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Abstract--This paper suggests a class of regression-type estimators of a finite population mean incorporating auxiliary 

information on two variables at estimation stage in two-phase sampling. This class of estimators includes many known 

estimators. Up to the first order of approximation the mean square error (MSE) and optimal MSE are obtained and compared 

with the MSEs of the estimators included in this paper. Also, an empirical comparison is carried out using a Monte Carlo 

simulation over three natural populations. 
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I. INTRODUCTION 

Two-phase sampling is a powerful and cost-effective technique. It was first proposed by Neyman [1] and subsequently 

discussed by many authors. The basic results on simple ratio and regression estimators of the population mean using single 

auxiliary variable in two-phase sampling is found in Cochran [2]. Many authors have extended these estimators using the 

known parameters of x. Further extension has been done using two auxiliary variables, see Mohanty [3], Khare and Srivastava 

[4], Sahoo et al.[5], Singh and Upadhyaya [6], Upadhyaya and Singh [7], Samiuddin and Hanif [8,9], among others.Many often 

even if   is unknown, information on a cheaply ascertainable variable  , closely related to   but compared to   remotely 

related to  , is available on all population units. In such situations, various estimators have been proposed, see, e.g., Chand 

[10], Kiregyera [11,12], Mukerjee et al. [13], Srivastava et al. [14], Sahoo et al. [15], Tracy et al.[16], Singh and Espejo [17], 

Gupta and Shabbir [18], Singh et al. [19], Shukla et al. [20], Choudhury and Singh [21] among others, where some of them 

have used the knowledge on mean  ,  standard deviation   , coefficient of variation   , coefficient of skewness   ( ), 

coefficient of kurtosis    ( ) or combinations of these parameters. Motivated from this work, in this paper we suggest a class 

of estimators that includes many known estimators and obtain the lower bound of the approximate variance of this class. We 

also suggest one optimal estimator and compare it with some available estimators using real data. 

   

Consider a finite population   *         + of   identifible units. Let   be the study variable and,   and   be auxiliary 

variables taking the values (        )  respectively for the population unit  . When the two variables   and   are strongly 

positively related but no information on  , the population mean of  , is available a two-phase sampling can be used. In this 

scheme the first-phase sample    of size    is selected from  , according to a simple random sampling design and witout 
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replacement (srswor), to obtain a good estimator of  . Given   , a second-phase sample   of size   is selected from    acording 

to srsrwor. Let  
 
 ∑       ⁄ ,    ∑     ⁄  and    ∑     ⁄  where,   (     )     (   

 ) denotes the regression 

coefficient of   and   for subsample (preliminary sample) 

Our objective is to estimate the population mean   ∑     ⁄ , where     deonets      for any arbitrary set of units    . A 

more extensive use of available auxiliary information is achived through the regression estimators. The two-phase ordinary 

regression estimator (Cochan [2]) is given by 

 ̂          (    )                                                                                                                              ( ) 

where     denotes the regression coefficient of   and   for sub-sample  . The variance of   ̂     to the first order of 

approximation is 

 ( ̂̅    )   ̅   
 [     (     

 )]                                                                                                         ( ) 

where,                           and           

 

and,     and     are the population coefficient of variation of   and regression coefficient of   and   respectively. 

Chand [10] suggested a chain ratio estimator  

 ̂  (     ⁄ )   ⁄                                                                                                                                          ( ) 

 

 

Kiregyera [11,12] proposed the following three estimators: 

 ̂   [      
 (    )]   ⁄                                                                                                                      ( ) 

 ̂        (     ⁄   )                                                                                                                         ( ) 

 ̂        [(    )     
 (    )]                                                                                                    ( ) 

 

This paper is organized as follows. In next section we propose the class of estimators. Its approximate variance and the 

optimum variance are obtained in Section III. An empirical comparison is carried out in Section IV. The conclusion is given in 

Section V. 

 

II. PROPOSED ESTIMATOR AND THE CLASS OF REGRESSION-TYPE ESTIMATORS 

Here we propose the class of regression-type estimators which is defined as 

        ̅     *  
    

     
  +                                                                                                              ( ) 

where     and   are either real numbers or the known population summary statistics of the auxiliary variable  . The subclass 

of (7) for specific choice       ⁄   is  
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      ̅
  

 
*
    

     
+                                                                                                                                     ( ) 

These two classes of estimators include the following estimators for various choices of    and   :  

    
 ̅

 ̅
  

 ̅

  
 

(Chand [10] ) 

       ̅     *  
 ̅

  
  +   ̂   

 

(Kiregyera [11] ) 

    
 ̅

 ̅
  *

 ̅    

     

+ 

(Singh and Upadhyaya [6] ) 

       ̅     *  
 ̅    

     

  + 

 

    
 ̅

 ̅
  *

  ( ) ̅    

  ( )     

+ 

(Upadhyaya and Singh [7] ) 

       ̅     *  
  ( ) ̅    

  ( )     

  + 

 

    
 ̅

 ̅
  *

   ̅    ( )

       ( )
+ 

(Upadhyaya and Singh [7] ) 

       ̅     *  
   ̅    ( )

       ( )
  + 

 

    
 ̅

 ̅
  *

 ̅    

     

+ 

(Singh [22] ) 

       ̅     *  
 ̅    

     

  + 

 

    
 ̅

 ̅
  *

  ( ) ̅    

  ( )     

+ 

(Singh [22] ) 

       ̅     *  
  ( ) ̅    

  ( )     

  + 

 

    
 ̅

 ̅
  *

  ( ) ̅    

  ( )     

+        ̅     *  
  ( ) ̅    

  ( )     

  + 

 

 

III. APPROXIMATE VARIANCE 

 To obtain the approximate variance of        , let us write 

        (             )   ( ̂)     and         (            )   ( ) 

where 

 ̂     ̂       ̂       ̂      ̂    

and 

 

                                                                  



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                Vol. 5(5), Oct 2018, ISSN: 2348-4519 

  © 2018, IJCSE All Rights Reserved                                                                                                                                        147 

 

  

Now expanding  ( ̂) around  ( ) using Taylor linearization technique and using Equation (10.12) given in Stuart and Ord 

[23] , viz 

 ( ( ̂))  ∑ *
  ( ̂)

  ̂ 

+
 ̂  

 

 ( ̂ )
 

 

  ∑ ∑ *
  ( ̂)

  ̂ 

 
  ( ̂)

  ̂ 

+

 ̂  

   ( ̂   ̂ )
   

   (   ) 

we obtain 

 (      )   ( )     
  ( 

 
)     

 (
 

 
)

 

   ( 
 
)     

  ( )         (   
 
) 

      

 

 
    (   

 
)         (   )      

    ( 
 
  ) 

where 

    (    )⁄                                                                                                                                            ( ) 

Inserting variances and covariance under two-phase sampling (Singh et al. [24] ) we obtain after simplification 

 (      )   
 
  

 [  (     
 )       

 ]    ( 
   

            )                                               (  ) 

where    

             (  ) (    )⁄                                                                                                              (  )   

and  

                                  

 

Minimization of (10) gives the optimum value of   as 

             ⁄                                                                                                                                             (  ) 

Equivalently (from (11) and (12)) 

               ⁄          ⁄        

which gives 

       (   )  ⁄         or              (   )⁄                                                                      (13) 

The minimum variance is then given by 

    (      )   
 
  

 [  (     
 )    (     

 )]                                                                               (  ) 
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Remark 1. Usually   is unknown and must be estimated using both the samples. 

Inserting  ̂            ⁄   in (13) we obtain the optimal value of   and consequently the optimal estimator as 

      ̅     *  
 ̅    

     

  +   ̅     

[
 
 
 
 

  

  
   

   
(
 

 
  
  

)

  

]
 
 
 
 

                                             (  ) 

where      (   ̂)  ̂⁄ .  (for    ) 

IV. EMPIRICAL COMPARISON 

This section deals with the empirical comparison of the estimators included in this paper. 

A. Empirical comparison under optimality condition 

The minimum variance of the proposed class of estimators given in (14) was compared with the MSEs of the 

estimators discussed in this paper using three natural populations. A relative efficiency in percentage of each estimator was 

computed by considering  ̂̅    as the bench mark estimator.  

Data set I: Jobson [25]  (The observations are replicated 2 times) 

 : Highway Rate 

 : Weight 

 : Engine size 

                                            

                                            

                                   ( )              ( )           

 

Data set II: Murthy [26] 

 : Output for 80 factories in a region 

 : Fixed capital 

 : Data on number of workers 

                 ̅          ̅           ̅         

                                           

                                                 ( )                  ( )           

 

Data set III: Fisher [27] 

    Petal width 

    Sepal width 

    Sepal length 

                  ̅         ̅         ̅         

                                                                 

                         ( )              ( )         
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Table I. RE (%) of different estimators with respect to  ̅   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Comparison using a Monte Carlo simulation  

 The estimators      given in (15) and the estimators listed in Sections I and II were compared empirically on three 

populations given above. For comparison of the estimators, a preliminary sample    of size    was drawn using srswor and a 

second-phase sample   of size   was drawn using srswor from each of the populations and these estimators were computed. 

This procedure was repeated        times.For each estimator   its relative percentage bias was calculated as  

  ( )      (   )  ⁄  

and the relative efficiency (in percentage) as 

  ( )        ( ̂̅   )       (⁄  )       

where 

  ∑   
 
       ⁄ and           ( )  ∑ (    )

  
   (   )⁄  

Estimator Data I Data II Data III 

 ̂̅   100.00 100.00 100.00 

 ̂̅     103.55 326.06 132.99 

      52.07   63.81 114.57 

 ̂̅   133.49  87.83   95.08 

       ̂̅     72.77 949.62   60.44 

 ̂̅   140.31 1024.21 169.09 

      53.56   64.13 114.19 

      52.66   63.90 114.38 

      71.42  65.08 104.49 

      90.55 118.54 112.60 

      92.48 112.71 109.27 

      68.16   86.82 113.52 

        74.58 952.47   61.61 

        74.58  950.43   61.02 

        76.86 952.62   67.37 

      113.55 774.74   66.78 

      115.26 844.10   79.45 

        74.69 951.86   64.54 

       140.59 1024.84 227.73 
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Table II. RB (%) and RE (%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables I and II prompt the following comments: 

(a) The absolute relative bias of each estimator is within reasonable range    . 

(b) The suggested class of estimators        (with optimum values of   and  ) and in particularly the optimal estimator      

given in (15) have performed very well followed by  Kiregyera [12]  estimator  ̂̅  . 

 

V. CONCLUSION 

When partial information on the main auxiliary variable    and complete auxiliary information on the additional auxiliary 

variable     which is highly positive correlated with    is available and the relation between   and   is a straight line not passing 

through the origin in this situations our optimal estimator may perform very well. This is reflected in Tables I and II. This is 

supported by the empirical study presented above. Estimators listed in this paper can be further extended in many ways, e.g., 

Estimator Relative Bias (%) Efficiency (%)Relative 

Population Population 

1 2 3 1 2 3 

 ̂̅    0.02 -2.67 0.37 100.00 100.00 100.00 

 ̂̅     0.02 0.59 0.97 100.87 272.31 143.70 

     ̂̅  0.09 -1.78 0.48 51.35 63.15 109.68 

 ̂̅   0.03 -2.07 0.39 133.46 90.28 96.68 

       ̂̅   0.04 0.89 0.14 67.59 625.29 86.39 

 ̂̅   0.02 0.78 1.08 134.06 726.46 169.14 

    0.09 -1.79 0.48 52.85 63.51 109.42 

    0.09 -1.79 0.48 51.94 63.25 109.55 

    0.06 -1.81 0.41 70.80 64.61 102.99 

    0.03 -2.49 0.47 90.09 125.49 108.36 

    0.04 -2.43 0.44 92.05 119.27 106.16 

    0.08 -1.79 0.47 52.94 63.44 108.81 

      0.04 0.89 0.17 69.29 628.06 87.53 

      0.04 0.89 0.16 68.26 626.07 86.96 

      0.02 0.88 0.73 88.46 636.08 122.65 

      0.01 0.62 0.27 106.47 615.85 92.43 

      0.01 0.64 0.46 108.14 660.56 103.70 

      0.04 0.88 0.22 69.39 627.46 90.33 

     -0.01 0.78 1.87 134.13 736.78 219.18 
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using exponential type estimators in ratio method of estimation, using ratio in regression method of estimation, estimation of 

ratio of two or more study variables, incorporating non-response (Kumar and Kumar [28]) etc. 
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