International Journal of Scientific Research in \qquad

Relation between L_{p}-Riemann Derivative, Approximate Riemann Derivative and Riemann Derivative

T. K. Garai
Department of Mathematics, Bolpur College, Bolpur-731204, Birbhum, West Bengal,
*Corresponding Author: tg70841@gmail.com, Tel.: +919434543368

Available online at: www.isroset.org
Received: 09/Feb/2019, Accepted: 22/Feb/2019, Online: 28/Feb/2019

Abstract

As the Definition of L_{p}-derivative is such that which contains only the absolute value of the function and therefore it is not possible to define the L_{p}-derivates from the definition of L_{p}-derivative. So to remove this difficulty S.N. Mukhopadyay and S.Ray uses a special technique to define them in their paper [2]. In this article we define the Lp-Riemann Derivative using the same technique as it is used to define the Lp-derivates in [2] and relation between approximate Riemann Derivative and Riemann derivative are studied.

Keywords- Riemann derivative, Approximate Riemann derivative L_{p}-Riemann derivative Holder's inequality

I. INTRODUCTION

Let $f: R \rightarrow R$ be a function. The Riemann derivative of a function f at x of order is r denoted by $R D_{(r)} f(x)$ and defined as $R D_{(r)} f(x)={ }_{t} \lim _{0} \frac{\Delta^{r}(f, x, t)}{t^{r}}$, where,
$\Delta^{r}(f, x, t)=\sum_{i=0}^{r}(-1)^{i}\binom{r}{i} f(x+i t), r=1,2,3, \ldots$
The upper right and lower right Riemann derivative of f at x of order r are denoted by $\overline{R D}_{(r)}^{+} f(x)$ and $\underline{R D}{ }_{(r)}^{+} f(x)$ and are defined as,
$\overline{R D}_{(r)}^{+} f(x)={ }_{t} \underline{\lim }_{0+} \sup \frac{\Delta^{r}(f, x, t)}{t^{r}}$ and $\underline{R D_{(r)}^{+}} f(x)={ }_{t} \underline{\lim }_{0+} \inf \frac{\Delta^{r}(f, x, t)}{t^{r}}$
Similarly the upper left and lower left Riemann derivatives $\overline{R D}_{(r)}^{-} f(x)$ and $\underline{R D}_{(r)}^{-} f(x)$ are defined. The approximate Riemann derivatives $\overline{R D}_{(r), a}^{+} f(x), \underline{R D}_{(r), a}^{+} f(x), \overline{R D}_{(r), a}^{-} f(x), \underline{R D}_{(r), a}^{-} f(x)$ are defined by taking approximate limit instead of ordinary limits in above definitions.

In this article we shall use the following notations: For any function $A: R \rightarrow R$, its positive and negative parts are defined as, $[A]_{+}=\max [A, 0],[A]_{-}=\max [-A, 0]$ respectively. Clearly,
(1) $A=[A]_{+}-[A]_{-}$
(2) $|A|=[A]_{+}+[A]_{-}$

If $A: R \rightarrow R$ and $B: R \rightarrow R$ then
(3) $[A+B]_{+} \leq[A]_{+}+[B]_{+}$and $[A+B]_{-} \leq[A]_{-}+[B]_{+}$ and if $A \leq B$ then
(4) $[A]_{+} \leq[B]_{+}$and $[B]_{-} \leq[A]_{-}$

In this paper there are four section in which Section-I deals with the introduction of the total work and some preliminary ideas. In Section-II we define the Riemann derivative in a new manner which helps us to find the relation with L_{p}-Riemann derivative. In Section-III we define the L_{p}-Riemann derivative using the technique as used in [2]. In Section-IV we established the relation between L_{p}-Riemann derivative, approximate Riemann derivative and Riemann derivative. In Section-V we conclude about its future aspects.

II. THE RIEMANN DERIVATIVE

Lemma 2.1. Let $\psi(x, t)$ be a function of $x, t \in R, t \neq 0$ then the right hand upper limit of ψ at x as $t \rightarrow 0_{+}$is given by $\psi^{+}=\inf S$ where, $\psi^{+}(x)=\limsup _{t \xrightarrow{ }} \psi(x, t)$ and
$S=\left\{a: a \in R,[\psi(x, t)-a]_{+}=o(1), a s, t \rightarrow 0_{+}\right\}$
(It is proved in [2], for definiteness we give the proof here.)
Proof. Let x be fixed. Suppose $\psi^{+}(x)=\infty$. We show that S is empty. If possible let $a \in S$. Then
$t \xrightarrow{\lim _{0+}}[\psi(x, t)-a]_{+}=0$
Since $\psi(x, t)-a \leq[\psi(x, t)-a]_{+},{ }_{t} \limsup _{0+}(\psi(x, t)-a) \leq 0$ and so $\limsup _{t \xrightarrow{0+}}(\psi(x, t) \leq a$ which is a contradiction, since $\psi^{+}(x)=\infty$. So, S is empty. Next, suppose $\psi^{+}(x)$ is finite and $\psi^{+}(x)<M$.Then there is $\delta>0$ such that $\psi(x, t)<M$ for $0<t<\delta$. So $[\psi(x, t)-M]_{+}=0$ for $0<t<\delta$ and hence $M \in S$. This shows that every $a>\psi^{+}(x)$ is a member of S. Again let $m<\psi^{+}(x)$. Then there is a sequence $\left\{t_{n}\right\}$ such that $t_{n}>0$ for all n and $t_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\psi\left(x, t_{n}\right)>m+\varepsilon$ for all n where $m<m+\varepsilon<\psi^{+}(x)$.Hence $\left[\psi\left(x, t_{n}\right)-m\right]_{+}>\varepsilon$ for all n and so $m \in S$. This shows that if $a<\psi^{+}(x)$ then $a \in S$. Therefore $\psi^{+}(x)=\inf S$.Finally suppose $\psi^{+}(x)=-\infty$. Then ${ }_{t} \varliminf_{0+}^{\lim _{0+}} \psi(x, t)=-\infty$. Let $a \in R$. Then there is $\delta>0$ such that $\psi(x, t)<a$ for $0<t<\delta$.Hence $a \in R$.Thus every member of R is a member of S and hence $\inf S=-\infty$.

Corollary 2.2. Let $f: R \rightarrow R$ and $x \in R$ be fixed. Then the r-th order right hand upper Riemann derivative of f at x, $\overline{R D}_{(r)}^{+} f(x)$ is given by,
$\overline{R D}_{(r)}^{+} f(x)={ }_{t} \xrightarrow{\lim _{0+}} \sup \frac{\Delta^{r}(f, x, t)}{t^{r}}$
$=\inf \left\{a: a \in R ;\left[\Delta^{r}(f, x, t)-t^{r} a\right]_{+}=o\left(t^{r}\right) a s, t \rightarrow 0_{+}\right\}$
Proof. Putting $\psi(x, t)=\frac{\Delta^{r}(f, x, t)}{t^{r}}$ Lemma-2.1 we get,
$\overline{R D}_{(r)}^{+} f(x)=\inf \left\{a: a \in R ;\left[\frac{\Delta^{r}(f, x, t)}{t^{r}}-a\right]_{+}=o(1) a s, t \rightarrow 0_{+}\right\}$
$=\inf \left\{a: a \in R ;\left[\Delta^{r}(f, x, t)-t^{r} a\right]_{+}=o\left(t^{r}\right) a s, t \rightarrow 0_{+}\right\}$

III. THEL P_{P}-RIEMANN DERIVATIVE

The following theorem can be proved using the same technique as used in Theorem-3.1 of [2].
Theorem 3.1: Let $f: R \rightarrow R$ and $x \in R$ be fixed. Let $f \in L_{p}, 1 \leq p<\infty$, in some neighbourhood of x and r in a fixed positive integer. If
$U_{+}(f)=\left\{a: a \in R ;\left(\frac{1}{h} \int_{0}^{h}\left(\left[\Delta^{r}(f, x, t)-a t^{r}\right]_{+}\right)^{p} d t\right)^{\frac{1}{p}}=o\left(h^{r}\right) a s, h \rightarrow 0_{+}\right\}$
and
$U_{-}(f)=\left\{a: a \in R ;\left(\frac{1}{h} \int_{0}^{h}\left(\left[\Delta^{r}(f, x, t)-a t^{r}\right]_{-}\right)^{p} d t\right)^{\frac{1}{p}}=o\left(h^{r}\right) a s, h \rightarrow 0_{+}\right\}$
then
$\inf U_{+}(f) \geq \sup U_{-}(f)$
Moreover, if
$\inf U_{+}(f)=\sup U_{-}(f)=\mu$ say, μ is finite
then
$\left(\frac{1}{h} \int_{0}^{h}\left(\left|\Delta^{r}(f, x, t)-\mu t^{r}\right|\right)^{p} d t\right)^{\frac{1}{p}}=o\left(h^{r}\right), a s, h \rightarrow 0_{+}$
and conversely, if (9) holds for some μ then (8) holds.

Now the Theorem 3.1 helps us to define upper and lower Lp-Riemann derivatives.
Definition 3.2. Let $f: R \rightarrow R$ and $x \in R$ be fixed. Let $f \in L_{p}, 1 \leq p<\infty$, in some neighbourhood of x and r in a fixed positive integer. The right upper and right lower Lp-Riemann derivative of f at x of order r are denoted by $\overline{R D}_{(r), p}^{+} f(x)$ and $\underline{R D}_{(r), p}^{+} f(x)$ respectively and are defined as,
$\overline{R D}_{(r), p}^{+} f(x)=\inf \left\{a: a \in R ;\left(\frac{1}{h} \int_{0}^{h}\left(\left[\Delta^{r}(f, x, t)-a t^{r}\right]_{+}\right)^{p} d t\right)^{\frac{1}{p}}=o\left(h^{r}\right) a s, h \rightarrow 0_{+}\right\}$
And
$\underline{R D}_{(r), p}^{+} f(x)=\sup \left\{a: a \in R ;\left(\frac{1}{h} \int_{0}^{h}\left(\left[\Delta^{r}(f, x, t)-a t^{r}\right]_{-}\right)^{p} d t\right)^{\frac{1}{p}}=o\left(h^{r}\right) a s, h \rightarrow 0_{+}\right\}$
Similarly the left upper and left lower Lp-Riemann derivative of f at x of order r can be defined and are denoted by $\overline{R D}_{(r), p}^{-} f(x)$ and $\underline{R D}_{(r), p}^{-} f(x)$ respectively. Both sided upper and lower derivatives are
$\overline{R D}_{(r), p} f(x)=\max \left[\overline{R D}_{(r), p}^{+} f(x), \overline{R D}_{(r), p}^{-} f(x)\right]$
and
$\underline{R D}_{(r), p} f(x)=\min \left[\underline{R D}_{(r), p}^{+} f(x), \underline{R D}_{(r), p}^{-} f(x)\right]$

If $\overline{R D}_{(r), p} f(x)=\underline{R D}_{(r), p} f(x)$, the common value is the Lp-Riemann derivative of f at x of order r and is denoted by $R D_{(r), p} f(x)$.

IV. RELATION BETWEEN L $_{p}$-RIEMANN DERIVATIVE, APPROXIMATE RIEMANN DERIVATIVE AND RIEMANN DERIVATIVE

Theorem 4.1. If $f \in L_{p}$ then,
$\underline{R D}_{(r), p}^{+} f(x) \leq \underline{R D}_{(r), a}^{+} f(x) \leq \overline{R D}_{(r), a}^{+} f(x) \leq \overline{R D}_{(r), p}^{+} f(x)$
With similar relations for left derivatives.

Proof. Let $\overline{R D}_{(r), a}^{+} f(x)=\alpha$ and $\overline{R D}_{(r), p}^{+} f(x)=\beta$. If possible let $\alpha>\beta$ then there exists γ such that $\alpha>\gamma>\beta$. Then by definition of α the set
$E=\left\{t: t>0 ;\left(\Delta^{r}(f, x, t)-\tau^{r}\right)>0\right\}$
has positive upper density in the right of $t=0$. Hence there exists $\delta>0$ and a sequence $\left\{h_{n}\right\}$ such that $h_{n} \rightarrow 0_{+}$as $n \rightarrow \infty$ and
$\frac{\mu\left(E \cap\left[0, h_{n}\right]\right.}{h_{n}}>\delta$ for all n
Hence
$\mu\left(E \cap\left[0, h_{n}\right]>\delta h_{n}\right.$ for all n
Also by the definition of for all β there is $\sigma \in R, \beta \leq \sigma<\gamma$ such that
$\left(\frac{1}{h} \int_{0}^{h}\left(\left[\Delta^{r}(f, x, t)-\sigma t^{r}\right]_{+}\right)^{p} d t\right)^{\frac{1}{p}}=o\left(h^{r}\right) a s, h \rightarrow 0_{+}$
So,
$\left(\frac{1}{h_{n}} \int_{0}^{h_{n}}\left(\left[\Delta^{r}(f, x, t)-\sigma \sigma^{r}\right]_{+}\right)^{p} d t\right)^{\frac{1}{p}}=o\left(h_{n}{ }^{r}\right) a s, n \rightarrow \infty$
Now for a fixed n we have by (4),
$\int_{0}^{h_{n}}\left(\left[\Delta^{r}(f, x, t)-\sigma t^{r}\right]_{+}\right)^{p} d t \geq \int_{0}^{h_{n}}\left(\left[\Delta^{r}(f, x, t)-\gamma^{r}\right]_{+}\right)^{p} d t \geq \int_{\left.E \cap \cap 0, h_{n}\right]}\left(\left[\Delta^{r}(f, x, t)-\mu^{r}\right]_{+}\right)^{p} d t=C($ say $)$
Then $\mathrm{C}>0$. For, if $\mathrm{C}=0$ then by the property of Lebesgue integral the integrand of the last expression would vanish a.e. on $E \cap\left[0, h_{n}\right]$ which is a contradiction since E has positive upper density in the right of the point $\mathrm{t}=0$. Therefore
$\frac{1}{h_{n}^{r}}\left(\frac{1}{h_{n}} \int_{0}^{h_{n}}\left(\left[\Delta^{r}(f, x, t)-\sigma t^{r}\right]_{+}\right)^{p} d t\right)^{\frac{1}{p}} \geq \frac{1}{h_{n}^{r}} C^{\frac{1}{p}}\left(\frac{1}{h_{n}}\right)^{\frac{1}{p}}=\frac{1}{h_{n}^{r+\frac{1}{p}}} C^{\frac{1}{p}} \rightarrow \infty$ as $n \rightarrow \infty$
Which contradict (10). Therefore last inequality of theorem is proved. Similarly the first inequality can be proved.

Theorem 4.2. If $f \in L_{p}$ then,
$\underline{R D}_{(r)}^{+} f(x) \leq \underline{R D}_{(r), p}^{+} f(x) \leq \overline{R D}_{(r), p}^{+} f(x) \leq \overline{R D}_{(r)}^{+} f(x)$
With similar relations for left derivatives.

Proof. Let
$E_{+}(f)=\left\{a: a \in R ;\left(\frac{1}{h} \int_{0}^{h}\left(\left[\Delta^{r}(f, x, t)-a t^{r}\right]_{+}\right)^{p} d t\right)^{\frac{1}{p}}=o\left(h^{r}\right) a s, h \rightarrow 0_{+}\right\}$
and
$F_{+}(f)=\left\{a: a \in R ;\left[\Delta^{r}(f, x, t)-t^{r} a\right]_{+}=o\left(t^{r}\right) a s, t \rightarrow 0_{+}\right\}$
Let $a \in F_{+}(f)$. Let $\varepsilon>0$ be arbitrary. Then since $a \in F_{+}(f)$ there is $\delta>0$ such that $\frac{1}{t^{r}}\left[\Delta^{r}(f, x, t)-t^{r} a\right]_{+}<\varepsilon$ for $0<t<\delta$ and so $\left[\Delta^{r}(f, x, t)-t^{r} a\right]_{+}<\varepsilon t^{r}$ for $0<t<\delta$. Hence
$\left(\frac{1}{h} \int_{0}^{h}\left(\left[\Delta^{r}(f, x, t)-a t^{r}\right]_{+}\right)^{p} d t\right)^{\frac{1}{p}}<\varepsilon \frac{h^{r}}{(r p+1)^{\frac{1}{p}}}$ for $0<h<\delta$
Since $\varepsilon>0$ is arbitrary
$\left(\frac{1}{h} \int_{0}^{h}\left(\left[\Delta^{r}(f, x, t)-a t^{r}\right]_{+}\right)^{p} d t\right)^{\frac{1}{p}}=o\left(h^{r}\right)$ as $h \rightarrow 0_{+}$
Therefore $a \in E_{+}(f)$. So $F_{+}(f) \subset E_{+}(f)$. Hence from definition of $\overline{R D}_{(r), p}^{+} f(x)$ and from Corollary2.2
$\overline{R D}_{(r), p}^{+} f(x)=\inf E_{+}(f) \leq \inf F_{+}(f)=\overline{R D}_{(r)}^{+} f(x)$
This proves the last inequality, the proof of the first inequality is similar.
Theorem 4.3. If $f \in L_{p}$ and $1 \leq q<p<\infty$ then,
$\underline{R D}_{(r), p}^{+} f(x) \leq \underline{R D}_{(r), q}^{+} f(x) \leq \overline{R D}_{(r), q}^{+} f(x) \leq \overline{R D}_{(r), p}^{+} f(x)$

Proof. \quad Since $\quad f \in L_{p} \quad, \quad\left(\Delta^{r}(f, x, t)-t^{r} a\right) \in L_{p} \quad$ and \quad so $\quad\left[\left(\Delta^{r}(f, x, t)-t^{r} a\right]_{+} \in L_{p} \quad\right.$. Hence $\left(\left[\Delta^{r}(f, x, t)-t^{r} a\right]_{+}\right)^{q} \in L_{\frac{p}{q}}$. Since $1 \in L_{\frac{p}{p-q}}$, by Holder's inequality we get,
$\int_{0}^{h}\left(\left[\Delta^{r}(f, x, t)-a t^{r}\right]_{+}\right)^{q} d t \leq\left(\int_{0}^{h}\left(\left[\Delta^{r}(f, x, t)-a t^{r}\right]_{+}\right)^{p} d t\right)^{\frac{p}{q}} h^{\frac{p-q}{p}}$
Hence
$\left(\frac{1}{h} \int_{0}^{h}\left(\left[\Delta^{r}(f, x, t)-a t^{r}\right]_{+}\right)^{q} d t\right)^{\frac{1}{q}} \leq\left(\frac{1}{h} \int_{0}^{h}\left(\left[\Delta^{r}(f, x, t)-a t^{r}\right]_{+}\right)^{p} d t\right)^{\frac{1}{p}}$
which shows that
$\left\{a: a \in R ;\left(\frac{1}{h} \int_{0}^{h}\left(\left[\Delta^{r}(f, x, t)-a t^{r}\right]_{+}\right)^{p} d t\right)^{\frac{1}{p}}=o\left(h^{r}\right) a s, h \rightarrow 0_{+}\right\}$
is a subset of
$\left\{a: a \in R ;\left(\frac{1}{h} \int_{0}^{h}\left(\left[\Delta^{r}(f, x, t)-a t^{r}\right]_{+}\right)^{q} d t\right)^{\frac{1}{q}}=o\left(h^{r}\right) a s, h \rightarrow 0_{+}\right\} 8<$
Therefore from definition $\overline{R D}_{(r), q}^{+} f(x) \leq \overline{R D}_{(r), p}^{+} f(x)$, this complete the proof of the last inequality of (11). The proof of the first inequality of (11) is same.

Theorem 4.4. If $f \in L_{p}$ and $1 \leq q<p<\infty$ then,

$$
\begin{aligned}
& \underline{R D}_{(r)}^{+} f(x) \leq \underline{R D}_{(r), p}^{+} f(x) \leq \underline{R D_{(r), q}^{+}} f(x) \leq \underline{R D}_{(r), a}^{+} f(x) \\
& \leq \overline{R D}_{(r), a}^{+} f(x) \leq \overline{R D}_{(r), q}^{+} f(x) \leq \overline{R D}_{(r), p}^{+} f(x) \leq \overline{R D}_{(r)}^{+} f(x)
\end{aligned}
$$

Proof. The theorem is a combination of the Theorem-4.1, Theorem-4.2 and Theorem-4.3

V. CONCLUSION AND FUTURE SCOPE

In Definition 3.2 the L_{p}-Riemann derivative is defined in a way so that the absolute value of the function can be removed. Theorem 4.1 shows that if a function possesses L_{p}-Riemann derivate then it possesses the approximate Riemann derivate. Theorem 4.2 shows that Lp-Riemann derivative is a generalization of Riemann derivative.

ACKNOWLEDGMENT

The author wish to express his sincere gratitude to Dr.S.Ray, Associate Professor of the department of Mathematics, Siksha Bhavana, Visva-Bharati, for his kind help and suggestions in preparation of this paper.

References

[1] S. N. Mukhopadhyay, Higher order derivatives, Chapman and Hall/CRC, Monographs and surveys in Pure and Applied Methematics, 144 (2012).
[2] S.N.Mukhopadhyay and S.Ray, "Relation between Lp-derivates and Peano, approximate Peano and Borel derivates of higher order". Real Analysis Exchange, 41(1)(2015/2016) 1-22.
[3] J.M.Ash, Generalisations of Riemman derivetive, Trans. American Math. Soc., 126 (1967), 181-199.

AUTHORS PROFILE

T.K.Garai is an Assistant Professor in Mathematics, Department of Mathematics, Bolpur College, Bolpur, West Bengal. He is pursuing Ph.D degree AT Visva-Bharati University, West Bengal. He has published seven research paper in reputed national and international journal. He is working as assistant professor since 2005.

