

International Journal of Scientific Research in _ Mathematical and Statistical Sciences Vol.6, Issue.1, pp.167-172, February (2019) DOI: https://doi.org/10.26438/ijsrmss/v6i1.167172 **Research Paper**

E-ISSN: 2348-4519

Relation between L_p-Riemann Derivative, Approximate Riemann Derivative and Riemann Derivative

T. K. Garai

Department of Mathematics, Bolpur College, Bolpur-731204, Birbhum, West Bengal,

*Corresponding Author: tg70841@gmail.com, Tel.: +919434543368

Available online at: www.isroset.org

Received: 09/Feb/2019, Accepted: 22/Feb/2019, Online: 28/Feb/2019

Abstract—As the Definition of L_p -derivative is such that which contains only the absolute value of the function and therefore it is not possible to define the L_p -derivates from the definition of L_p -derivative. So to remove this difficulty S.N. Mukhopadyay and S.Ray uses a special technique to define them in their paper [2]. In this article we define the Lp-Riemann Derivative using the same technique as it is used to define the Lp-derivates in [2] and relation between approximate Riemann Derivative and Riemann derivative are studied.

Keywords— Riemann derivative, Approximate Riemann derivative L_p -Riemann derivative Holder's inequality

I. INTRODUCTION

Let $f: R \to R$ be a function. The Riemann derivative of a function f at x of order is r denoted by $RD_{(r)}f(x)$ and

defined as
$$RD_{(r)}f(x) =_t \underline{\lim}_0 \frac{\Delta^r(f, x, t)}{t^r}$$
, where,
 $\Delta^r(f, x, t) = \sum_{i=0}^r (-1)^i {r \choose i} f(x+it), r = 1, 2, 3, ...$

The upper right and lower right Riemann derivative of f at x of order r are denoted by $RD_{(r)}^{+}f(x)$ and $\underline{RD}_{(r)}^{+}f(x)$ and are defined as,

$$\overline{RD}_{(r)}^{+}f(x) =_{t} \underline{\lim}_{0+} \sup \frac{\Delta^{r}(f, x, t)}{t^{r}} \text{ and } \underline{RD}_{(r)}^{+}f(x) =_{t} \underline{\lim}_{0+} \inf \frac{\Delta^{r}(f, x, t)}{t^{r}}$$

Similarly the upper left and lower left Riemann derivatives $RD_{(r),a}^{-}f(x)$ and $\underline{RD}_{(r),a}^{-}f(x)$ are defined. The approximate Riemann derivatives $\overline{RD}_{(r),a}^{+}f(x)$, $\underline{RD}_{(r),a}^{+}f(x)$, $\overline{RD}_{(r),a}^{-}f(x)$, $\underline{RD}_{(r),a}^{-}f(x)$ are defined by taking approximate limit instead of ordinary limits in above definitions.

In this article we shall use the following notations: For any function $A: R \to R$, its positive and negative parts are defined as, $[A]_+ = \max[A,0], [A]_- = \max[-A,0]$ respectively. Clearly, (1) $A = [A]_+ - [A]_-$ (2) $|A| = [A]_+ + [A]_-$ If $A: R \to R$ and $B: R \to R$ then (3) $[A+B]_+ \leq [A]_+ + [B]_+$ and $[A+B]_- \leq [A]_- + [B]_+$ and if $A \leq B$ then (4) $[A]_+ \leq [B]_+$ and $[B]_- \leq [A]_-$

In this paper there are four section in which Section-I deals with the introduction of the total work and some preliminary ideas. In Section-II we define the Riemann derivative in a new manner which helps us to find the relation with L_p -Riemann derivative. In Section-III we define the L_p -Riemann derivative using the technique as used in [2]. In Section-IV we established the relation between L_p -Riemann derivative, approximate Riemann derivative and Riemann derivative. In Section-V we conclude about its future aspects.

II. THE RIEMANN DERIVATIVE

Lemma 2.1. Let $\psi(x,t)$ be a function of $x, t \in R, t \neq 0$ then the right hand upper limit of ψ at x as $t \to 0_+$ is given by $\psi^+ = \inf S$ where, $\psi^+(x) = \limsup_{t} \sup_{0+} \psi(x,t)$ and $S = \{a : a \in R, [\psi(x,t)-a]_+ = o(1), as, t \to 0_+\}$ (It is proved in [2], for definiteness we give the proof here.) Proof. Let x be fixed. Suppose $\psi^+(x) = \infty$. We show that S is empty. If possible let $a \in S$. Then $\lim_{t \to 0_+} [\psi(x,t)-a]_+ = 0$ Since $\psi(x,t)-a \leq [\psi(x,t)-a]_+$, $\lim_{t \to 0_+} \sup_{0+} (\psi(x,t)-a) \leq 0$ and so $\lim_{t \to 0_+} \sup_{0+} (\psi(x,t) \leq a$ which is a contradiction, since $\psi^+(x) = \infty$. So, S is empty. Next, suppose $\psi^+(x)$ is finite and $\psi^+(x) < M$. Then there is $\delta > 0$ such that $\psi(x,t) < M$ for $0 < t < \delta$. So $[\psi(x,t)-M]_+ = 0$ for $0 < t < \delta$ and hence $M \in S$. This shows that every $a > \psi^+(x)$ is a member of S. Again let $m < \psi^+(x)$. Then there is a sequence $\{t_n\}$ such that $t_n > 0$ for all n and $t_n \to 0$ as $n \to \infty$ and $\psi(x,t_n) > m + \varepsilon$ for all n where $m < m + \varepsilon < \psi^+(x) = \inf S$. Finally suppose $\psi^+(x) = -\infty$. Then $\lim_{t \to 0_+} \lim_{t \to 0_+} \psi(x,t) < a$ for $0 < t < \delta$. Hence $a \in R$. Thus every member of S is a member of S and hence inf $S = -\infty$.

Corollary 2.2. Let $f: R \to R$ and $x \in R$ be fixed. Then the r-th order right hand upper Riemann derivative of f at x, $\overline{RD}^+_{(r)}f(x)$ is given by,

 $\overline{RD}_{(r)}^{+}f(x) =_{t} \underline{\lim}_{0+} \sup \frac{\Delta^{r}(f, x, t)}{t^{r}}$ $= \inf \left\{ a : a \in R; \left[\Delta^{r}(f, x, t) - t^{r}a \right]_{+} = o(t^{r})as, t \to 0_{+} \right\}$

Proof. Putting
$$\psi(x,t) = \frac{\Delta^r(f,x,t)}{t^r}$$
 Lemma-2.1 we get,
 $\overline{RD}^+_{(r)}f(x) = \inf\left\{a: a \in R; \left[\frac{\Delta^r(f,x,t)}{t^r} - a\right]_+ = o(1)as, t \to 0_+\right\}$

$$= \inf\left\{a: a \in R; \left[\Delta^r(f,x,t) - t^r a\right]_+ = o(t^r)as, t \to 0_+\right\}$$

III. THEL_P-RIEMANN DERIVATIVE

The following theorem can be proved using the same technique as used in Theorem-3.1 of [2].

Theorem 3.1: Let $f : R \to R$ and $x \in R$ be fixed. Let $f \in L_p$, $1 \le p < \infty$, in some neighbourhood of x and r in a fixed positive integer. If

$$U_{+}(f) = \left\{ a : a \in R; \left(\frac{1}{h} \int_{0}^{h} ([\Delta^{r}(f, x, t) - at^{r}]_{+})^{p} dt \right)^{\frac{1}{p}} = o(h^{r})as, h \to 0_{+} \right\}$$
(5)

and

$$U_{-}(f) = \left\{ a : a \in R; \left(\frac{1}{h} \int_{0}^{h} ([\Delta^{r}(f, x, t) - at^{r}]_{-})^{p} dt \right)^{\frac{1}{p}} = o(h^{r})as, h \to 0_{+} \right\}$$
(6)

then

 $\inf_{\substack{f \in U_+(f) \ge \sup_-(f) \\ \text{Moreover, if} \\ \inf_{\substack{f \in U_+(f) \ge \sup_-(f) \ge \mu \text{ say, } \mu \text{ is finite} \\ \text{then} } } (7)$

$$\left(\frac{1}{h}\int_{0}^{h}(|\Delta^{r}(f,x,t)-\mu t^{r}|)^{p}dt\right)^{\frac{1}{p}} = o(h^{r}), as, h \to 0_{+}$$
(9)

and conversely, if (9) holds for some μ then (8) holds.

Now the Theorem 3.1 helps us to define upper and lower Lp-Riemann derivatives.

Definition 3.2. Let $f: R \to R$ and $x \in R$ be fixed. Let $f \in L_p$, $1 \le p < \infty$, in some neighbourhood of x and r in a fixed positive integer. The right upper and right lower L_p-Riemann derivative of f at x of order r are denoted by $\overline{RD}^+_{(r),p} f(x)$ and $\underline{RD}^+_{(r),p} f(x)$ respectively and are defined as,

$$\overline{RD}_{(r),p}^{+}f(x) = \inf\left\{a: a \in R; \left(\frac{1}{h}\int_{0}^{h} ([\Delta^{r}(f, x, t) - at^{r}]_{+})^{p} dt\right)^{\frac{1}{p}} = o(h^{r})as, h \to 0_{+}\right\}$$

And

$$\underline{RD}_{(r),p}^{+}f(x) = \sup\left\{a: a \in R; \left(\frac{1}{h}\int_{0}^{h}([\Delta^{r}(f,x,t) - at^{r}]_{-})^{p}dt\right)^{\frac{1}{p}} = o(h^{r})as, h \to 0_{+}\right\}$$

Similarly the left upper and left lower L_p-Riemann derivative of f at x of order r can be defined and are denoted by $\overline{RD}_{(r),p}^{-} f(x)$ and $\underline{RD}_{(r),p}^{-} f(x)$ respectively. Both sided upper and lower derivatives are

 $\overline{RD}_{(r),p}f(x) = \max[\overline{RD}_{(r),p}^{+}f(x), \overline{RD}_{(r),p}^{-}f(x)]$ and $\underline{RD}_{(r),p}f(x) = \min[\underline{RD}_{(r),p}^{+}f(x), \underline{RD}_{(r),p}^{-}f(x)]$ If $RD_{(r),p}f(x) = \underline{RD}_{(r),p}f(x)$, the common value is the Lp-Riemann derivative of f at x of order r and is denoted by $RD_{(r),p}f(x)$.

IV. RELATION BETWEEN L_P-RIEMANN DERIVATIVE, APPROXIMATE RIEMANN DERIVATIVE AND RIEMANN DERIVATIVE

Theorem 4.1. If $f \in L_n$ then,

 $\underline{RD}_{(r),p}^{+}f(x) \leq \underline{RD}_{(r),a}^{+}f(x) \leq \overline{RD}_{(r),a}^{+}f(x) \leq \overline{RD}_{(r),p}^{+}f(x)$ With similar relations for left derivatives.

Proof. Let $\overline{RD}_{(r),a}^+ f(x) = \alpha$ and $\overline{RD}_{(r),p}^+ f(x) = \beta$. If possible let $\alpha > \beta$ then there exists γ such that $\alpha > \gamma > \beta$. Then by definition of α the set

$$E = \{t : t > 0; (\Delta^{r}(f, x, t) - \gamma t^{r}) > 0\}$$

has positive upper density in the right of t = 0. Hence there exists $\delta > 0$ and a sequence $\{h_n\}$ such that $h_n \to 0_+$ as $n \to \infty$ and

$$\frac{\mu(E \cap [0, h_n]}{h_n} > \delta \text{ for all } n$$

Hence

 $\mu(E \cap [0, h_n] > \partial h_n \text{ for all } n$

Also by the definition of for all β there is $\sigma \in R, \beta \leq \sigma < \gamma$ such that

$$\left(\frac{1}{h}\int_{0}^{h}([\Delta^{r}(f,x,t)-\sigma t^{r}]_{+})^{p}dt\right)^{\frac{1}{p}} = o(h^{r})as, h \to 0_{+}$$

So.

$$\left(\frac{1}{h_n}\int_{0}^{h_n} ([\Delta^r(f,x,t) - \sigma t^r]_+)^p dt\right)^{\frac{1}{p}} = o(h_n^r)as, n \to \infty$$
(10)

Now for a fixed n we have by (4),

$$\int_{0}^{n_{n}} ([\Delta^{r}(f,x,t) - \sigma t^{r}]_{+})^{p} dt \ge \int_{0}^{n_{n}} ([\Delta^{r}(f,x,t) - \gamma t^{r}]_{+})^{p} dt \ge \int_{E \cap [0,h_{n}]} ([\Delta^{r}(f,x,t) - \gamma t^{r}]_{+})^{p} dt = C(say)$$

Then C > 0. For, if C = 0 then by the property of Lebesgue integral the integrand of the last expression would vanish a.e. on $E \cap [0, h_n]$ which is a contradiction since E has positive upper density in the right of the point t = 0. Therefore

$$\frac{1}{h_n^r} (\frac{1}{h_n} \int_0^{h_n} ([\Delta^r(f, x, t) - \sigma t^r]_+)^p dt)^{\frac{1}{p}} \ge \frac{1}{h_n^r} C^{\frac{1}{p}} (\frac{1}{h_n})^{\frac{1}{p}} = \frac{1}{h_n^{r+\frac{1}{p}}} C^{\frac{1}{p}} \to \infty \text{ as } n \to \infty$$

Which contradict (10). Therefore last inequality of theorem is proved. Similarly the first inequality can be proved.

Theorem 4.2. If $f \in L_p$ then,

 $\underline{RD}_{(r)}^{+}f(x) \leq \underline{RD}_{(r),p}^{+}f(x) \leq \overline{RD}_{(r),p}^{+}f(x) \leq \overline{RD}_{(r)}^{+}f(x)$ With similar relations for left derivatives.

$$E_{+}(f) = \left\{ a : a \in R; \left(\frac{1}{h} \int_{0}^{h} ([\Delta^{r}(f, x, t) - at^{r}]_{+})^{p} dt \right)^{\frac{1}{p}} = o(h^{r})as, h \to 0_{+} \right\}$$

and

$$F_{+}(f) = \left\{ a : a \in R; \left[\Delta^{r}(f, x, t) - t^{r} a \right]_{+} = o(t^{r}) as, t \to 0_{+} \right\}$$

Let $a \in F_+(f)$. Let $\mathcal{E} > 0$ be arbitrary. Then since $a \in F_+(f)$ there is $\delta > 0$ such that $\frac{1}{t^r} [\Delta^r(f, x, t) - t^r a]_+ < \mathcal{E}$ for

$$0 < t < \delta \text{ and so } [\Delta^{r}(f, x, t) - t^{r}a]_{+} < \varepsilon t^{r} \text{ for } 0 < t < \delta \text{ . Hence}$$
$$(\frac{1}{h} \int_{0}^{h} ([\Delta^{r}(f, x, t) - at^{r}]_{+})^{p} dt)^{\frac{1}{p}} < \varepsilon \frac{h^{r}}{(rp+1)^{\frac{1}{p}}} \text{ for } 0 < h < \delta$$

Since $\varepsilon > 0$ is arbitrary

$$\left(\frac{1}{h}\int_{0}^{h}([\Delta^{r}(f,x,t)-at^{r}]_{+})^{p}dt\right)^{\frac{1}{p}} = o(h^{r}) \text{ as } h \to 0_{+}$$

Therefore $a \in E_+(f)$. So $F_+(f) \subset E_+(f)$. Hence from definition of $\overline{RD}_{(r),p}^+ f(x)$ and from Corollary2.2

 $\overline{RD}_{(r),p}^+ f(x) = \inf E_+(f) \le \inf F_+(f) = \overline{RD}_{(r)}^+ f(x)$ This proves the last inequality, the proof of the first inequality is similar.

Theorem 4.3. If $f \in L_p$ and $1 \le q then,$

$$\underline{RD}^{+}_{(r),p}f(x) \leq \underline{RD}^{+}_{(r),q}f(x) \leq \overline{RD}^{+}_{(r),q}f(x) \leq \overline{RD}^{+}_{(r),p}f(x)$$

Since $f \in L_p$, $(\Delta^r(f, x, t) - t^r a) \in L_p$ and so $[(\Delta^r(f, x, t) - t^r a]_+ \in L_p$. Hence Proof. $([\Delta^r(f, x, t) - t^r a]_+)^q \in L_{\underline{p}}$. Since $1 \in L_{\underline{p}}$, by Holder's inequality we get,

$$\int_{0}^{h} ([\Delta^{r}(f,x,t) - at^{r}]_{+})^{q} dt \leq (\int_{0}^{h} ([\Delta^{r}(f,x,t) - at^{r}]_{+})^{p} dt)^{\frac{p}{q}} h^{\frac{p-q}{p}}$$

Hence

$$\left(\frac{1}{h}\int_{0}^{h}\left(\left[\Delta^{r}(f,x,t)-at^{r}\right]_{+}\right)^{q}dt\right)^{\frac{1}{q}} \leq \left(\frac{1}{h}\int_{0}^{h}\left(\left[\Delta^{r}(f,x,t)-at^{r}\right]_{+}\right)^{p}dt\right)^{\frac{1}{p}}$$

which shows that

$$\left\{a: a \in R; \left(\frac{1}{h} \int_{0}^{h} ([\Delta^{r}(f, x, t) - at^{r}]_{+})^{p} dt\right)^{\frac{1}{p}} = o(h^{r})as, h \to 0_{+}\right\}$$

© 2019, IJSRMSS All Rights Reserved

is a subset of

$$\left\{a: a \in R; \left(\frac{1}{h} \int_{0}^{h} ([\Delta^{r}(f, x, t) - at^{r}]_{+})^{q} dt\right)^{\frac{1}{q}} = o(h^{r})as, h \to 0_{+}\right\} \\ 8 < 0$$

Therefore from definition $\overline{RD}_{(r),q}^+ f(x) \le \overline{RD}_{(r),p}^+ f(x)$, this complete the proof of the last inequality of (11). The proof of the first inequality of (11) is same.

Theorem 4.4. If $f \in L_p$ and $1 \le q then,$

$$\underline{RD}_{(r)}^{+}f(x) \leq \underline{RD}_{(r),p}^{+}f(x) \leq \underline{RD}_{(r),q}^{+}f(x) \leq \underline{RD}_{(r),a}^{+}f(x)$$
$$\leq \overline{RD}_{(r),a}^{+}f(x) \leq \overline{RD}_{(r),q}^{+}f(x) \leq \overline{RD}_{(r),p}^{+}f(x) \leq \overline{RD}_{(r)}^{+}f(x)$$

Proof. The theorem is a combination of the Theorem-4.1, Theorem-4.2 and Theorem-4.3

V. CONCLUSION AND FUTURE SCOPE

In Definition 3.2 the L_p -Riemann derivative is defined in a way so that the absolute value of the function can be removed. Theorem 4.1 shows that if a function possesses L_p -Riemann derivate then it possesses the approximate Riemann derivate. Theorem 4.2 shows that Lp-Riemann derivative is a generalization of Riemann derivative.

ACKNOWLEDGMENT

The author wish to express his sincere gratitude to Dr.S.Ray, Associate Professor of the department of Mathematics, Siksha Bhavana, Visva-Bharati, for his kind help and suggestions in preparation of this paper.

REFERENCES

- [1] S. N. Mukhopadhyay, Higher order derivatives, Chapman and Hall/CRC, Monographs and surveys in Pure and Applied Methematics, 144 (2012).
- [2] S.N.Mukhopadhyay and S.Ray, "Relation between L_p-derivates and Peano, approximate Peano and Borel derivates of higher order". Real Analysis Exchange, 41(1)(2015/2016) 1-22.
- [3] J.M.Ash, Generalisations of Riemman derivetive, Trans. American Math. Soc., 126 (1967), 181-199.

AUTHORS PROFILE

T.K.Garai is an Assistant Professor in Mathematics, Department of Mathematics, Bolpur College, Bolpur, West Bengal.

He is pursuing Ph.D degree AT Visva-Bharati University, West Bengal. He has published seven research paper in

reputed national and international journal. He is working as assistant professor since 2005.

