

      
(1.1) 

where
tq  and 

xqq  perform a role in the evolution of time 

and the steepening of the wave where q  is the wave 

amplitude, the bubble liquid dispersion,
1 2 3 4, , , ,g g g g an

d 
5g represent the bubble-liquid-nonlinearity, the bubble 

liquid-viscosity, the y transverse perturbation, and the 

z transverse perturbation. This is equation is known as the 

(3+1)-dimensional generalized nonlinear wave equation 

describing liquid with gas bubbles [27, 28]. Assigning 

1 2 4 3 51, 0,g g g g g     the equation (1.1) 

reduces to the popular (2+1)-dimensional Kadomtsev-

Petviashvil model with negative dispersion [30] given by: 

 

  0.t x xxx yyx
q qq q q       (1.2) 

 

Also, if you assign 1 2 3 4 56, 1, 0, 3,g g g g g       

the equation (1.1) reduces to the well-known (3+1)-

dimensional (aspect) Kadomtsev-

Petviashvili equation [29], the identify equations is given 

as: 

http://www.isroset.org/
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    6 3 0.t x xxx yy zzx
q qq q q q        (1.3) 

Again, if one set 
1 2 3 4 51, 0, 0.5g g g g g     will 

obtain the liquid mixture equation given by  

   0.5 0.t x xxx yy zzx
q qq q q q        (1.4) 

This equation is known as the (3+1) –dimensional (aspect) 

nonlinear waves with bubble liquid solution (mixture) 

given in [31]. The (3+1)-dimensional generalized nonlinear 

wave equation describing liquid with gas bubbles is the 

generalization of the (2+1)-dimensional (aspect) 

Kadomtsev-Petviashvil model with negative dispersion, 

the (3+1)-dimensional(aspect) Kadomtsev-Petviashvili 

equation, and the (3+1) -dimensional (aspect) nonlinear 

waves with bubble liquid mixture. These equations are 

paramount in describing(report) different situation 

(phenomena) in mathematical physics and particular 

oceanic engineering. 

 

II. RELATED WORK  

 

Moreover, some studies on the logical and numerical blend 

(solution) of generalized nonlinear model (1.1) with gas 

bubbles have been investigated in the literature, for 

example, the bilinear formalism and soliton solutions using 

Hirota bilinear method [21], Assemble mixed rogue wave-

stripe solitons and mixed lump-stripe solitons [23], the 

binary Bell polynomials obtaining the bilinear form of this 

model [25], and the solitons and lumps solution for the 

generalized nonlinear wave [26]. There are several 

fractional derivative operators in fractional calculus, such 

as the Caputo derivative, Grunwald derivative, Riemann-

Liouville derivative, and so on. Although the research 

concentrate on the aforementioned derivatives has been 

difficult to apply in reality due to their limitations. Inspired 

by Khalil [32], who established a new fractional derivative, 

called Immitative Fractional (divided) Derivative, that is 

derived based on classical calculus and possesses 

semigroup, exponent, and identity features that are useful 

for solving the differential system. Scholars have just lately 

begun to focus on this field of study. The fractional 

derivative is without a doubt another method for improving 

the prediction performance of the (3+1)-

dimensional(aspect)generalized nonlinear wave equation 

representing liquid with gas bubbles. Therefore, the main 

focus of this reseach is to obtain the  desolate or lonely 

waves for the fractional (3+1)-dimensional(aspect) 

generalized nonlinear wave equation describing(report) 

liquids with gas bubbles using the sine-cosine method and 

other popular ansatz techniques.  

 

Section 2 contains the definitions of some popular 

fractional derivatives, properties of the accodant derivative, 

and illustration of the used ansatz techniques procedure 

(methods). In the next section, the implementation of the 

method on the fractional (3+1)-dimensional generalized 

nonlinear wave equation report (describing) liquids with 

gas bubbles will lead to desolate wave solutions. In section 

4, the conspiracy representation will be given for some 

achievable solutions. 

 

III. THE DESCRIPTION (ILLUSTRATION) OF 

THE ACCORDANT FRACTIONAL DERIVATIVES 

AND THE METHOD  

 

This section will start by defining the bulk common 

partial(fractional) derivative definitions, like: the Riemann-

Liouville, Caputo, and Grunwald-Letnikov definitions [32].  

Definition 1 (Riemann Liouville) 

1

0

1
( ) ( ) ( ) ,

( )

n x

n

x

d
F q x x z q z dz

n dx

 



  
  
   

  1 .n n    

Definition 2 (Caputo) 

1

0

1
( ) ( ) ( ) ,

( )

x

n n

xF q x x z q z dz
n

 



  
    1 .n n    

Definition 3 (Grunwald-Letnikov) 

0
0

( ) lim ( 1) ( ).

x a

m
i

ax
m

i

F q x m q x im
i

 









 
   

 
  

 

Definition 4 (Accordant divided (fractional) derivative) 

consider a function :[0, ) ,q    then the Accordant 

divided (fractional) derivative of q  order   is as follow 

1

0

( ) ( )
( ) lim ,z

q z z q z
F q z














 
 for all 0, (0,1].z    

Theorem 2.1[32] 

Suppose ( ), ( )p z q z are   differentiable at a point 

0z   and (0,1].   Then 

1.      ( ) ( ) ( ) ( ) ,z z zF ap z bq z a F p z b F q z      for all , .a b  

2.   ,h h

zF z hz   for all .h  

3.   0,zF     for all constant function ( ) .q z   

4.      ( ) ( ) ( ) ( ) ( ) ( ) .z z zF p z q z p z F q z q z F p z     

6. If in addition ( )p z is differentiable, then 

  1 ( )
( ) .z

dp z
F p z z

dz

   

Now, we will describe the method for the solution of the 

fractional (3+1)-dimensional (aspect) generalized nonlinear 

(discriminating) wave equation describing liquids with gas 

bubbles. In general, given  nonlinear divided (fractional) 

PDE as follow: 

0 1, 2 1.        (2.1) 

( , ) ( ),q x t U   ,
x y z t

k a b c v
   


   

 
    

 

                   (2.2) 

https://www.sciencedirect.com/topics/engineering/liouville
https://www.sciencedirect.com/topics/engineering/fractional-derivative
https://www.sciencedirect.com/topics/engineering/fractional-derivative
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Where , , , ,k a b c and v are persistant to be decide later. 

Moreover, for the first ansatz method, we assumed that the 

solution of  the ODE (2.2) is given by: 

0

( ) ( ),
N

i

i

i

U d 


      (2.3) 

where 
id  are persistant to be decide and N to be dictate by 

balancing the highest derivative with the elevated nonlinear 

terms. In addition, the periodic solution assumes the 

function ( ) to be a periodic function and vice versa to 

acquire a structure of algebraic identify. Solving the 

algebraic structure using maple or any other computational 

software to obtain the values of the unknown constants. 

However, for the sine and cosine method, we assumed that 

the blend of the fractional PDE is as follow: 

 ( ) sin ,U     or  ( ) cos ,U      (2.4) 

where , ,   and  are constants to be determined. The 

derivatives of the solution (2.4) are given respectively as: 

 

 

     

     

1

2 2 2 2 2

( ) sin ,

( ) sin ,

( ) cos sin ,

( ) sin ( 1)sin ,

n n n

n n n

n n n n n

U

U

U n

U n n n









 



  

  

   

         











   

 

      (2.5) 

 

 

     

     

1

2 2 2 2 2

( ) cos ,

( ) cos ,

( ) sin cos ,

( ) cos ( 1)cos ,

n n n

n n n

n n n n n

U

U

U n

U n n n









 



  

  

   

         









 

   

       (2.6) 

and so on for the higher-order derivatives. When we 

substitute (2.5) or (2.6) into the ODE and steady the 

expressions of the sine or cosine function to generate an 

algebraic structure of linear equations. Getting the resulting 

system using computerized symbolic calculations namely 

maple or Mathematica to obtain the values of all the 

possible unknowns. The main advantage of these ansatz 

techniques is easy to apply to the most complicated PDEs 

models with less computational cost. 

 

IV. RESULTS AND DISCUSSION (THE 

APPLICATION) 

 

This section will present hyperbolic and periodic result for 

the fractional (3+1)-dimensional (aspect) generalized 

nonlinear (computational) wave equation of liquids with 

gas bubbles (1.1). Now, applying the definition of the 

accordant fractional derivative in (1.1) to obtain 

 2 3 2 2

1 2 3 4 5 0.x t x x x yy zzF F q g F q g F q g F q g F q g F q              (3.1) 

Applying the wave transformation (2.2) and integrating the 

develop ordinary differential equation over again setting 

the integration constant as zero to have 

 2 2 2 2 2 4 2 ''

3 4 5 1 3 0.g a g b g c va U g a U g a k U        (3.2) 

We further balance 
2U with 

''U to get 2N  and suggest 

the following solution via (2.3) to get 
2

0 1 2( ) sech( ) sech ( ),U d d d       (3.3) 

where ( ) sech( )   for the hyperbolic solution. By 

taking the derivative of (3.2) and identity the quantity of 

sech ( ), 0,1,2,...i i  to obtain the following linear 

algebraic structure 

 

        

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

2 2 4 2 2 2

5 1 2 1 3 1 1 0 1 4 1 1

2 2 2 4 2 2 2 2

5 2 4 2 2 2 2 1 0 1 1 0 2 3 2

2 2 4

1 0 2 2 2

2 4 2 2

2 2 1 2

2 2 2 2

0 4 3 5 1 0

2 ,

4 2 0,

2 2 0,

6 0,

0.

g c d g k a d g a d g a d d g b d avd

g c d g b d g k a d avd g a d d g a d d g a d

g a d d g k a d

g k a d g a d

d g b g a g c va g a d

     


      


 

  
      


       (3.4) 

 

 

Solving the system (3.4) using maple to get 

Case I 
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0 0,d  1 0,d 
 2 2 2

3 4 5

2 2

1

3
,

2

va g a g b g c
d

g a

  


2 2 2

3 4 5

4

2

1
.

4

av g a g b g c
k

g a

  


                  

(3.5) 

Case II 

 2 2 2

3 4 5

0 2

1

,
va g a g b g c

d
g a

  
 1 0,d 

 2 2 2

3 4 5

2 2

1

3
,

2

va g a g b g c
d

g a

   


2 2 2

3 4 5

4

2

1
.

4

g a g b g c av
k

g a

  


                

(3.6) 

 

Substituting (2.7) into 

 
2

2 2 2
2 2 2 3 4 5

3 4 5 4

2

1 2

1

1
3 sech

4
( , , , ) ,

2

av g a g b g c
av g a g b g c

g a
q x y z t

a g


   

    
 
                 (3.7) 

 
2

2 2 2
2 2 2 3 4 5

3 4 5 4

2

2 2

1

1
3 sech

4
( , , , ) ,

2

av g a g b g c
av g a g b g c

g a
q x y z t

a g


   

    
 
                          (2.9) 

 
 

2
2 2 2

2 2 2 3 4 5
3 4 5 42 2 2

23 4 5

3 2 2

1 1

1
3 sech

4
( , , , ) ,

2

g a g b g c av
av g a g b g c

g ava g a g b g c
q x y z t

g a a g


   

    
                      (3.8) 

 
 

2
2 2 2

2 2 2 3 4 5
3 4 5 42 2 2

23 4 5

4 2 2

1 1

1
3 sech

4
( , , , ) .

2

g a g b g c av
av g a g b g c

g ava g a g b g c
q x y z t

g a a g


   

    
        

Again setting ( ) sec( )   for the hyperbolic solution, by taking the derivative of (3.2) and identify the quantity of 

sec ( ), 0,1,2,...i i  to obtain the following linear algebraic structure 

 

2 2 4 2 2 2

5 1 2 1 3 1 1 0 1 4 1 1

2 2 2 4 2 2 2 2

5 2 4 2 2 2 2 1 0 1 1 0 2 3 2

2 2 4

1 0 2 2 2

2 4 2 2

2 2 1 2

2 2 2 2

0 4 3 5 1 0

2 ,

4 2 0,

2 2 0,

6 0,

0.

g c d g k a d g a d g a d d g b d avd

g c d g b d g k a d avd g a d d g a d d g a d

g a d d g k a d

g k a d g a d

d g b g a g c va g a d

     


      


 


 
      


                 (3.9) 

 

Solving the system (3.9) using maple to get 

Case I 

0 0,d  1 0,d 
 2 2 2

3 4 5

2 2

1

3
,

2

va g a g b g c
d

g a

  


2 2 2

3 4 5

4

2

1
.

4

av g a g b g c
k

g a

  
                (3.10) 

Case II 

 2 2 2

3 4 5

0 2

1

,
va g a g b g c

d
g a

  
 1 0,d 

 2 2 2

3 4 5

2 2

1

3
,

2

va g a g b g c
d

g a

   


 
2 2 2

3 4 5

4

2

1
.

4

g a g b g c av
k

g a

  
                (3.11) 
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2

2 2 2
2 2 2 3 4 5

3 4 5 4

2

5 2

1

1
3 sec

4
( , , , ) ,

2

av g a g b g c
av g a g b g c

g a
q x y z t

a g


   

    
 
 

              

(3.12) 

 
2

2 2 2
2 2 2 3 4 5

3 4 5 4

2

6 2

1

1
3 sec

4
( , , , ) ,

2

av g a g b g c
av g a g b g c

g a
q x y z t

a g


   

     
 
   

 
 

2
2 2 2

2 2 2 3 4 5
3 4 5 42 2 2

23 4 5

7 2 2

1 1

1
3 sec

4
( , , , ) ,

2

g a g b g c av
av g a g b g c

g ava g a g b g c
q x y z t

g a a g


   

    
                     (3.13) 

 
 

2
2 2 2

2 2 2 3 4 5
3 4 5 42 2 2

23 4 5

8 2 2

1 1

1
3 sec

4
( , , , ) .

2

g a g b g c av
av g a g b g c

g ava g a g b g c
q x y z t

g a a g


   

     
        

 
 

2
2 2 2

2 2 2 3 4 5
3 4 5 42 2 2

23 4 5

8 2 2

1 1

1
3 sec

4
( , , , ) .

2

g a g b g c av
av g a g b g c

g ava g a g b g c
q x y z t

g a a g


   

     
      

 
Now, for the sine-cosine method, we assumed the (3.2) has the result as follow: 

 ( ) sin ,U   
  

                   (3.14) 

Substituting (3.14) and its derivative into (3.2) to obtain the following 

          2 2 2 2 2 2 4 2 2 2 2 2

3 4 5 1 3sin sin sin ( 1)sin 0.g a g b g c va g a g a k                          

It is obvious that the equation (3.14) is satisfied if the following algebraic system is also satisfied 

2 2 4 2

1 2

2 2 2 2 2 2 2

3 4 5 2

1 0,

2 2 ,

( 1),

( ) .

g a g k a

g a g b g c va g k a



 

   

 

 

 

  

   

                (3.15) 

Solving the system (3.15) yields the following solutions 

Case I 

2,    
 2 2 2

3 4 5

1

3
,

2

av g a g b g c

g


  
  and 

2 2 2

3 4 5

2 2

2

.
4

g a g b g c va

g k a


  


   

          (3.16) 

Case II 

2,    
 2 2 2

3 4 5

1

3
,

2

av g a g b g c

g


  
  and 

2 2 2

3 4 5

2 2

2

.
4

g a g b g c va

g k a


  
 

           

(3.17) 

For the case I and II we obtained the following solution 

2 2 2

3 4 5

2 2

2

0,
4

g a g b g c va

g k a

  
  

 2 2 2 2 2 2
3 4 5 2 3 4 5

9 2 2

1 2

3
( , , , ) sin ,

2 4

av g a g b g c g a g b g c va
q x y z t

g g k a


      
  

 
 

 

 2 2 2 2 2 2
3 4 5 2 3 4 5

10 2 2

1 2

3
( , , , ) sin ,

2 4

av g a g b g c g a g b g c va
q x y z t

g g k a
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 2 2 2 2 2 2
3 4 5 2 3 4 5

11 2 2

1 2

3
( , , , ) cos ,

2 4

av g a g b g c g a g b g c va
q x y z t

g g k a


      
  

 
 

 

 

 2 2 2 2 2 2
3 4 5 2 3 4 5

12 2 2

1 2

3
( , , , ) cos .

2 4

av g a g b g c g a g b g c va
q x y z t

g g k a


      
  

 
 

 

Similarly, for the case I and II we obtained the following solution for 

2 2 2

3 4 5

2 2

2

0,
4

g a g b g c va

g k a

  
  

 2 2 2 2 2 2
3 4 5 2 3 4 5

13 2 2

1 2

3
( , , , ) sinh ,

2 4

av g a g b g c g a g b g c va
q x y z t

g g k a


      
  

 
 

 

 2 2 2 2 2 2
3 4 5 2 3 4 5

14 2 2

1 2

3
( , , , ) sinh ,

2 4

av g a g b g c g a g b g c va
q x y z t

g g k a


      
  

 
 

 

 2 2 2 2 2 2
3 4 5 2 3 4 5

15 2 2

1 2

3
( , , , ) cosh ,

2 4

av g a g b g c g a g b g c va
q x y z t

g g k a


      
  

 
 

 

 

 2 2 2 2 2 2
3 4 5 2 3 4 5

16 2 2

1 2

3
( , , , ) cosh .

2 4

av g a g b g c g a g b g c va
q x y z t

g g k a


      
  

 
 

 

 

V. PHYSICAL EXPLANATION 

 

As we get, we conspired the 2D, 3D, and curves plots of 

the proposed solutions. The conspiracy exhibits some 

interesting features of the recovered solutions at different 

fractional (divided) orders using some appropriate values. 

For figures 1-3, we assigned 1.0,4,4,1 4321  gggg   

.0,1.0,2.0,2.0,2.0,35  zypcbag

Also, figures 4-9, we assigned  3,2,2,1 4321  gggg   

5 1, 0.1, 0.2, 0.2, 0.1, 0.g a b c p y z        The figures below 

showed different forms of soliton structure such as dark, 

bright and singular solitons. Moreover, more soliton 

structures can be recovered by assigning appropriate values 

for the derived solutions. 

 

 

a. 3D conspiracy of  7 ( , , , )q x y z t  

 

 
b. 3D conspiracy of   7Re ( , , , )q x y z t  

 

c. curves plot of  7 ( , , , )q x y z t  
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d. 2D conspiracy of  7 ( , , , )q x y z t

 
 

Figure 1: Some conspiracy of the solution 
7 ( , , , )q x y z t  at 

1.   

 

 
a. 3D conspiracy of  7 ( , , , )q x y z t

 
 

 
b. 3D conspiracy of   7Re ( , , , )q x y z t

 

 
c. curve plot of  7 ( , , , )q x y z t  

 
d. 2D conspiracy of  7 ( , , , )q x y z t  

Figure 2: Some conspiracy of the solution 7 ( , , , )q x y z t  at 

0.4. 
 

   

a. 3D conspiracy of  7 ( , , , )q x y z t
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b. 3D conspiracy of   7Re ( , , , )q x y z t

 

 
c. curve plot of  7 ( , , , )q x y z t

 

 
d. 2 D conspiracy of  7 ( , , , )q x y z t

 

Figure 3: Some conspiracy of the solution 7 ( , , , )q x y z t  at 

0.4. 
 

 
a. 3D conspiracy of  6 ( , , , )q x y z t

 
 

 
b. 3D conspiracy of   6Re ( , , , )q x y z t

 

 
c. curve plot of  6 ( , , , )q x y z t
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d. 2D conspiracy of  6 ( , , , )q x y z t

 

Figure 4: Some conspiracy of the solution 
6( , , , )q x y z t  at 

1. 
 

 
a. 3D conspiracy of  6 ( , , , )q x y z t

 

 
b. 3D conspiracy of   6Re ( , , , )q x y z t

 

 
c. curve plot of  6 ( , , , )q x y z t

 

 
d. 2D conspiracy of  6 ( , , , )q x y z t

 

Figure 5: Some conspiracy of the solution 
6( , , , )q x y z t  at 

0.8. 
 

 
a. 3D conspiracy of  6 ( , , , )q x y z t  
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b. 3D conspiracy of   6Re ( , , , )q x y z t

 
 

 
c. curve plot of  6 ( , , , )q x y z t

 

 
d. 2D conspiracy of  6 ( , , , )q x y z t

 

Figure 6: Some conspiracy of the solution 6( , , , )q x y z t  at 

0.4. 
 

 
a. 3D conspiracy of  9 ( , , , )q x y z t

 
 

 
b. 3D conspiracy of   9Re ( , , , )q x y z t  

 
c. curve plot of  9 ( , , , )q x y z t
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d. 2D conspiracy of  9 ( , , , )q x y z t

 

Figure 7: Some conspiracy of the solution 
9 ( , , , )q x y z t  at 

1. 
 

 
a. 3D conspiracy of  9 ( , , , )q x y z t

 
 

 
b. 3D conspiracy of   9Re ( , , , )q x y z t

 

 
c. curve plot of  9 ( , , , )q x y z t  

 

 
d. 2D conspiracy of  9 ( , , , )q x y z t

 

Figure 8: Some conspiracy of the solution 9 ( , , , )q x y z t  at 

0.8. 
 

 
a. 3D conspiracy of  9 ( , , , )q x y z t
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b. 3D conspiracy of   9Re ( , , , )q x y z t

 

 
c. curve plot of  9 ( , , , )q x y z t

 

 

d. 2D conspiracy of  9 ( , , , )q x y z t
 

Figure 9: Some conspiracy of the solution 9 ( , , , )q x y z t  at 

0.4. 
 

VI. CONCLUSION  

 

This article investigated the exact desolate (lonely) wave 

solutions for the fractional (divided) (3+1) generalized 

nonlinear wave identify with gas bubbles using the well-

known ansatz techniques and the sine-cosine method. 

Liquids with gas bubbles mainly arise in manifold or 

crowded applications like science, engineering and 

physics. The methods yielded different periodic and 

hyperbolic desolate (lonely) wave solutions. Moreover, 

solving the (3+1)-dimensional (aspect) generalized 

fractional nonlinear (discriminate) wave equation with gas 

bubbles is equivalent to solving many physical models, 

such as the (2+1)-dimensional (aspect) Kadomtsev-

Petviashvil model with negative dispersion, the (3+1)-

dimensional (aspect) Kadomtsev-Petviashvili model, the 

(3+1)-dimensional (aspect) nonlinear waves with bubble 

liquid mixture, and other special cases of the considered 

model. Finally, we conspired both 2D and 3D as well as 

the contour plots to understand the physical application of 

the considered model using maple. 
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