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Abstract— A nontrivial connected graph with no cutvertices is called a block. A block of a graph is a subgraph of a graph 

which itself is a block and which is maximal with respect to this property. So far we have seen the graph invariants which are 

defined on vertices and edges of a graph. In this paper, we introduce new indices and coindices related to blocks of a graph. 
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I.  INTRODUCTION  

Let         be a simple (molecular) graph with vertex set 

    , edge set      and block set     . The vertices, edges 

and blocks of a graph are called elements of  . The degree of 

a vertex       is the number of vertices adjacent to   in 

 . It will be denoted by      . If   and   are two adjacent 

vertices of  , then the edge connecting them will be denoted 

by   . Degree of an edge     is denoted by       and is 

defined as                      If a block   
     with the edge set                   , then we say 

that the edge    and block   are incident with each other, 

where      . If a block        with the vertex set 

                  , then we say that the vertex    and 

block   are incident with each other, where      . If two 

distinct blocks are incident with a common cutvertex, then 

they are adjacent blocks. The degree of a block  in  , 

denoted by      , is the number of blocks adjacent to   in 

 . We denote the number of edges incident with   in   by 

     . The block graph     of a graph   is the graph 

whose vertices are the blocks of   and in which two vertices 

are adjacent whenever the corresponding blocks are adjacent 

[12]. The point-block graph      of a graph   is the graph 

whose vertices can be put in one to one correspondence with 

the set of vertices and blocks of   in such a way that two 

vertices of       are adjacent if and only if one corresponds 

to a block   of   and the other to a vertex   of   and   is 

incident with  [13]. The line-block graph      of a graph   

is the graph whose vertices can be put in one to one 

correspondence with the set of edges and blocks of   in such 

a way that two vertices of       are adjacent if and only if 

one corresponds to a block   of  and the other to an edge   

of   and   is in  [1]. The line graph     of   is the graph 

whose vertex set is      in which two vertices are adjacent 

if and only if they are adjacent in  . In this paper, we denote 

the adjacency (or incidence) of elements of graphs by the 

symbol   and nonadjacency by  . For terminology not 

defined here we refer the reader to [12]. 

 

A graph invariant is a number related to a graph which is 

independent of the structure. In chemical graph theory, one 

such graph invariant is topological index. The first and 

second Zagreb indices of a graph  , denoted by       and 

     , are among the oldest, most popular and extremely 

studied vertex degree based topological indices and are 

defined as  

      ∑  

      

     
  

and 

      ∑  

       

            

respectively. Their mathematical theory is nowadays well 

elaborated. For details, see the papers [6, 11, 15]. For 

historical data on the Zagreb indices see [10]. For surveys on 

degree-based topological indices see [9]. 

The first Zagreb index can also be written as [7, 8] 

      ∑  

       

[           ]  

Noticing that contribution of nonadjacent vertex pairs should 

be taken into account when computing the weighted Wiener 

polynomials of certain composite graphs, authors in [7] 

defined first Zagreb coindex and second Zagreb coindex as  

  
̅̅ ̅̅     ∑  

       

[           ] 

and 

      ∑  

       

            

respectively. 
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Mili  evi   et al. [14] in 2004 reformulated the Zagreb 

indices in terms of edge-degrees instead of vertex-degrees. 

The first and second reformulated Zagreb indices are defined 

respectively, as  

       ∑  

      

     
  

                                     ∑  

        

[           ] 

and  

       ∑  

        

            

where     means that the edges   and   are adjacent in  . 

In this paper, we introduce the block related new indices and 

coindices of a graph. The rest of the paper is organised as 

follows. In section 2, we introduce block indices and 

coindices of a graph. In section 3, we compute block indices 

and coindices of a graph as an example.  

 

II. BLOCK INDICES AND COINDICES 

 

 It is important to note that, in case of Zagreb indices, the 

transformation        yields the " reformulated Zagreb 

indices". Similarly, the transformations       ,   
      and         yields the " block indices and 

coindices" as follows. 

Let   be a (molecular) graph, and let       (     ) be 

the blocks    and    are adjacent (resp., not adjacent). Let 

    (   ) be the edge   is incident (resp., not incident) 

with block  . 

    The   indices and coindices are:  

       ∑  

      

  
     ∑  

     

[         (  )]      

       ∑  

     

                    

 

       ∑  

     

[         (  )]     

       ∑  

     

              

     The   indices and coindices are:  

       ∑  

     

[         (  )]      

       ∑  

     

                    

 

       ∑  

     

[         (  )]     

       ∑  

     

              

      The   index and coindex are:  

      ∑  

   

               

      ∑  

   

            

     The    index and coindex are:  

       ∑  

   

                

  
 
    ∑  

   

            

    The   index and coindex are:  

      ∑  

   

                

      ∑  

   

            

     The    index and coindex are:  

       ∑  

   

                

  
 
    ∑  

   

            

      The    index and coindex are:  

       ∑  

     

        (  )       

       ∑  

     

             

       The other auxiliary indices are:  

     ∑  

      

  
     

 

     ∑  

      

      

     ∑  

      

            

In literature, so many indices are introduced and their 

properties are studied [2, 3, 4, 5 9].  

 

III. COMPUTATION OF BLOCK INDICES AND 

COINDICES 

 

For example: Consider a graph   with vertices 

                              , edges   ,   ,   , 

                                  and blocks             

as labeled in Fig 1.  

Here,   

1.         ,         ,         ,         , 

        ,         ,         ,         , 

        ,          ,          ,           and 

         .  

2.         ,         ,          and         . 

3.         ,         ,          and         . 
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Figure 1: A Graph   and its blocks 

 

 

    The   indices of   are:  

       ∑  

      

  
    

       
        

        
        

     
                   

 

 

and  

 

         ∑  

     

            

                                           
 

                                 

                         
and  

 

The   coindices of   are:  

 

        ∑  

     

[             ]
 

 [             ]  [             ] 
             
 

and 

 

       ∑  

     

            

                               
            

 

 

     The   indices of   are:  

       ∑  

     

[             ]

  [             ]  [             ]
 

 [             ]  [             ] 

                 
and  

 

       ∑  

     

            

                                        

                   
              

 

The   coindices of   are:  

 

       ∑  

     

[             ]

  [             ]  [             ]

                

       ∑  

     

            

                                  
                  

 

 

      The   index and coindex of   are:  

      ∑  

   

          

                                         

                                             

                                             

                                                

 

               
                                     

                
and  

 

        ∑  

   

          

                                            

                                               
                                               
                                               

                                               
                                               

                                                
                                               
                                               

                                                  

                                                 

 

                                           

                                           

                             

                              

                         
 

     The    index and coindex of   are:  
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       ∑  

   

          

                                            

                                               
                                               
                                                  

 

               
                                

         
and 

 

  
 
    ∑  

   

          

                                            

                                               
                                               
                                               

                                               

                                       

 

+                                       
                                        

                                            
                         
                             
                                

 

 

 

    The   index and coindex of   are: 

 

       ∑  

   

          

                                         

                                            
                                            

                                                
                     

 

                        

            

 

and  

 

      ∑  

   

          

                                               

                                               
                                               
                                               

                                                
                                               

                                               
                                               
                                               

                                                  
                                               

 

                                           

                                           

                               

                             

                             

                  
 

     The    index and coindex of   are:  

 

        ∑  

   

          

                                        

                                               
                                               
                                                

 

               

                            

      

 

and  

 

  
 
     ∑  

   

          

                                        

                                             
                                             

                                              
                                             
                                             

                                              
                                             

 

                                            

                             

                  

          
 

      The    index and coindex are:  

 

         ∑  

     

             

                                         

                                        

                           

 

                           
 

and 

 

       ∑  

     

             

                                            

              

               
 

       The other auxiliary indices are  

     ∑  

      

  
    

    
        

        
        

     

 

               

and  
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     ∑  

      

      

                             

           

 

and 

 

     ∑  

      

          

                                        
 

              

              
 

IV. CONCLUSION 

 

In this paper, we have introduced some important block 

indices which play a key role in finding topological indices 

related to blocks in a graph.  
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