International Journal of Scientific Research in \qquad Research Paper
Mathematical and Statistical Sciences
Vol.6, Issue.2, pp.108-112, April (2019)
E-ISSN: 2348-4519

Block Related Indices and Coindices of a Graph

B. Basavanagoud
Department of Mathematics, Karnatak University, Dharwad, India

Corresponding Author: b.basavanagoud@gmail.com, Tel.: +91-9449177029

Available online at: www.isroset.org

Received: 29/Mar/2019, Accepted: 14/Apr/2019, Online: 30/Apr/2019

Abstract

A nontrivial connected graph with no cutvertices is called a block. A block of a graph is a subgraph of a graph which itself is a block and which is maximal with respect to this property. So far we have seen the graph invariants which are defined on vertices and edges of a graph. In this paper, we introduce new indices and coindices related to blocks of a graph.

Keywords-block, block indices, block coindices.

I. INTRODUCTION

Let $G=(V, E)$ be a simple (molecular) graph with vertex set $V(G)$, edge set $E(G)$ and block set $U(G)$. The vertices, edges and blocks of a graph are called elements of G. The degree of a vertexv $\in V(G)$ is the number of vertices adjacent to v in G. It will be denoted by $d_{G}(v)$. If u and v are two adjacent vertices of G, then the edge connecting them will be denoted by $u v$. Degree of an edgee $=u v$ is denoted by $d_{G}(e)$ and is defined as $d_{G}(e)=d_{G}(u)+d_{G}(v)-2$. If a block $B \in$ $U(G)$ with the edge set $\left\{e_{1}, e_{2}, \ldots, e_{s} ; s \geq 1\right\}$, then we say that the edge e_{i} and block B are incident with each other, where $1 \leq i \leq s$. If a block $B \in U(G)$ with the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{t} ; s \geq 2\right\}$, then we say that the vertex v_{i} and block B are incident with each other, where $1 \leq i \leq t$. If two distinct blocks are incident with a common cutvertex, then they are adjacent blocks. The degree of a blockB in G, denoted by $d_{G}(B)$, is the number of blocks adjacent to B in G. We denote the number of edges incident with B in G by $D_{G}(B)$. The block $\operatorname{graph} B(G)$ of a graph G is the graph whose vertices are the blocks of G and in which two vertices are adjacent whenever the corresponding blocks are adjacent [12]. The point-block graphbp (G) of a graph G is the graph whose vertices can be put in one to one correspondence with the set of vertices and blocks of G in such a way that two vertices of $b p(G)$ are adjacent if and only if one corresponds to a block B of G and the other to a vertex v of G and v is incident with $B[13]$. The line-block $\operatorname{graphbq}(G)$ of a graph G is the graph whose vertices can be put in one to one correspondence with the set of edges and blocks of G in such a way that two vertices of $b q(G)$ are adjacent if and only if one corresponds to a block B of G and the other to an edge e of G and e is in $B[1]$. The line $\operatorname{graph} L(G)$ of G is the graph whose vertex set is $E(G)$ in which two vertices are adjacent if and only if they are adjacent in G. In this paper, we denote
the adjacency (or incidence) of elements of graphs by the symbol \sim and nonadjacency by \nsim. For terminology not defined here we refer the reader to [12].

A graph invariant is a number related to a graph which is independent of the structure. In chemical graph theory, one such graph invariant is topological index. The first and second Zagreb indices of a graph G, denoted by $M_{1}(G)$ and $M_{2}(G)$, are among the oldest, most popular and extremely studied vertex degree based topological indices and are defined as

$$
\begin{gathered}
M_{1}(G)=\sum_{\substack{v \in V(G) \\
\text { and }}} d_{G}(v)^{2} \\
M_{2}(G)=\sum_{u v \in E(G)} d_{G}(u) d_{G}(v),
\end{gathered}
$$

respectively. Their mathematical theory is nowadays well elaborated. For details, see the papers [6, 11, 15]. For historical data on the Zagreb indices see [10]. For surveys on degree-based topological indices see [9].
The first Zagreb index can also be written as [7, 8]

$$
M_{1}(G)=\sum_{u v \in E(G)}\left[d_{G}(u)+d_{G}(v)\right]
$$

Noticing that contribution of nonadjacent vertex pairs should be taken into account when computing the weighted Wiener polynomials of certain composite graphs, authors in [7] defined first Zagreb coindex and second Zagreb coindex as

$$
\overline{M_{1}}(G)=\sum_{u v \notin E(G)}\left[d_{G}(u)+d_{G}(v)\right]
$$

and

$$
\bar{M}_{2}(G)=\sum_{u v \notin E(G)} d_{G}(u) d_{G}(v),
$$

respectively.

Milic'evic' et al. [14] in 2004 reformulated the Zagreb indices in terms of edge-degrees instead of vertex-degrees. The first and second reformulated Zagreb indices are defined respectively, as

$$
\begin{aligned}
E M_{1}(G) & =\sum_{e \in E(G)} d_{G}(e)^{2} \\
& =\sum_{e \sim f \in E(G)}\left[d_{G}(e)+d_{G}(f)\right]
\end{aligned}
$$

and

$$
E M_{2}(G)=\sum_{e \sim f \in E(G)} d_{G}(e) d_{G}(f),
$$

where $e \sim f$ means that the edges e and f are adjacent in G. In this paper, we introduce the block related new indices and coindices of a graph. The rest of the paper is organised as follows. In section 2 , we introduce block indices and coindices of a graph. In section 3, we compute block indices and coindices of a graph as an example.

II. BLOCK INDICES AND COINDICES

It is important to note that, in case of Zagreb indices, the transformation $G \rightarrow L(G)$ yields the " reformulated Zagreb indices". Similarly, the transformations $G \rightarrow B(G), G \rightarrow$ $b p(G)$ and $G \rightarrow b q(G)$ yields the " block indices and coindices" as follows.
Let G be a (molecular) graph, and let $B_{1} \sim B_{2}\left(B_{1} \nsim B_{2}\right)$ be the blocks B_{1} and B_{2} are adjacent (resp., not adjacent). Let $e \sim B(e \times B)$ be the edge e is incident (resp., not incident) with block B.
(i) The B-indices and coindices are:

$$
\begin{gathered}
B B_{1}(G)=\sum_{B \in U(G)} d_{G}^{2}(B)=\sum_{B_{i} \sim B_{j}}\left[d_{G}\left(B_{i}\right)+d_{G}\left(B_{j}\right)\right] \\
B B_{2}(G)=\sum_{B_{i} \sim B_{j}} d_{G}\left(B_{i}\right) d_{G}\left(B_{j}\right) \text { and } \\
\overline{B B}_{1}(G)=\sum_{B_{i} \nsim B_{j}}\left[d_{G}\left(B_{i}\right)+d_{G}\left(B_{j}\right)\right] \\
\overline{B B}_{2}(\mathrm{G})=\sum_{B_{i} \nsim B_{j}} d_{G}\left(B_{i}\right) d_{G}\left(B_{j}\right)
\end{gathered}
$$

(ii) The C-indices and coindices are:

$$
\begin{gathered}
B C_{1}(G)=\sum_{B_{i} \sim B_{j}}\left[D_{G}\left(B_{i}\right)+D_{G}\left(B_{j}\right)\right] \\
B C_{2}(G)=\sum_{B_{i} \sim B_{j}} D_{G}\left(B_{i}\right) D_{G}\left(B_{j}\right) \text { and }
\end{gathered}
$$

$\overline{B C}_{1}(G)=\sum_{B_{i} \ngtr B_{j}}\left[D_{G}\left(B_{i}\right)+D_{G}\left(B_{j}\right)\right]$,
$\overline{B C}_{2}(G)=\sum_{B_{i} \nsim B_{j}} D_{G}\left(B_{i}\right) D_{G}\left(B_{j}\right)$.
(iii) The V-index and coindex are:

$$
\begin{gathered}
B V(G)=\sum_{e \sim B} d_{G}(e) D_{G}(B) \text { and } \\
\overline{B V}(G)=\sum_{e \nsim B} d_{G}(e) D_{G}(B)
\end{gathered}
$$

(iv) The V^{*}-index and coindex are:

$$
\begin{aligned}
B V^{*}(G) & =\sum_{v \sim B} d_{G}(v) D_{G}(B) \text { and } \\
\overline{B V}^{*}(G) & =\sum_{v \nsim B} d_{G}(v) D_{G}(B)
\end{aligned}
$$

(v) The P-index and coindex are:

$$
\begin{aligned}
B P(G) & =\sum_{e \sim B} d_{G}(e) d_{G}(B) \text { and } \\
\overline{B P}(G) & =\sum_{e \nsim B} d_{G}(e) d_{G}(B)
\end{aligned}
$$

(vi) The P^{*}-index and coindex are:

$$
\begin{aligned}
B P^{*}(G) & =\sum_{v \sim B} d_{G}(v) d_{G}(B) \text { and } \\
\overline{B P}^{*}(G) & =\sum_{v \neq B} d_{G}(v) d_{G}(B) .
\end{aligned}
$$

(vii) The K^{*}-index and coindex are:

$$
\begin{gathered}
B K^{*}(G)=\sum_{B_{i} \sim B_{j}} d_{G}\left(B_{i}\right) D_{G}\left(B_{j}\right) \text { and } \\
\overline{B K^{*}}(G)=\sum_{B_{i} \nsucc B_{j}} d_{G}\left(B_{i}\right) D_{G}\left(B_{j}\right)
\end{gathered}
$$

(viii) The other auxiliary indices are:

$$
\begin{gathered}
\xi(G)=\sum_{B \in U(G)} D_{G}^{2}(B) \\
\eta(G)=\sum_{B \in U(G)} d_{G}(B) \\
\chi(G)=\sum_{B \in U(G)} d_{G}(B) D_{G}(B) .
\end{gathered}
$$

In literature, so many indices are introduced and their properties are studied [2, 3, 4, 59].

III. COMPUTATION OF BLOCK INDICES AND COINDICES

For example: Consider a graph G with vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}$, edges $e_{1}, \quad e_{2}, \quad e_{3}$, $e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}, e_{11}, e_{12}, e_{13}$ and blocks $B_{1}, B_{2}, B_{3}, B_{4}$ as labeled in Fig 1.
Here,

1. $\quad d_{G}\left(e_{1}\right)=3, \quad d_{G}\left(e_{2}\right)=3, \quad d_{G}\left(e_{3}\right)=4, \quad d_{G}\left(e_{4}\right)=4$,
$d_{G}\left(e_{5}\right)=3, \quad d_{G}\left(e_{6}\right)=3, \quad d_{G}\left(e_{7}\right)=6, \quad d_{G}\left(e_{8}\right)=5$,
$d_{G}\left(e_{9}\right)=2, d_{G}\left(e_{10}\right)=5, d_{G}\left(e_{11}\right)=5, d_{G}\left(e_{12}\right)=2$ and $d_{G}\left(e_{13}\right)=5$.
2. $d_{G}\left(B_{1}\right)=1, d_{G}\left(B_{2}\right)=3, d_{G}\left(B_{3}\right)=2$ and $d_{G}\left(B_{4}\right)=2$.
3. $D_{G}\left(B_{1}\right)=6, D_{G}\left(B_{2}\right)=1, D_{G}\left(B_{3}\right)=3$ and $D_{G}\left(B_{4}\right)=3$.

$$
=7+4+4+6=21
$$

and

$$
\begin{aligned}
& B C_{2}(G)=\sum_{B_{i} \sim B_{j}} D_{G}\left(B_{i}\right) D_{G}\left(B_{j}\right) \\
& =D_{G}\left(B_{1}\right) D_{G}\left(B_{2}\right)+D_{G}\left(B_{2}\right) D_{G}\left(B_{3}\right)+D_{G}\left(B_{2}\right) D_{G}\left(B_{4}\right) \\
& \quad+D_{G}\left(B_{3}\right) D_{G}\left(B_{4}\right) \\
& \quad=6+3+3+9=21
\end{aligned}
$$

The C-coindices of G are:

$$
\begin{aligned}
& \overline{B C}_{1}(G)=\sum_{B_{i} \nsim B_{j}}\left[D_{G}\left(B_{i}\right)+D_{G}\left(B_{j}\right)\right] \\
& =\left[D_{G}\left(B_{1}\right)+D_{G}\left(B_{3}\right)\right]+\left[D_{G}\left(B_{1}\right)+D_{G}\left(B_{4}\right)\right] \\
& =9+9=18 \text { and } \\
& \overline{B C}_{2}(G)=\sum_{B_{i} \ngtr B_{j}} D_{G}\left(B_{i}\right) D_{G}\left(B_{j}\right) \\
& \quad=D_{G}\left(B_{1}\right) D_{G}\left(B_{3}\right)+D_{G}\left(B_{1}\right) D_{G}\left(B_{4}\right) \\
& =18+18=36 .
\end{aligned}
$$

(iii) The V-index and coindex of G are:

$$
\begin{aligned}
& \quad B V(G)=\sum_{e \sim B} d_{G}(e) D_{G}(B) \\
& =d_{G}\left(e_{1}\right) D_{G}\left(B_{1}\right)+d_{G}\left(e_{2}\right) D_{G}\left(B_{1}\right)+d_{G}\left(e_{3}\right) D_{G}\left(B_{1}\right) \\
& \quad+d_{G}\left(e_{4}\right) D_{G}\left(B_{1}\right)+d_{G}\left(e_{5}\right) D_{G}\left(B_{1}\right)+d_{G}\left(e_{6}\right) D_{G}\left(B_{1}\right) \\
& \quad+d_{G}\left(e_{7}\right) D_{G}\left(B_{2}\right)+d_{G}\left(e_{8}\right) D_{G}\left(B_{4}\right)+d_{G}\left(e_{9}\right) D_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{10}\right) D_{G}\left(B_{4}\right)+d_{G}\left(e_{11}\right) D_{G}\left(B_{3}\right)+d_{G}\left(e_{12}\right) D_{G}\left(B_{3}\right) \\
& =\quad+d_{G}\left(e_{13}\right) D_{G}\left(B_{3}\right) \\
& =\begin{array}{l}
18+18+24+24+18+18+6+15+6+15+15+6 \\
\text { and } \\
\quad+15=198
\end{array}
\end{aligned}
$$

and

$$
\begin{aligned}
& \overline{B V}(G)=\sum_{e \not r B} d_{G}(e) D_{G}(B) \\
& =d_{G}\left(e_{1}\right) D_{G}\left(B_{2}\right)+d_{G}\left(e_{1}\right) D_{G}\left(B_{3}\right)+d_{G}\left(e_{1}\right) D_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{2}\right) D_{G}\left(B_{2}\right)+d_{G}\left(e_{2}\right) D_{G}\left(B_{3}\right)+d_{G}\left(e_{2}\right) D_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{3}\right) D_{G}\left(B_{2}\right)+d_{G}\left(e_{3}\right) D_{G}\left(B_{3}\right)+d_{G}\left(e_{3}\right) D_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{4}\right) D_{G}\left(B_{2}\right)+d_{G}\left(e_{4}\right) D_{G}\left(B_{3}\right)+d_{G}\left(e_{4}\right) D_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{5}\right) D_{G}\left(B_{2}\right)+d_{G}\left(e_{5}\right) D_{G}\left(B_{3}\right)+d_{G}\left(e_{5}\right) D_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{6}\right) D_{G}\left(B_{2}\right)+d_{G}\left(e_{6}\right) D_{G}\left(B_{3}\right)+d_{G}\left(e_{6}\right) D_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{7}\right) D_{G}\left(B_{1}\right)+d_{G}\left(e_{7}\right) D_{G}\left(B_{3}\right)+d_{G}\left(e_{7}\right) D_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{8}\right) D_{G}\left(B_{1}\right)+d_{G}\left(e_{8}\right) D_{G}\left(B_{2}\right)+d_{G}\left(e_{8}\right) D_{G}\left(B_{3}\right) \\
& \quad+d_{G}\left(e_{9}\right) D_{G}\left(B_{1}\right)+d_{G}\left(e_{9}\right) D_{G}\left(B_{2}\right)+d_{G}\left(e_{9}\right) D_{G}\left(B_{3}\right) \\
& \quad+d_{G}\left(e_{10}\right) D_{G}\left(B_{1}\right)+d_{G}\left(e_{10}\right) D_{G}\left(B_{2}\right)+d_{G}\left(e_{10}\right) D_{G}\left(B_{3}\right) \\
& \quad+d_{G}\left(e_{11}\right) D_{G}\left(B_{1}\right)+d_{G}\left(e_{11}\right) D_{G}\left(B_{2}\right)+d_{G}\left(e_{11}\right) D_{G}\left(B_{4}\right) \\
& +d_{G}\left(e_{12}\right) D_{G}\left(B_{1}\right)+d_{G}\left(e_{12}\right) D_{G}\left(B_{2}\right)+d_{G}\left(e_{12}\right) D_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{13}\right) D_{G}\left(B_{1}\right)+d_{G}\left(e_{13}\right) D_{G}\left(B_{2}\right)+d_{G}\left(e_{13}\right) D_{G}\left(B_{4}\right) \\
& =3+9+9+3+9+9+4+12+12+4+12+12 \\
& +3+4+4+3+4+4+36+18+18+30+5+15 \\
& +12+2+6+30+5+15=312 .
\end{aligned}
$$

(iv) The V^{*}-index and coindex of G are:

$$
\begin{aligned}
& B V^{*}(G)=\sum_{v \sim B} d_{G}(v) D_{G}(B) \\
& =d_{G}\left(v_{1}\right) D_{G}\left(B_{1}\right)+d_{G}\left(v_{2}\right) D_{G}\left(B_{1}\right)+d_{G}\left(v_{3}\right) D_{G}\left(B_{1}\right) \\
& \quad+d_{G}\left(v_{4}\right) D_{G}\left(B_{1}\right)+d_{G}\left(v_{5}\right) D_{G}\left(B_{1}\right)+d_{G}\left(v_{5}\right) D_{G}\left(B_{2}\right) \\
& \quad+d_{G}\left(v_{7}\right) D_{G}\left(B_{4}\right)+d_{G}\left(v_{8}\right) D_{G}\left(B_{4}\right)+d_{G}\left(v_{6}\right) D_{G}\left(B_{2}\right) \\
& \quad+d_{G}\left(v_{6}\right) D_{G}\left(B_{4}\right)+d_{G}\left(v_{9}\right) D_{G}\left(B_{3}\right)+d_{G}\left(v_{10}\right) D_{G}\left(B_{3}\right) \\
& + \\
& =18+d_{G}\left(v_{16}\right) D_{G}\left(B_{3}\right) \\
& \quad 18+12+18+18+12+3+5+9+6+6+15 \\
& \quad+6+6=134
\end{aligned}
$$

and

$$
\begin{aligned}
& \overline{B V}^{*}(G)=\sum_{v \not r B} d_{G}(v) D_{G}(B) \\
& = \\
& \quad d_{G}\left(v_{1}\right) D_{G}\left(B_{2}\right)+d_{G}\left(v_{1}\right) D_{G}\left(B_{3}\right)+d_{G}\left(v_{1}\right) D_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(v_{2}\right) D_{G}\left(B_{2}\right)+d_{G}\left(v_{2}\right) D_{G}\left(B_{3}\right)+d_{G}\left(v_{2}\right) D_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(v_{3}\right) D_{G}\left(B_{2}\right)+d_{G}\left(v_{3}\right) D_{G}\left(B_{3}\right)+d_{G}\left(v_{3}\right) D_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(v_{4}\right) D_{G}\left(B_{3}\right)+d_{G}\left(v_{4}\right) D_{G}\left(B_{4}\right)+d_{G}\left(v_{6}\right) D_{G}\left(B_{1}\right) \\
& \quad+d_{G}\left(v_{5}\right) D_{G}\left(B_{2}\right)+d_{G}\left(v_{5}\right) D_{G}\left(B_{3}\right)+d_{G}\left(v_{5}\right) D_{G}\left(B_{4}\right) \\
& +d_{G}\left(v_{7}\right) D_{G}\left(B_{1}\right)+d_{G}\left(v_{7}\right) D_{G}\left(B_{2}\right)+d_{G}\left(v_{7}\right) D_{G}\left(B_{3}\right) \\
& \quad+d_{G}\left(v_{8}\right) D_{G}\left(B_{1}\right)+d_{G}\left(v_{8}\right) D_{G}\left(B_{2}\right)+d_{G}\left(v_{8}\right) D_{G}\left(B_{3}\right) \\
& +d_{G}\left(v_{9}\right) D_{G}\left(B_{1}\right)+d_{G}\left(v_{9}\right) D_{G}\left(B_{2}\right)+d_{G}\left(v_{9}\right) D_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(v_{10}\right) D_{G}\left(B_{1}\right)+d_{G}\left(v_{10}\right) D_{G}\left(B_{4}\right)+d_{G}\left(v_{10}\right) D_{G}\left(B_{2}\right) \\
& = \\
& 3+9+9+2+6+6+3+9+9+9 \\
& \\
& +9+2+6+6+30+12+2+6+12 \\
& +2+6+12+2+6+12+2+6=196 .
\end{aligned}
$$

(v) The P-index and coindex of G are:

$$
\begin{aligned}
& B P(G)=\sum_{e \sim B} d_{G}(e) d_{G}(B) \\
& =d_{G}\left(e_{1}\right) d_{G}\left(B_{1}\right)+d_{G}\left(e_{2}\right) d_{G}\left(B_{1}\right)+d_{G}\left(e_{3}\right) d_{G}\left(B_{1}\right) \\
& \quad+d_{G}\left(e_{4}\right) d_{G}\left(B_{1}\right)+d_{G}\left(e_{5}\right) d_{G}\left(B_{1}\right)+d_{G}\left(e_{6}\right) d_{G}\left(B_{1}\right) \\
& \quad+d_{G}\left(e_{7}\right) d_{G}\left(B_{2}\right)+d_{G}\left(e_{8}\right) d_{G}\left(B_{4}\right)+d_{G}\left(e_{9}\right) d_{G}\left(B_{4}\right) \\
& \quad+\mathrm{d}_{G}\left(e_{10}\right) d_{G}\left(B_{4}\right)+d_{G}\left(e_{11}\right) d_{G}\left(B_{3}\right)+d_{G}\left(e_{12}\right) d_{G}\left(B_{3}\right) \\
& \quad+d_{G}\left(e_{13}\right) d_{G}\left(B_{3}\right) \\
& \quad=3+3+4+4+3+3+18+10+4+10 \\
& \quad+10+4+10=86
\end{aligned}
$$

and

$$
\begin{aligned}
& \overline{B P}(G)=\sum_{e \times B} d_{G}(e) d_{G}(B) \\
& =\quad d_{G}\left(e_{1}\right) d_{G}\left(B_{2}\right)+d_{G}\left(e_{1}\right) d_{G}\left(B_{3}\right)+d_{G}\left(e_{1}\right) d_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{2}\right) d_{G}\left(B_{2}\right)+d_{G}\left(e_{2}\right) d_{G}\left(B_{3}\right)+d_{G}\left(e_{2}\right) d_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{3}\right) d_{G}\left(B_{2}\right)+d_{G}\left(e_{3}\right) d_{G}\left(B_{3}\right)+d_{G}\left(e_{3}\right) d_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{4}\right) d_{G}\left(B_{2}\right)+d_{G}\left(e_{4}\right) d_{G}\left(B_{3}\right)+d_{G}\left(e_{4}\right) d_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{5}\right) d_{G}\left(B_{2}\right)+d_{G}\left(e_{5}\right) d_{G}\left(B_{3}\right)+d_{G}\left(e_{5}\right) d_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{6}\right) d_{G}\left(B_{2}\right)+d_{G}\left(e_{6}\right) d_{G}\left(B_{3}\right)+d_{G}\left(e_{6}\right) d_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{7}\right) d_{G}\left(B_{1}\right)+d_{G}\left(e_{7}\right) d_{G}\left(B_{3}\right)+d_{G}\left(e_{7}\right) d_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{8}\right) d_{G}\left(B_{1}\right)+d_{G}\left(e_{8}\right) d_{G}\left(B_{2}\right)+d_{G}\left(e_{8}\right) d_{G}\left(B_{3}\right) \\
& \quad+d_{G}\left(e_{9}\right) d_{G}\left(B_{1}\right)+d_{G}\left(e_{9}\right) d_{G}\left(B_{2}\right)+d_{G}\left(e_{9}\right) d_{G}\left(B_{3}\right) \\
& \quad+d_{G}\left(e_{10}\right) d_{G}\left(B_{1}\right)+d_{G}\left(e_{10}\right) d_{G}\left(B_{2}\right)+d_{G}\left(e_{10}\right) d_{G}\left(B_{3}\right) \\
& \quad+d_{G}\left(e_{11}\right) d_{G}\left(B_{1}\right)+d_{G}\left(e_{11}\right) d_{G}\left(B_{2}\right)+d_{G}\left(e_{11}\right) d_{G}\left(B_{4}\right) . \\
& \quad+d_{G}\left(e_{12}\right) d_{G}\left(B_{1}\right)+d_{G}\left(e_{12}\right) d_{G}\left(B_{2}\right)+d_{G}\left(e_{12}\right) d_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(e_{13}\right) d_{G}\left(B_{1}\right)+d_{G}\left(e_{13}\right) d_{G}\left(B_{2}\right)+d_{G}\left(e_{13}\right) d_{G}\left(B_{4}\right) \\
& =\quad 9+6+6+9+6+6+12+8+8+12+8+8
\end{aligned}
$$

```
    +9+6+6+9+6+6+6+12+12+5+15+10
    +2+6+4+5+15+10+5+15+10+2+6+4
+5+15+10=314.
```

(vi) The P^{*}-index and coindex of G are:

$$
\begin{gathered}
B P^{*}(G)=\sum_{v \sim B} d_{G}(v) d_{G}(B) \\
=d_{G}\left(v_{1}\right) d_{G}\left(B_{1}\right)+d_{G}\left(v_{2}\right) d_{G}\left(B_{1}\right)+d_{G}\left(v_{3}\right) d_{G}\left(B_{1}\right) \\
\quad+d_{G}\left(v_{4}\right) d_{G}\left(B_{1}\right)+d_{G}\left(v_{5}\right) d_{G}\left(B_{1}\right)+d_{G}\left(v_{5}\right) d_{G}\left(B_{2}\right) \\
\quad+d_{G}\left(v_{6}\right) d_{G}\left(B_{2}\right)+d_{G}\left(v_{6}\right) d_{G}\left(B_{4}\right)+d_{G}\left(v_{7}\right) d_{G}\left(B_{4}\right) \\
\quad+d_{G}\left(v_{8}\right) d_{G}\left(B_{4}\right)+d_{G}\left(v_{16}\right) d_{G}\left(B_{3}\right)+d_{G}\left(v_{9}\right) d_{G}\left(B_{3}\right) \\
+d_{G}\left(v_{10}\right) d_{G}\left(B_{3}\right) \\
=3+2+3+3+2+9+15+10+4+4+10+4 \\
+4=73
\end{gathered}
$$

and

$$
\begin{aligned}
& \overline{B P}^{*}(G)=\sum_{v \neq B} d_{G}(v) d_{G}(B) \\
& =d_{G}\left(v_{1}\right) d_{G}\left(B_{2}\right)+d_{G}\left(v_{1}\right) d_{G}\left(B_{3}\right)+d_{G}\left(v_{1}\right) d_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(v_{2}\right) d_{G}\left(B_{2}\right)+d_{G}\left(v_{2}\right) d_{G}\left(B_{3}\right)+d_{G}\left(v_{2}\right) d_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(v_{3}\right) d_{G}\left(B_{2}\right)+d_{G}\left(v_{3}\right) d_{G}\left(B_{3}\right)+d_{G}\left(v_{3}\right) d_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(v_{4}\right) d_{G}\left(B_{3}\right)+d_{G}\left(v_{4}\right) d_{G}\left(B_{4}\right)+d_{G}\left(v_{5}\right) d_{G}\left(B_{2}\right) \\
& \quad+d_{G}\left(v_{5}\right) d_{G}\left(B_{3}\right)+d_{G}\left(v_{5}\right) d_{G}\left(B_{4}\right)+d_{G}\left(v_{6}\right) d_{G}\left(B_{1}\right) \\
& \quad+d_{G}\left(v_{7}\right) d_{G}\left(B_{1}\right)+d_{G}\left(v_{7}\right) d_{G}\left(B_{2}\right)+d_{G}\left(v_{7}\right) d_{G}\left(B_{3}\right) \\
& \quad+d_{G}\left(v_{8}\right) d_{G}\left(B_{1}\right)+d_{G}\left(v_{8}\right) d_{G}\left(B_{2}\right)+d_{G}\left(v_{8}\right) d_{G}\left(B_{3}\right) \\
& \quad+d_{G}\left(v_{9}\right) d_{G}\left(B_{1}\right)+d_{G}\left(v_{9}\right) d_{G}\left(B_{2}\right)+d_{G}\left(v_{9}\right) d_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(v_{10}\right) d_{G}\left(B_{1}\right)+d_{G}\left(v_{10}\right) d_{G}\left(B_{2}\right)+d_{G}\left(v_{10}\right) d_{G}\left(B_{4}\right) \\
& =\quad 9+6+6+6+4+4+9+6+6+6+6+5 \\
& =+2+6+2+6+2+6+2+6 \\
& =105 .
\end{aligned}
$$

(vii) The K^{*}-index and coindex are:

$$
\begin{aligned}
& B K^{*}(G)=\sum_{B_{i} \sim B_{j}} d_{G}\left(B_{i}\right) D_{G}\left(B_{j}\right) \\
& =d_{G}\left(B_{1}\right) D_{G}\left(B_{2}\right)+d_{G}\left(B_{2}\right) D_{G}\left(B_{1}\right)+d_{G}\left(B_{2}\right) D_{G}\left(B_{3}\right) \\
& \quad+d_{G}\left(B_{3}\right) D_{G}\left(B_{2}\right)+d_{G}\left(B_{2}\right) D_{G}\left(B_{4}\right)+d_{G}\left(B_{4}\right) D_{G}\left(B_{2}\right) \\
& \quad+d_{G}\left(B_{3}\right) D_{G}\left(B_{4}\right)+d_{G}\left(B_{4}\right) D_{G}\left(B_{3}\right)
\end{aligned}
$$

$$
=1+18+9+2+9+2+6+6=53
$$

and

$$
\begin{aligned}
& \overline{B K^{*}}(G)=\sum_{B_{i} \nsim B_{j}} d_{G}\left(B_{i}\right) D_{G}\left(B_{j}\right) \\
& =\quad d_{G}\left(B_{1}\right) D_{G}\left(B_{3}\right)+d_{G}\left(B_{3}\right) D_{G}\left(B_{1}\right)+d_{G}\left(B_{1}\right) D_{G}\left(B_{4}\right) \\
& \quad+d_{G}\left(B_{4}\right) D_{G}\left(B_{1}\right) \\
& =3+12+3+12=30 .
\end{aligned}
$$

(viii) The other auxiliary indices are

$$
\begin{aligned}
& \xi(G)=\sum_{B \in U(\mathrm{G})} D_{G}^{2}(B) \\
& =D_{G}^{2}\left(B_{1}\right)+D_{G}^{2}\left(B_{2}\right)+D_{G}^{2}\left(B_{3}\right)+D_{G}^{2}\left(B_{4}\right) \\
& \quad=36+1+9+9=55
\end{aligned}
$$

and

$$
\begin{aligned}
& \eta(G)=\sum_{B \in U(G)} d_{G}(B) \\
& \quad=d_{G}\left(B_{1}\right)+d_{G}\left(B_{2}\right)+d_{G}\left(B_{3}\right)+d_{G}\left(B_{4}\right) \\
& =1+3+2+2=8
\end{aligned}
$$

and

$$
\begin{aligned}
& \chi(G)=\sum_{B \in U(G)} d_{G}(B) D_{G}(B) \\
& =d_{G}\left(B_{1}\right) D_{G}\left(B_{1}\right)+d_{G}\left(B_{2}\right) D_{G}\left(B_{2}\right)+d_{G}\left(B_{3}\right) D_{G}\left(B_{3}\right) \\
& \quad+d_{G}\left(B_{4}\right) D_{G}\left(B_{4}\right) \\
& =6+3+6+6=21 .
\end{aligned}
$$

IV. CONCLUSION

In this paper, we have introduced some important block indices which play a key role in finding topological indices related to blocks in a graph.

Acknowledgement

The author is thankful to the referee for useful suggestions. The author is thankful to University Grants Commission (UGC), Government of India, New Delhi, for the financial support through UGC-SAP DRS-III for 2016-2021: F.510/3/DRS-III/2016(SAP-I) dated: 29th Feb. 2016.

REFERENCES

[1] B. Basavanagoud, S. Patil, Line-block graph of a graph,J. Karnatak Univ. Sci., 50 (2015) 14-18.
[2] B. Basavanagoud, S. Patil, A note on hyper-Zagreb index of graph operations, Iranian J. Math. Chem., 7(1) (2016) 89-92.
[3] B. Basavanagoud, S. Patil, A note on hyper-Zagreb coindex of graph operations, J. Appl. Math. Comput., 53 (2017) 647-655.
[4] B. Basavanagoud, S. Patil, H. Y. Deng, On the second order first Zagreb Index, Iranian J. Math. Chem., 8(3) (2017) 299-311.
[5] B. Basavanagoud, V. R. Desai, S. Patil, (β, α)-Connectivity index of graphs, Appl. Math. Nonlinear Sci., 2(1), (2017) 21-30.
[6] K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem.,52 (2004) 103-112.
[7] T. Dos Tic, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. Contemp., 1 (2008) 66-80.
[8] T. Dos lič, B. Furtula, A. Graovac, I. Gutman, S. Moradi, Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, MATCH Commun. Math. Comput.Chem., 66 (2011) 613-626.
[9] I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013) 351-361.
[10] I. Gutman, On the origin of two degree-based topological indices, Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.), 146 (2014) 39-52.
[11] I. Gutman, B. Furtula, Z. Kovijanic' Vukic'evic', G. Popivoda, Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem., 74 (2015) 5-16.
[12] F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.
[13] V. R. Kulli, The block-point tree of a graph, Indian J. pure appl. Math, 7 (1976) 10-14.
[14] A. Milic'evic', S. Nikolic', N. Trinajstic', On reformulated Zagreb indices, Mol. Divers., 8 (2004) 393-399.
[15] S. Nikolic', G. Kovac evic', A. Milic evic', N. Trinajstic', The Zagreb indices 30 years after, Croat. Chem. Acta, 76 (2003) 113-124.

AUTHORS PROFILE

Dr. B. Basavanagoud is a professor in the department of Mathematics, Karnatak University, Dharwad, Karnataka state, India. He was chairman of the department for two terms, i.e., 2010-2012 and 2016-2018. He obtained his Ph. D degree from Gulbarga University, Kalaburgi, Karnataka, India, under the supervision of Prof. V. R. Kulli. He visited Taiwan on invitation to deliver an invited talk in Indo-Taiwan conference on Discrete Mathematics. He chaired a session and delivered a contributed talk in prestigious International Congress of Mathematicians (ICM) held at Hyderabad in the year 2010. He has more than 30 years of teaching experience, completed 7 research projects and organized 3 international conferences/ workshops. He has guided 12 students for their M. Phil, 10 students for their Ph. D. At present 5 students are working for their Ph . D. He has delivered more than 40 invited /contributed talks and has more than 140 research publications in reputed national/international journals. At present he is Academic Council member of Karnatak University Dharwad (20172019). He is also life member for several academic bodies.

