International Journal of Scientific Research in

K-Forcing Number of Some Graphs and Their Splitting Graphs

Premodkmuar K P ${ }^{1}$, Charles Dominic ${ }^{2 \boldsymbol{*}}$, Baby Chacko ${ }^{3}$
${ }^{1,3}$ Department and Research Center of Mathematics, St. Joseph's College, Devagiri, Calicut, Kerala, India
${ }^{2 *}$ Department of Mathematics, CHRIST (Deemed to be University), Karnataka, India
*Corresponding Author: charlesdominicpu@gmail.com +918606618676

Available online at: www.isroset.org

Received: 02/Jun/2019, Accepted: 17/Jun/2019, Online: 30/Jun/2019

Abstract

Amos et al. instigated the idea of k-forcing number of a graph. For a graph $G=(V, E)$ and a subset F of G, the vertices in F are called initially colored black vertices and the vertices in $V(G)-F$ are called initially non colored black vertices or white vertices. Then the set F is a k-forcing set of a graph G if all vertices in G will become colored black after applying the subsequent color changing rule. Color changing rule: If a black colored vertex is adjacent to atmost k-white vertices, then the white vertices change to be colored black. The cardinality of a smallest k-forcing set is known as the k forcing number of the graph G and is represented as $Z_{k}(G)$. This work is intended to investigate the k-forcing number of the splitting graph of a graph in which $k \geq 2$.

Keywords: Zero Forcing Number, K-forcing Number and Splitting Graph.

I. Introduction

In this paper, we consider only simple graphs with vertex set $V(G)$ and edge set $E(G)$. The splitting graph $S(G)$ of a graph G is the graph obtained from G by taking a vertex u^{\prime} corresponding to each vertex $u \in G$ and join u^{\prime} to all vertices in $N(u)$, the open neighborhood of u. This graph was introduced by E. Sampathkumar et al. in [1]. In [2] the authors studied about the zero forcing number of the splitting graph of a graph.

For a simple graph G and a positive integer $k>0$, the k forcing number of G, denoted by $Z_{k}(G)$ is the minimum number of vertices that are needed to be initially colored black so that all vertices after a finite number of steps become colored black during the subsequent color changing rule.

Color changing rule : If a black colored vertex has at most k non-colored neighbors, then each of its non-colored neighbors becomes colored as black. When $k=1$, this definition is same as that of the zero forcing number, denoted by $Z(G)$ (See [3]).

The zero forcing number can be applied in quantum physics and logic circuits (See [4], [5] and [6]). The k-forcing number of a graph was introduced by D Amos, Y Caro, R Davila and R Pepper in [7]. In this paper, we consider the case when $2 \leq k \leq \Delta$, where Δ is the maximum degree of
the graph G, also we initiate the study of the k-forcing number of the splitting graph $S(G)$ of a graph G. When the color changing rule is given to an arbitrary vertex v to change the color of w, we say v forces w and we represent it as $v \rightarrow w$. The following definitions are necessary for the further development of this article. We recall them from [7] and [8].

- Cartesian Product: The Cartesian product G_{1} [G_{2} of the graphs G_{1} and G_{2} is the graph with vertex set equal to the Cartesian product of $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices $\left(g, g^{\prime}\right)$ and (h, h^{\prime}) are adjacent in G_{1} ® G_{2} if and only if either $g=h$ and $g^{\prime} \sim h^{\prime}$ in G_{2} or $g^{\prime}=h^{\prime}$ and $g \sim h$ in G_{1}, where the symbol \sim represents the adjacency between two vertices.
- Three vertices u, v and w in a graph G are said to be 3consecutive if $u v$ and $v w$ are edges in G (See [8]).
- The square graph of a graph G is represented as $G^{(2)}$ and is the graph with vertex set is same as that of the vertex set of G that is $V(G)$ and two vertices are adjacent in $G^{(2)}$ if their distance in G is either 1 or 2 .
- The line graph of a graph G is denoted by $L(G)$ and is the graph obtained by taking the edges of G as vertices of $L(G)$, with two vertices of $L(G)$ are adjacent whenever the corresponding edges of G are. These graphs were defined by Whitney [9]. For more definitions on graphs, we refer to [10].

II . RESULTS AND DISCUSSION

In this section, we obtain some simple graphs for which $1 \leq Z_{2}(G) \leq 4$. We start with paths and cylces. The following propositions are easy to observe.

Proposition 1. Let G be a connected graph. If $\Delta(G) \leq 2$, then $Z_{2}(G)=1$.

Proposition 2. If G is a connected graph with minimum degree $\delta \geq 3$, then $Z_{2}(G) \geq 2$.

Next we consider one more class of graph for which $Z_{2}(G)=1$. The corona product of graphs were defined as follows: Let G_{1} and G_{2} be two graphs. Then the corona product ($G=G_{1} \circ G_{2}$) of G_{1} and G_{2} is defined as the graph G obtained by taking one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} and by joining each vertex of the i-th copy of G_{2} to the i th vertex of G_{1}, where $1 \leq i \leq|V(G)|$ (See[11]).

Proposition 3. Let G be the graph $C_{n} \circ K_{1}$. Then $Z_{2}(G)=$ 1.

Proposition 4. Let G be the square graph of the path P_{n} on $n \geq 3$ vertices. Then $Z_{2}(G)=1$.

Proposition 5. Let G be the graph $C_{n} \circ K_{1}$. Let $G_{1}, G_{2}, \ldots, G_{m}, m \geq n$ be the m - copies of the graph G and let G^{*} be the graph obtained by identifying a pendant vertex of G_{1} with a pendent vertx of G_{2}, a pendant vertex of G_{2} with a pendant vertex of G_{3} etc a pendant vertex of G_{n-1} with a pendant vertex of G_{n}. Then $Z_{2}\left(G^{*}\right)=1$.

Now we consider more classes of graphs for which $Z_{2}(G)=$ 1.

Proposition 6. Let G be the graph $C_{n} K_{2}$, where $n \geq 2$ and let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the cycle C_{n} in
 to $v_{1}, v_{2}, \ldots, v_{n}$ in C_{n} ? K_{2}. Let H be the graph obtained by sub dividing the edges $v_{1} v^{\prime}{ }_{1}, v_{2} v^{\prime}, \ldots, v_{n} v^{\prime}{ }_{n}$ in C_{n} 目 K_{2} exactly once. Then $Z_{2}(H)=1$.

Proposition 7. Let G be the graph $P_{n} 0 P_{m}$, where P_{m} and P_{n} are the paths on $n \geq 2$ and $m \geq 2$ vertices. Then $Z_{2}(G)=1$.

It is an open problem to charcterize graphs and splitting graphs for which $Z_{2}(S(G))=1,2,3$ and 4 . Now we consider some splitting graphs.

Proposition 8. Let G be a path on $n \geq 3$ vertices and $2 \leq k \leq \Delta$ be a positive integer. Then the k-forcing number of $S(G)$ is 1 .

Proof. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertices of G and $\left\{v_{1}^{\prime}, v^{\prime}{ }_{2}, \ldots, v_{n}^{\prime}\right\}$ be the corresponding neighbors of the vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ in $S(G)$. Consider the vertex $Z=\left\{v^{\prime}{ }_{2}\right\}$ and color $\left\{\nu^{\prime}{ }_{2}\right\}$ black and the remaining vertices as white. Clearly, the vertex ${v^{\prime}}_{2}$ is adjacent to only two vertices v_{1} and v_{3}, therefore the vertex $v^{\prime}{ }_{2} 2$-forces v_{1} and v_{3} to black. Now the vertex v_{2} 2-forces v_{1}^{\prime} and v_{3}^{\prime} to black and the process continues till we get a derived coloring. So $Z=\left\{v^{\prime}{ }_{2}\right\}$ forms a 2-forcing set. Hence $Z_{2}[S(G)]=1$. It can be easily verify that if $k>2$, then $Z_{k}[S(G)]=1$.

Next we consider the cycle graph C_{n}
Proposition 9. Let G be a cycle graph on n-vertices ($n \geq 4$). Then the 2 -forcing number of the splitting graph of G is 2 , that is $Z_{2}[S(G)]=2$. If $4 \geq k \geq 3$, then $Z_{k}[S(G)]=$ 1.

Proof. Let $A=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be the vertices of the cycle graph in $S(G)$ and $B=\left\{u_{1}^{\prime}, u^{\prime}{ }_{2}, \ldots, u^{\prime}{ }_{n}\right\}$ be the corresponding vertices of the cycle graph in $S(G)$. Note that the degree of each vertex in A is 4 and that of B is 2 in $S(G)$. Assume that there exist a zero forcing set with cardinality one. Let $v \in S(G)$ be the black vertex.

Case 1. Assume $v \in B$. Clearly, the vertex v is black and all other vertices in $S(G)$ are white. Now the vertex v can 2forces two more vertices as black not all the vertices , because each vertex of B is adjacent to two vertices in A having degree 4 , a contradiction.

Case 2. Assume $v \in A$. It can be easily verify that the colour change rule is not possible since all vertices in A have degree 4.
Therefore, $\quad 2 \leq Z_{2}[S(G)]$
To prove the reverse part we consider the following case.
Let $Z=\left\{u_{1}, u_{1}^{\prime}\right\}$. Color the vertices u_{1} and u_{1}^{\prime} as black and all other vertices as white. Clearly, u_{1}^{\prime} 2-forces u_{n} and u_{2} to black. Now u_{1} 2-forces $u_{2}^{\prime}, u_{n}^{\prime}$ as black. Now consider the black vertex $u_{2} . u_{2}$ is adjacent to $u_{1}, u_{1}^{\prime}, u_{3}, u_{3}^{\prime}$ and the vertices u_{1}, u_{1}^{\prime} are already colored black. So, $u_{2} 2$-forces u_{3} and $u^{\prime}{ }_{3}$ to black, and the process continues untill we get the derived colouring. So, $Z=\left\{u_{1}, u_{1}^{\prime}\right\}$ forms a 2 -forcing set. Therefore,

$$
\begin{equation*}
Z_{2}[S(G)] \leq 2 \tag{2}
\end{equation*}
$$

Hence from (1) and (2) the result follows.
Corollary 10. If G is the cycle graph C_{3} (triangle), then $Z_{2}[S(G)]=1$.

Proof. Let u_{1}, u_{2} and u_{3} be the vertices of the cycle C_{3} in $S(G)$ and $u_{1}^{\prime}, u^{\prime}{ }_{2}$ and u_{3}^{\prime} be the corresponding vertices of
u_{1}, u_{2} and u_{3} in $S(G)$ ．Color the vertex u_{1}^{\prime} as black．Clearly， the vertex $u_{1}^{\prime}{ }_{1}$－forces the vertices u_{2} and u_{3} ，again the vertices u_{2} and $u_{3} 2$－forces all other vertices as black． Therefore，$Z_{2}[S(G)]=1$ ．

The Ladder graph $G=P_{n}$ 目 P_{2} is the graph obtained by taking the Cartesian product of P_{n} with P_{2} ．

Proposition 11．Let G be the ladder graph．Then the 2－ forcing number of the splitting graph of G is 2．That is $Z_{2}[S(G)]=2$ ．

Proof．Let $A=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertices of the copies of the paths P_{n} in $S(G)$ ．Then $C=\left\{u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right\}$ and $D=\left\{v_{1}^{\prime}, v^{\prime}{ }_{2}, \ldots, v_{n}^{\prime}\right\}$ be the corresponding vertices of the copies of the paths P_{n} in $S(G)$ ．

It can be easily verify that，it is not possible to get a zero frocing set of cardinality one．Therefore，

$$
\begin{equation*}
Z_{2}[S(G)] \geq 2 \tag{3}
\end{equation*}
$$

Let us generate a derived coloring by taking 2 black vertices and all other vertices colored white．Let $Z_{2}=$ $\left\{u_{1}, u^{\prime}{ }_{1}\right\}$ be a set of black vertices in $S(G)$ ．Since $u^{\prime}{ }_{1}$ is adjacent to v_{1} and u_{2} ，therefore，$u_{1}^{\prime} 2$－forces v_{1} and u_{2} to black．Now u_{1} is adjacent to the vertices $u_{2}, u^{\prime}{ }_{2}, v_{1}, v_{1}^{\prime}$ ．The vertices v_{1} and u_{2} are already colored black，therefore the vertex $u_{1} 2$－forces $v_{1}^{\prime}, u_{2}^{\prime}$ to black and the process continues．So

$$
\begin{equation*}
Z_{2}[S(G)] \geq 2 \tag{4}
\end{equation*}
$$

From the above two inequalities，we have $Z_{2}[S(G)]=2$ ．
Prism graph or the circular ladder graph is the graph obtained by taking the Cartesian product of the cycle C_{n} with the complete graph K_{2} ．This graph was defined by Hladink et al．in［12］．The circular ladder graph can be denoted as $G=C_{n}$ T K_{2} 。

Proposition 12．Let G be a Prism graph on $n \geq 3$ vertices． Then $Z_{2}(G)=2$ ．

The 3－regular cube Q_{3} is the graph C_{4} 目 K_{2} and by using the above Proposition，for the 3－regular cube $Z_{2}(G)=2$ ．

We recall the following Proposition from［7］to prove the next result．

Proposition 13．［7］For any connected graph G with minimum degree $\delta, Z_{2}(G) \geq \delta-1$ ．

Proposition 14．Let G be the wheel graph on $n \geq 5$ vertices．Then $Z_{2}(G)=2$ ．

Proof．We have from Proposition 13， $2 \leq Z_{2}(G)$ ．Consider two adjacent vertices on the outer cycle C_{n-1} of the wheel graph G and color it as black．Clearly，these two vertices forms a 2 －forcing set of the graph G and hence the result follows．

Next Proposition deals with a particular class of graphs for which $Z_{2}[S(G)]=3$ ．

Proposition 15．Let G be the wheel graph（The graph obtained by connecting a single vertex to all vertices of the cycle graph C_{n-1} ）．Then $Z_{2}[S(G)]=3$ ．

Proof．It can be easily observe that in $S(G)$ ，with 2 black vertices we can 2－force maximum of two more vertices to black not all．Therefore，

$$
\begin{equation*}
3 \leq Z_{2}[S(G)] \tag{5}
\end{equation*}
$$

Now let $v_{1}, v_{2}, \ldots, v_{n-1}$ be the vertices of the cycle C_{n-1} and v_{n} be the universal vertex in the splitting graph of the wheel graph．Let $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n-1}^{\prime}$ be the corresponding vertices of the cycle C_{n-1} in $S(G)$ and v_{n}^{\prime} be the vertex corresponds to the universal vertex v_{n} in $S(G)$ ．Consider the set $Z_{2}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, v_{n}\right\}$ in $S(G)$ ．Clearly the vertex $v_{1}^{\prime} \rightarrow$ $\left\{v_{2}, v_{n-1}\right\}$ and $v_{2}^{\prime} \rightarrow\left\{v_{3}, v_{1}\right\}$ ．Now in $N\left(v_{1}\right)$ we have exactly two white neighbors v_{n-1}^{\prime} and v_{n}^{\prime} ．Therefore， $v_{1} \rightarrow\left\{v^{\prime}{ }_{n-1}, v^{\prime}{ }_{n}\right\}$ ．The remaining white vertices forms a splitting graph of the cycle graph and hence we can force all the vertices as black．Hence

$$
\begin{equation*}
Z_{2}[S(G)] \geq 3 \tag{6}
\end{equation*}
$$

Thus the result follows from（5）and（6）．
Next proposition deals with another classes of graphs G for which $Z_{2}(G)=3$ ．

Proposition 16．Let G be the cycle graph C_{n} and let G^{\prime} be the square graph of the cycle graph of C_{n} ．Then $Z_{2}\left(G^{\prime}\right)=$ 3.

Proof．By construction the graph G^{\prime} is a 4－regular graph．So by using Proposition $13, Z_{2}\left(G^{\prime}\right) \geq 4-1=3$ ．In order to get the reverse inequality，it is convenient to consider the vertices of G^{\prime} as $v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}$ ．Now color the vertices v_{1}, v_{2} and v_{3} as black．Clearly，the vertex $v_{1} 2$－forces v_{n} and v_{n-1} as bkack．Now $v_{2} \rightarrow v_{4}, v_{3} \rightarrow v_{5}$ and so on．Hence the set $\left\{v_{1}, v_{2}, v_{3}\right\}$ forms a 2 －forcing set．Therefore，$Z_{2}\left(G^{\prime}\right)=$ 3.

Proposition 17．Let G be the prism graph C_{n} T K_{2} of order $n \geq 3$ ．Then $Z_{2}(S(G))=4$ ．

Proof. It can be easily verify that with two black vertices, we can force a maximum of two more vertices to black. Therefore, color changing rule is not possible with two black vertices. This implices $Z_{2}(S(G)) \neq 2$. Now assume that $Z_{2}(S(G))=3$. Since the vertices in $S(G)$ are of degree 3 or 6 , we have the following cases. Suppose that u, v and w are three black vertices in $S(G)$.

Case 1. Suppose u, v and w are mutually non adjacent. Now $|N(u)|=3$ or $6,|N(v)|=3$ or 6 and $|N(w)|=3$ or 6.

Since $N(u), N(v)$ and $N(w)$ contain 3 or 6 white vertces, color changing rule is not applicable. This implies that there exist at least two adjacent black vertices in the zero forcing set. Therefore, $\operatorname{deg}(u)=\operatorname{deg}(v)=\operatorname{deg}(w)=3$ is not possible since vertices with degre three are independent.

Case 2. Suppose that $\operatorname{deg}(u)=\operatorname{deg}(v)=\operatorname{deg}(w)=6$. The number of white vertices adjacent to u, v or w is atleast 4. Therefore, these vertices will never force any of the the other vertices, a contradiction to our assumption that $Z_{2}(S(G))=3$.

Case 3. Suppose that $\operatorname{deg}(u)=\operatorname{deg}(v)=6$ and $\operatorname{deg}(w)=$ 3. In this case, at least two vertices must be adjacent by case 1. Assume that $u \sim v$ and $\operatorname{deg}(w)=3$. We observed that to force any other vertex, the vertices u, v and w must form a path of length 2. That is they must form 3- consecutive vertices. Since the graph is triangle free, therefore in this case, we can force maximum of two more vertices to black, a contradiction.

Case 4. $\operatorname{deg}(u)=\operatorname{deg}(v)=\operatorname{deg}(w)=3$. Clearly u, v and w are mutually non adjacent and $N(u), N(v)$ and $N(w)$ contains 3 white vertices. Therefore, color chaning rule is not applicable, this contradicts the fact that $Z_{2}(S(G))=3$.

Case 5. $\operatorname{deg}(u)=\operatorname{deg}(v)=3$ and $\operatorname{deg}(w)=6$. Since $\operatorname{deg}(u)=\operatorname{deg}(v)=3$. This implies that u is not adjacent to v. We have two sub cases

Subcase 5.1. Assume that u is adjacent to w and v is not adjacent to w. The the vertex u will force two white vertices of degree 6 and these two vertices will have atleast 4 white vertices adjacent to it. Therefore, further forcing is not possible, since the vertices forced by the vertex u are not adjacent to the black vertex v, a contradiction.

Subcase 5. 2. Assume that $w \sim u$ and $w \sim v$. In this case u and v together can force a maximum of 4 more vetices to black. By considering the above cases, it can be concluded that

$$
\begin{equation*}
Z_{2}[S(G)] \geq 4 \tag{7}
\end{equation*}
$$

To prove the reverse inequality let us consider the graph depicted in Figure 1.

Figure 1: The splitting graph of the prism graph C_{4} 团 K_{2}.
In figure 1, the orange vertices represents white vertices. Consider the set of black vertices $\{1,2,3,4\}$. The vertex 1 forces the vertices 6 and 10 to black. Now consider the vertex 2 . Since 6 and 10 are black and they are in the open neighborhood of 2 . Therefore the vertex 2 again forces the vertices 5 and 9 . Since there are two white neighbors in the open neighborhood of the vertex 4 . Therefore, vertex 4 forces the vertices 7 and 11 . Now if we consider the vertex 3 it can forces the vertices 8 and 12 . We can continue the process with the vertex set $\{5,6,7,8\}$ or $\{9,10,11,12\}$ to force the remaining vertices to black. The same argument is true for splitting graph of the prism graph of order $n \geq 5$. Hence

$$
\begin{equation*}
Z_{2}[S(G)] \leq 4 \tag{8}
\end{equation*}
$$

Therefore from (7) and (8) the result follows.

The star graph $K_{1, n}$ is a tree on n vertices with one vertex having degree n and all other vertices have degree one.

III. GRAPHS FOR WHICH $Z_{2}(G)>4$

In this section, we consider some more graph classes for which $Z_{2}(G)>4$. We start with the splitting graph of a star graph.

Proposition 18. Let G be the star graph $K_{1, n}$ on $n+1$ vertices, $n \geq 3$. Then $Z_{2}[S(G)]=2 n-4$.

Proof. Assume that we have a zero forcing set consisting of $2 n-5$ vertices. Then the number of white vertices in $S(G)$ is 7 , that is $\{2 n+2-(2 n-5)=7\}$. We divide the vertex
set of $S(G)$ into four sets $A=\left\{u^{\prime}\right\}, B=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, $C=\{u\}$ and $D=\left\{u_{1}^{\prime}, u^{\prime}{ }_{2}, \ldots, u^{\prime}{ }_{n}\right\}$ as depicted in Figure 2

Figure 2: Splitting graph of the graph $K_{1, n}$
Case 1. Assume that the vertices in A and C are white. Consider the remaining 5 white vertices in $S(G)$. Then we have the following subcases.

Subcase 1.1. Assume that either 3 of them will be in B and 2 of them will be in D or vice versa. It can be easily seen that the color changing rule is not applicable in this case because three vertices will remain as white either in B or in D.

Subcase 1.2. Assume that 4 of them will be in B and 1 will be in D or vice versa. In this case, colour changing rule is not possible since four vertices will remain as white either in B or in D.

Subcase 1.3. Assume that there exist no white vertices in the set B and all 5 white vertices are in the set D or vice versa. Here also we cannot apply the colour changing rule.

Case 2. Assume that the vertices in A and C are black. The remaining 7 white vertices can be distributed in the sets B and D are as follows .

Table 1

B	7	6	5	4
D	0	1	2	3

From the above partition, we can observe that in each case, at least 3 white vertices will be either in B or in D. There fore, colour changing rule is not possible.

Case 3. Assume that the vertx $u^{\prime} \in A$ or the vertex $u \in C$ is black. Consider the following distribution of the 7 white vertices among the sets A, B, C and D.

Table 2

B	6	0	1	5	4	3	2
D	0	6	5	1	2	3	4
A or C	1	1	1	1	1	1	1

From the above partition, it can be seen that at least 3 white vertices will be in B or in D. Therefore, the colour changing rule is not possible in this case. From the above cases, we conclude that

$$
\begin{equation*}
Z_{2}[S(G)] \geq 2 n-4 \tag{9}
\end{equation*}
$$

Let $A=\left\{u^{\prime}\right\}, \quad B=\left\{u_{1}, u_{2}, \ldots, u_{n-1}, u_{n}\right\}$, $C=\{u\}, D=\left\{u_{1}^{\prime}, u^{\prime}{ }_{2}, \ldots, u^{\prime}{ }_{n-1}, u^{\prime}{ }_{n}\right\}$. Consider the 6 white vertices $\left\{u, u^{\prime}, u_{n}, u_{n-1}, u_{n}^{\prime}, u^{\prime}{ }_{n-1}\right\}$. Consider one black vertex, say u_{1} in B. Clearly $u_{1} \rightarrow u$ and $u_{1} \rightarrow u^{\prime}$ to black. Consider the vertex u^{\prime}, clearly the vertex u^{\prime}, 2 -forces the vertices u_{n-1} and u_{n} as black. Again the vertex u 2-forces u_{n}^{\prime} and u_{n-1}^{\prime} to black. Therefore, the set $\left\{u_{1}, u_{2}, \ldots, u_{n-2}\right\} \cup\left\{u^{\prime}, u^{\prime}, \ldots, u^{\prime}{ }_{n-2}\right\}$ forms a zero forcing set Z for the graph $S(G)$. There fore, we get a derived colouring of $S(G)$ with allvertices coloured black. This implies $Z_{2}[S(G)] \leq n-2+n-2=2 n-4$. Therefore,

$$
\begin{equation*}
Z_{2}[S(G)] \leq 2 n-4 \tag{10}
\end{equation*}
$$

Hence from (9) and (10) the result follows.
Remark 19. If G is the star graph $K_{1,2}$ then $Z_{2}[S(G)]=$ 1.

Let F_{p}^{k} be the graph obtained by taking k copies of the cycle graph $C_{p}, p \geq 4, k \geq p$ by joining the k copies of the cycle graph C_{p} with a common vertex v_{p} of each cycle C_{p}. For example, the graph F_{3}^{5} is the graph obtained by taking the cycle graph C_{3} five times by joning each vetex v_{3} of each cycle C_{3}. The graph F_{4}^{5} is obtained by joinig 5 copies of C_{4} with a common vertex v_{4} and is dipicted in Figure 3.

Figure 3: The graph F_{3}^{5}.

Proposition 20. Let G be the graph $F_{p}^{k}, p \geq 4$. Then $Z_{2}(G)=k-1$.

Proof. Denote the cycles $C_{1}, C_{2}, \ldots, C_{k}$ in F_{p}^{k} as follows.

$$
\begin{aligned}
C_{1} & =v_{1}^{1}, v_{2}^{1}, \ldots, v_{p}, v_{1}^{1} \\
C_{2} & =v_{1}^{2}, v_{2}^{2}, \ldots, v_{p}, v_{1}^{2} \\
& \vdots
\end{aligned} \vdots \quad \vdots \quad \begin{gathered}
\\
C_{k}
\end{gathered}=v_{1}^{k}, v_{2}^{k}, \ldots, v_{p}, v_{1}^{k} . ~ \$
$$

Consider the set of black vertices $Z=\left\{v_{1}^{1}, v_{1}^{2}, \ldots, v_{1}^{k-1}\right\}$. We can see that $N\left(v_{1}^{1}\right)$ contains only two white vertices v_{p} and v_{2}^{1}. Therefore, $v_{1}^{1} 2$-forces v_{p} and v_{2}^{1} to black. $v_{2}^{1} 2$-forces v_{3}^{1} to black and so on . Similarly, we can observe that $N\left(v_{1}^{2}\right)$ contains the vertices v_{p} and v_{2}^{2} of which v_{p} is already black. Now, $v_{1}^{2} \rightarrow v_{2}^{2}$ and $v_{2}^{2} \rightarrow v_{3}^{2}$ and so on. In a similar way $v_{1}^{k-1} \rightarrow v_{2}^{k-1}$ and $v_{2}^{k-1} \rightarrow v_{3}^{k-1}$ and so on. Now consider the cycle C_{k}. The vertex set of the cycle C_{k} is $\left\{v_{1}^{k}, v_{2}^{k}, \ldots, v_{p}\right\}$. Now the black vertex v_{p} is adacent to two white vertices v_{1}^{k} and v_{n}^{k}. So the black vertex $v_{p} 2$ forces v_{1}^{k} and v_{n}^{k} to black. Now $v_{1}^{k} \rightarrow v_{2}^{k}, v_{2}^{k} \rightarrow v_{3}^{k}$ and so on. Therefore the set Z forms a 2- forcing set for F_{p}^{k}. The cardinality of the set Z is $k-1$ and one can easily observe that with $k-2$ black vertices it is not possible to form a 2 forcing set. Therefore, $Z_{2}(G)=k-1$.

IV. BOUNDS ON $\boldsymbol{Z}_{\mathbf{2}}(\boldsymbol{G})$

In this section we consider some bounds on $Z_{2}[G]$.
Proposition 21. For any connected graph G of order $n \geq$

$$
3, Z_{2}[S(G)] \leq 2 Z_{2}[G]
$$

Proof. Assume that $Z_{2}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}, 1 \leq m \leq n$ be a 2forcing set of G. Now consider the set
$Z_{2}^{\prime}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\} \cup\left\{u_{1}^{\prime}, u^{\prime}{ }_{2}, \ldots, u^{\prime}{ }_{m}\right\} \in V[S(G)]$, where $\left\{u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{m}^{\prime}\right\}$ be the copies of the vertices of $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ in $V[S(G)]$. Color all the vertices in Z_{2}^{\prime} as black.

We prove that the set Z_{2}^{\prime} will form a 2 -forcing set for $S(G)$. Assume that G is colored with black and white vertices and the vertices in Z_{2} are black. Consider the vertices in G which has exactly two white neighbors in G. Let it be $u_{1}, u_{2}, \ldots, u_{l}, l \leq m$ and $u_{1}^{\prime}, u^{\prime}, \ldots, u_{l}{ }_{l}$ be the vertices corresponds to $u_{1}, u_{2}, \ldots, u_{l}$ in $S(G)$. We see that in $S(G)$, $N\left(u^{\prime}{ }_{1}\right), N\left(u^{\prime}{ }_{2}\right), \ldots, N\left(u^{\prime}\right)$, each one contains exactly two white vertices. Let it be $v_{1}, v_{2}, \ldots, v_{l}$. Now clearly $u_{1}^{\prime} \rightarrow v_{1}$, $u_{2}^{\prime} \rightarrow v_{2}, \ldots, \quad u_{l}^{\prime} \rightarrow v_{l}$. Now again consider the set
$\left\{u_{1}, u_{2}, \ldots, u_{l}\right\}$ in $S(G)$. At this point of time we can see that $u_{1} \rightarrow v_{1}^{\prime}, u_{2} \rightarrow v_{2}^{\prime}, \ldots, u_{l} \rightarrow v^{\prime}{ }_{l}$. Consider the white vertices which are adjacent to $v_{1}, v_{2}, \ldots, v_{l}$ in G. Let it be $w_{1}, w_{2}, \ldots, w_{l}$. Clearly $v_{1}^{\prime} \rightarrow w_{1} v_{1} \rightarrow w_{1}^{\prime}$ and so on. Therefore, the set Z_{2}^{\prime} forms a 2-forcing set for $S(G)$.

We consider the following result from [7], [2] and [13] to prove a relationship between $Z(G), Z_{2}(G)$ and $Z(S(G))$.

Proposition 22[2]. Let G be a connected graph of order $n \geq 3$. Then $Z(S(G)) \leq 2 Z(G)$.

Proposition 23[7]. Let $G=(V, E)$ be a connected graph. Then $Z(G) \geq Z_{2}(G)$.

Next we prove a relationship between $Z(G), Z_{2}(G)$ and $Z(S(G))$.

Proposition 24. Let G be a connected graph of order $n \geq 3$. Then $Z_{2}(G)+Z(S(G)) \leq 3 Z(G)$, and the bound is sharp if G is a path on 3 vertices, that is if $G \equiv P_{3}$.

Proof. We have from Proposition 22 and Propositon 23 ,

$$
Z_{2}(G)+Z(S(G)) \leq Z(G)+2 Z(G)=3 Z(G)
$$

V. CONCLUSION

In this article we deals with the characterization of graphs G for which $1 \leq Z_{2}(G) \leq 4$. Also we determined the k-forcing number of some classes of splitting graphs. Infact there are many graph classes for which $1 \leq Z_{2}(G) \leq 4$. Therefore, it is open to characterize $S(G)$ and G for which $Z_{2}(S(G))=1$, $Z_{2}(G)=1, \quad Z_{2}(S(G))=2, \quad Z_{2}(G)=2, \quad Z_{2}(S(G))=3$, $Z_{2}(G)=3, Z_{2}(S(G))=4$ and $Z_{2}(G)=4$. It is also open to characterize $Z_{2}(G)+Z(S(G))=3 Z(G)$.

REFERENCES

[1]. E. Sampathkumar and H.B. Walikaer, "On the splitting graph of a graph", Journal of Karnatak University Science, Vol.25, pp.1316, 1981.
[2]. K. P. Premodkumar, Ch. Dominic and B. Chacko, "On the Zero Forcing Number of Graphs and Their Splitting Graphs", Algebra and Discrete Mathematics, Accepted, 2018.
[3]. H. Van der Holst et al., "Zero forcing sets and the minimum rank of graphs", Linear Algebra and its Applications, Vol. 428, pp. 1628-1648, 2008.
[4]. D. Burgarth and V. Giovannetti. "Full control by locally induced relaxation", Physical review letters, Vol. 99, Issue.10,pp 100501-100504, 2007.
[5]. D. Burgarth, V. Giovannetti, L. Hogben, S. Severini, and M. Young. "Logic circuits from zero forcing". arXiv preprint arXiv:1106.4403, 2011.
[6]. L. Hogben, D. Burgarth, D. Alessandro, S.Severini, and M. Young. "Zero forcing, linear and quantum controllability for
systems evolving on networks", IEEE Transactions on Automatic Control, vol. 58, Issue. 9, pp. 2349-2354, 2013.
[7]. D Amos, Y caro, R Davila and R Pepper, "Upper bounds on the k-forcing number of a graph", Discrete Applied Mathematics,Vol.181, pp 1-10, 2015.
[8]. E. Sampathkumar, M.S. Subramanya and Ch. Dominic, "3Consecutive vertex Coloring of a Graph", Proc. ICDM 2008, RMS-Lecture Notes Series Vol.13, pp.161-170, 2010.
[9]. H. Whitney, "Congruent graphs and the connectivity of graphs". Amer. J. Math. Vol.54,pp 150-168, 1932.
[10]. F. Harary, Graph Theory, Addison-Wesely, Massachusethes, 1969.
[11]. R. Frucht and F. Harary, "On the Corona of two Graphs", A equationes Math, Vol. 4 pp. 322-325, 1970.
[12]. M. Hladnik., Marusic, D. and Pisanski, "Cyclic Haar Graphs", Discrete. Mathematics. Vol 244, pp.137-153, 2002.
[13]. Y Zhao, L Chen and H Li., "On Tight Bounds for the k-Forcing Number of a Graph", Bull. Malays. Math. Sci. Sco., DOI 10.1007/s40840-017-0507-7.

