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Abstract—As the Definition of Lp-derivative is such that which contains only the absolute value of the function and therefore it 

is not possible to define the Lp-derivates from the definition of Lp-derivative. So to remove this difficulty S.N. Mukhopadyay 

and S.Ray uses a special technique to define them in their paper [2]. In this article we define the Lp-Riemann Derivative using 

the same technique as it is used to define the Lp-derivates in [2] and relation between approximate Riemann Derivative and 

Riemann derivative are studied. 
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I.  INTRODUCTION  

Let RRf : be a function. The Riemann derivative of a function f  at x  of order  is r denoted by )()( xfRD r  and 

defined as 
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              The upper right and lower right Riemann derivative of f  at x  of order r are denoted by )()( xfRD r



and 

)()( xfRD r


and are defined as, 
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                   Similarly the upper left and lower left Riemann derivatives )()( xfRD r



and )()( xfRD r


are defined. The 

approximate Riemann derivatives )(),( xfRD ar



, )(),( xfRD ar


, )(),( xfRD ar



, )(),( xfRD ar


  are defined by taking 

approximate limit instead of ordinary limits in above definitions. 

 

                  In this article we shall use the following notations: For any function RRA : , its positive and negative parts are 

defined as,   ]0,max[ AA  ,   ]0,max[ AA  respectively. Clearly, 

(1)   ][][ AAA  

(2)   ][][ AAA  

If RRA :  and RRB :  then 
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(3)   ][][][ BABA  and   ][][][ BABA   

and if BA  then 

(4)   ][][ BA  and   ][][ AB  

          In this paper there are four section in which Section-I deals with the introduction of the total work and some preliminary 

ideas. In Section-II we define the Riemann derivative in a new manner which helps us to find the relation with Lp-Riemann 

derivative. In Section-III we define the Lp-Riemann derivative using the technique as used in [2]. In Section-IV we established 

the relation between Lp-Riemann derivative, approximate Riemann derivative and Riemann derivative. In Section-V we 

conclude about its future aspects.   

 

II. THE RIEMANN DERIVATIVE 

Lemma 2.1.     Let ),( tx  be a function of 0,,  tRtx  then the right hand upper limit of   at x  as  0t  is given by  

Sinf  where,  ),(suplim)(
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(It is proved in [2], for definiteness we give the proof here.) 

 Proof.   Let x be fixed. Suppose  )(x . We show that S is empty. If possible let Sa . Then 
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contradiction, since  )(x .  So, S is empty. Next, suppose )(x  is finite and Mx  )(  .Then there is 0  

such that Mtx ),( for  t0 . So 0]),([  Mtx  for  t0  and hence SM  . This shows that every 

)(xa   is a member of S. Again let )(xm  . Then there is a sequence  nt  such that 0nt  for all n and 0nt  

as n and   mtx n ),(  for all n where )(xmm   .Hence   ]),([ mtx n  for all n and so 

Sm . This shows that if )(xa  then Sa . Therefore Sx inf)(  .Finally suppose  )(x . Then 
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member of R is a member of S and hence Sinf . 

 

 Corollary 2.2.     Let RRf :  and Rx  be fixed. Then the r-th order right hand upper Riemann derivative of f at x ,

)()( xfRD r
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  is given by, 
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III. THELP-RIEMANN DERIVATIVE 

The following theorem can be proved using the same technique as used in Theorem-3.1 of [2]. 

  Theorem 3.1: Let RRf :  and Rx  be fixed. Let pLf  ,  p1 , in some neighbourhood of x and r in a fixed 

positive integer. If 
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and conversely, if (9) holds for some   then (8) holds. 

            

              Now the Theorem 3.1 helps us to define upper and lower Lp-Riemann derivatives. 

 

Definition 3.2.   Let RRf :  and Rx  be fixed. Let pLf  ,  p1 , in some neighbourhood of x and r in a fixed 

positive integer. The right upper and right lower Lp-Riemann derivative of f at x of order r are denoted by )(),( xfRD pr



and 

)(),( xfRD pr


 respectively and are defined as, 































 



 0,)()]),,(([
1

;:inf)(

1

0

),( hashodtattxf
h

RaaxfRD r
ph

prr
pr  

And  































 



 0,)()]),,(([
1

;:sup)(

1

0

),( hashodtattxf
h

RaaxfRD r
ph

prr

pr  

       Similarly the left upper and left lower Lp-Riemann derivative of f at x of order r can be defined and are denoted by 

)(),( xfRD pr



and )(),( xfRD pr


respectively. Both sided upper and lower derivatives are 
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If )()( ),(),( xfRDxfRD prpr  , the common value is the Lp-Riemann derivative of f at x of order r and is denoted by 

)(),( xfRD pr
. 

IV. RELATION BETWEEN LP-RIEMANN DERIVATIVE, APPROXIMATE RIEMANN DERIVATIVE AND 

RIEMANN DERIVATIVE 

Theorem 4.1. If pLf  then, 
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  With similar relations for left derivatives.  
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Which contradict (10). Therefore last inequality of theorem is proved. Similarly the first inequality can be proved. 
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Theorem 4.2. If pLf  then, 
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This proves the last inequality, the proof of the first inequality is similar. 

 

Theorem 4.3.  If pLf  and  pq1  then, 
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is a subset of 
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Therefore from definition )()( ),(),( xfRDxfRD prqr
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 , this complete the proof of the last inequality of (11). The proof of 

the first inequality of (11) is same. 

 

Theorem 4.4.  If pLf  and  pq1  then, 
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Proof.   The  theorem is a combination of the Theorem-4.1, Theorem-4.2 and Theorem-4.3 

V. CONCLUSION AND FUTURE SCOPE 

In Definition 3.2 the Lp-Riemann derivative is defined in a way so that the absolute value of the function can be removed. 

Theorem 4.1 shows that if a function possesses Lp-Riemann derivate then it possesses the approximate Riemann derivate. 

Theorem 4.2 shows that Lp-Riemann derivative is a generalization of Riemann derivative.   
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