

International Journal of Scientific Research in _____ Mathematical and Statistical Sciences Vol.6, Issue.3, pp.121-127, June (2019) DOI: https://doi.org/10.26438/ijsrmss/v6i3.121127

E-ISSN: 2348-4519

K-Forcing Number of Some Graphs and Their Splitting Graphs

Premodkmuar K P¹, Charles Dominic^{2*}, Baby Chacko³

^{1,3}Department and Research Center of Mathematics, St. Joseph's College, Devagiri, Calicut, Kerala, India
^{2*}Department of Mathematics, CHRIST (Deemed to be University), Karnataka, India

**Corresponding Author: charlesdominicpu@gmail.com* +918606618676

Available online at: www.isroset.org

Received: 02/Jun/2019, Accepted: 17/Jun/2019, Online: 30/Jun/2019

Abstract: Amos et al. instigated the idea of k-forcing number of a graph. For a graph G = (V, E) and a subset F of G, the vertices in F are called initially colored black vertices and the vertices in V(G) - F are called initially non colored black vertices or white vertices. Then the set F is a k-forcing set of a graph G if all vertices in G will become colored black after applying the subsequent color changing rule. Color changing rule: If a black colored vertex is adjacent to atmost k-white vertices, then the white vertices change to be colored black. The cardinality of a smallest k-forcing set is known as the k-forcing number of the graph G and is represented as $Z_k(G)$. This work is intended to investigate the k-forcing number of the splitting graph of a graph in which $k \ge 2$.

Keywords: Zero Forcing Number, K-forcing Number and Splitting Graph.

I. INTRODUCTION

In this paper, we consider only simple graphs with vertex set V(G) and edge set E(G). The splitting graph S(G) of a graph G is the graph obtained from G by taking a vertex u' corresponding to each vertex $u \in G$ and join u' to all vertices in N(u), the open neighborhood of u. This graph was introduced by E. Sampathkumar et al. in [1]. In [2] the authors studied about the zero forcing number of the splitting graph of a graph.

For a simple graph *G* and a positive integer k > 0, the *k*-forcing number of *G*, denoted by $Z_k(G)$ is the minimum number of vertices that are needed to be initially colored black so that all vertices after a finite number of steps become colored black during the subsequent color changing rule.

Color changing rule : If a black colored vertex has at most k non-colored neighbors, then each of its non-colored neighbors becomes colored as black. When k = 1, this definition is same as that of the zero forcing number, denoted by Z(G) (See [3]).

The zero forcing number can be applied in quantum physics and logic circuits (See [4], [5] and [6]). The *k*-forcing number of a graph was introduced by D Amos, Y Caro, R Davila and R Pepper in [7]. In this paper, we consider the case when $2 \le k \le \Delta$, where Δ is the maximum degree of the graph *G*, also we initiate the study of the k-forcing number of the splitting graph S(G) of a graph *G*. When the color changing rule is given to an arbitrary vertex v to change the color of *w*, we say v forces *w* and we represent it as $v \rightarrow w$. The following definitions are necessary for the further development of this article. We recall them from [7] and [8].

- Cartesian Product: The Cartesian product $G_1 \boxtimes G_2$ of the graphs G_1 and G_2 is the graph with vertex set equal to the Cartesian product of $V(G_1) \times V(G_2)$ and two vertices (g, g') and (h, h') are adjacent in $G_1 \boxtimes G_2$ if and only if either g = h and $g' \sim h'$ in G_2 or g' = h' and $g \sim h$ in G_1 , where the symbol ~ represents the adjacency between two vertices.
- Three vertices u, v and w in a graph G are said to be 3-consecutive if uv and vw are edges in G (See [8]).

• The square graph of a graph *G* is represented as $G^{(2)}$ and is the graph with vertex set is same as that of the vertex set of *G* that is V(G) and two vertices are adjacent in $G^{(2)}$ if their distance in *G* is either 1 or 2.

• The line graph of a graph G is denoted by L(G) and is the graph obtained by taking the edges of G as vertices of L(G), with two vertices of L(G) are adjacent whenever the corresponding edges of G are. These graphs were defined by Whitney [9]. For more definitions on graphs, we refer to [10].

II. RESULTS AND DISCUSSION

In this section, we obtain some simple graphs for which $1 \le Z_2(G) \le 4$. We start with paths and cylces. The following propositions are easy to observe.

Proposition 1. Let G be a connected graph. If $\Delta(G) \leq 2$, then $Z_2(G) = 1$.

Proposition 2. If G is a connected graph with minimum degree $\delta \ge 3$, then $Z_2(G) \ge 2$.

Next we consider one more class of graph for which $Z_2(G) = 1$. The corona product of graphs were defined as follows: Let G_1 and G_2 be two graphs. Then the *corona* product ($G = G_1 \circ G_2$) of G_1 and G_2 is defined as the graph G obtained by taking one copy of G_1 and $|V(G_1)|$ copies of G_2 and by joining each vertex of the *i*-th copy of G_2 to the *i*-th vertex of G_1 , where $1 \le i \le |V(G)|$ (See[11]).

Proposition 3. Let G be the graph $C_n \circ K_1$. Then $Z_2(G) = 1$.

Proposition 4. Let G be the square graph of the path P_n on $n \ge 3$ vertices. Then $Z_2(G) = 1$.

Proposition 5. Let *G* be the graph $C_n \circ K_1$. Let $G_1, G_2, ..., G_m, m \ge n$ be the *m*- copies of the graph *G* and let G^* be the graph obtained by identifying a pendant vertex of G_1 with a pendent vert of G_2 , a pendant vert ex of G_2 with a pendant vertex of G_3 etc a pendant vert ex of G_{n-1} with a pendant vert of G_n . Then $Z_2(G^*) = 1$.

Now we consider more classes of graphs for which $Z_2(G) = 1$.

Proposition 6. Let G be the graph $C_n \square K_2$, where $n \ge 2$ and let $v_1, v_2, ..., v_n$ be the vertices of the cycle C_n in $C_n \square K_2$ and $v'_1, v'_2, ..., v'_n$ be the vertices corresponding to $v_1, v_2, ..., v_n$ in $C_n \square K_2$. Let H be the graph obtained by sub dividing the edges $v_1v'_1, v_2v'_2, ..., v_nv'_n$ in $C_n \square K_2$ exactly once. Then $Z_2(H) = 1$.

Proposition 7. Let G be the graph $P_n \square P_m$, where P_m and P_n are the paths on $n \ge 2$ and $m \ge 2$ vertices. Then $Z_2(G) = 1$.

It is an open problem to charcterize graphs and splitting graphs for which $Z_2(S(G)) = 1,2,3$ and 4. Now we consider some splitting graphs.

Proposition 8. Let G be a path on $n \ge 3$ vertices and $2 \le k \le \Delta$ be a positive integer. Then the k-forcing number of S(G) is 1.

Proof. Let $\{v_1, v_2, ..., v_n\}$ be the vertices of *G* and $\{v'_1, v'_2, ..., v'_n\}$ be the corresponding neighbors of the vertex $Z = \{v'_2\}$ and color $\{v'_2\}$ black and the remaining vertices as white. Clearly, the vertex v'_2 is adjacent to only two vertices v_1 and v_3 , therefore the vertex v'_2 -forces v_1 and v_3 to black. Now the vertex v_2 2-forces v'_1 and v'_3 to black and the process continues till we get a derived coloring. So $Z = \{v'_2\}$ forms a 2-forcing set. Hence $Z_2[S(G)] = 1$. It can be easily verify that if k > 2, then $Z_k[S(G)] = 1$.

Next we consider the cycle graph C_n

Proposition 9. Let G be a cycle graph on n-vertices $(n \ge 4)$. Then the 2-forcing number of the splitting graph of G is 2, that is $Z_2[S(G)] = 2$. If $4 \ge k \ge 3$, then $Z_k[S(G)] = 1$.

Proof. Let $A = \{u_1, u_2, ..., u_n\}$ be the vertices of the cycle graph in S(G) and $B = \{u'_1, u'_2, ..., u'_n\}$ be the corresponding vertices of the cycle graph in S(G). Note that the degree of each vertex in A is 4 and that of B is 2 in S(G). Assume that there exist a zero forcing set with cardinality one. Let $v \in S(G)$ be the black vertex.

Case 1. Assume $v \in B$. Clearly, the vertex v is black and all other vertices in S(G) are white. Now the vertex v can 2-forces two more vertices as black not all the vertices, because each vertex of B is adjacent to two vertices in A having degree 4, a contradiction.

Case 2. Assume $v \in A$. It can be easily verify that the colour change rule is not possible since all vertices in *A* have degree 4.

 $2 \le Z_2[S(G)] \tag{1}$

To prove the reverse part we consider the following case. Let $Z = \{u_1, u'_1\}$. Color the vertices u_1 and u'_1 as black and all other vertices as white. Clearly, u'_1 2-forces u_n and u_2 to black. Now u_1 2-forces u'_2 , u'_n as black. Now consider the black vertex u_2 . u_2 is adjacent to u_1, u'_1, u_3, u'_3 and the vertices u_1, u'_1 are already colored black. So, u_2 2-forces u_3 and u'_3 to black, and the process continues untill we get the derived colouring. So, $Z = \{u_1, u'_1\}$ forms a 2-forcing set. Therefore,

$$Z_2[S(G)] \le 2 \tag{2}$$

Hence from (1) and (2) the result follows.

Therefore,

Corollary 10. If G is the cycle graph C_3 (triangle), then $Z_2[S(G)] = 1$.

Proof. Let u_1, u_2 and u_3 be the vertices of the cycle C_3 in S(G) and u'_1, u'_2 and u'_3 be the corresponding vertices of

 u_1, u_2 and u_3 in S(G). Color the vertex u'_1 as black. Clearly, the vertex u'_1 2-forces the vertices u_2 and u_3 , again the vertices u_2 and u_3 2-forces all other vertices as black. Therefore, $Z_2[S(G)] = 1$.

The Ladder graph $G = P_n \square P_2$ is the graph obtained by taking the Cartesian product of P_n with P_2 .

Proposition 11. Let G be the ladder graph. Then the 2-forcing number of the splitting graph of G is 2. That is $Z_2[S(G)] = 2$.

Proof. Let $A = \{u_1, u_2, ..., u_n\}$ and $B = \{v_1, v_2, ..., v_n\}$ be the vertices of the copies of the paths P_n in S(G). Then $C = \{u'_1, u'_2, ..., u'_n\}$ and $D = \{v'_1, v'_2, ..., v'_n\}$ be the corresponding vertices of the copies of the paths P_n in S(G).

It can be easily verify that, it is not possible to get a zero frocing set of cardinality one. Therefore,

$$Z_2[S(G)] \ge 2 \tag{3}$$

Let us generate a derived coloring by taking 2 black vertices and all other vertices colored white. Let $Z_2 = \{u_1, u'_1\}$ be a set of black vertices in S(G). Since u'_1 is adjacent to v_1 and u_2 , therefore, u'_1 2-forces v_1 and u_2 to black. Now u_1 is adjacent to the vertices u_2, u'_2, v_1, v'_1 . The vertices v_1 and u_2 are already colored black, therefore the vertex u_1 2-forces v'_1 , u'_2 to black and the process continues. So

$$Z_2[S(G)] \ge 2$$
From the above two inequalities, we have $Z_2[S(G)] = 2$. (4)

Prism graph or the circular ladder graph is the graph obtained by taking the Cartesian product of the cycle C_n with the complete graph K_2 . This graph was defined by Hladink et al. in [12]. The circular ladder graph can be denoted as $G = C_n \mathbb{Z} K_2$.

Proposition 12. Let G be a Prism graph on $n \ge 3$ vertices. Then $Z_2(G) = 2$.

The 3-regular cube Q_3 is the graph $C_4 \square K_2$ and by using the above Proposition, for the 3- regular cube $Z_2(G) = 2$.

We recall the following Proposition from [7] to prove the next result.

Proposition 13. [7] For any connected graph G with minimum degree δ , $Z_2(G) \ge \delta - 1$.

Proposition 14. Let G be the wheel graph on $n \ge 5$ vertices. Then $Z_2(G) = 2$.

Proof. We have from Proposition 13, $2 \le Z_2(G)$. Consider two adjacent vertices on the outer cycle C_{n-1} of the wheel graph *G* and color it as black. Clearly, these two vertices forms a 2-forcing set of the graph *G* and hence the result follows.

Next Proposition deals with a particular class of graphs for which $Z_2[S(G)] = 3$.

Proposition 15. Let *G* be the wheel graph (The graph obtained by connecting a single vertex to all vertices of the cycle graph C_{n-1}). Then $Z_2[S(G)] = 3$.

Proof. It can be easily observe that in S(G), with 2 black vertices we can 2-force maximum of two more vertices to black not all. Therefore,

$$3 \le Z_2[S(G)] \tag{5}$$

Now let $v_1, v_2, ..., v_{n-1}$ be the vertices of the cycle C_{n-1} and v_n be the universal vertex in the splitting graph of the wheel graph. Let $v'_1, v'_2, ..., v'_{n-1}$ be the corresponding vertices of the cycle C_{n-1} in S(G) and v'_n be the vertex corresponds to the universal vertex v_n in S(G). Consider the set $Z_2 = \{v'_1, v'_2, v_n\}$ in S(G). Clearly the vertex $v'_1 \rightarrow$ $\{v_2, v_{n-1}\}$ and $v'_2 \rightarrow \{v_3, v_1\}$. Now in $N(v_1)$ we have exactly two white neighbors v'_{n-1} and v'_n . Therefore, $v_1 \rightarrow \{v'_{n-1}, v'_n\}$. The remaining white vertices forms a splitting graph of the cycle graph and hence we can force all the vertices as black. Hence

$$Z_2[S(G)] \ge 3. \tag{6}$$

Thus the result follows from (5) and (6).

Next proposition deals with another classes of graphs *G* for which $Z_2(G) = 3$.

Proposition 16. Let G be the cycle graph C_n and let G' be the square graph of the cycle graph of C_n . Then $Z_2(G') = 3$.

Proof. By construction the graph G' is a 4- regular graph. So by using Proposition 13, $Z_2(G') \ge 4 - 1 = 3$. In order to get the reverse inequality, it is convenient to consider the vertices of G' as $v_1, v_2, ..., v_{n-1}, v_n$. Now color the vertices v_1, v_2 and v_3 as black. Clearly, the vertex v_1 2-forces v_n and v_{n-1} as bkack. Now $v_2 \rightarrow v_4, v_3 \rightarrow v_5$ and so on. Hence the set $\{v_1, v_2, v_3\}$ forms a 2-forcing set. Therefore, $Z_2(G') = 3$.

Proposition 17. Let G be the prism graph $C_n \boxtimes K_2$ of order $n \ge 3$. Then $Z_2(S(G)) = 4$.

Proof. It can be easily verify that with two black vertices, we can force a maximum of two more vertices to black. Therefore, color changing rule is not possible with two black vertices. This implices $Z_2(S(G)) \neq 2$. Now assume that $Z_2(S(G)) = 3$. Since the vertices in S(G) are of degree 3 or 6, we have the following cases. Suppose that u, v and w are three black vertices in S(G).

Case 1. Suppose u, v and w are mutually non adjacent. Now |N(u)| = 3 or 6, |N(v)| = 3 or 6 and |N(w)| = 3 or 6.

Since N(u), N(v) and N(w) contain 3 or 6 white vertces, color changing rule is not applicable. This implies that there exist at least two adjacent black vertices in the zero forcing set. Therefore, deg(u) = deg(v) = deg(w) = 3 is not possible since vertices with degre three are independent.

Case 2. Suppose that deg(u) = deg(v) = deg(w) = 6. The number of white vertices adjacent to u, v or w is atleast 4. Therefore, these vertices will never force any of the the other vertices, a contradiction to our assumption that $Z_2(S(G)) = 3$.

Case 3. Suppose that deg(u) = deg(v) = 6 and deg(w) = 3. In this case, at least two vertices must be adjacent by case 1. Assume that $u \sim v$ and deg(w) = 3. We observed that to force any other vertex, the vertices u, v and w must form a path of length 2. That is they must form 3- consecutive vertices. Since the graph is triangle free, therefore in this case, we can force maximum of two more vertices to black, a contradiction.

Case 4. deg(u) = deg(v) = deg(w) = 3. Clearly u, v and w are mutually non adjacent and N(u), N(v) and N(w) contains 3 white vertices. Therefore, color chaning rule is not applicable, this contradicts the fact that $Z_2(S(G)) = 3$.

Case 5. deg(u) = deg(v) = 3 and deg(w) = 6. Since deg(u) = deg(v) = 3. This implies that u is not adjacent to v. We have two sub cases

Subcase 5.1. Assume that u is adjacent to w and v is not adjacent to w. The the vertex u will force two white vertices of degree 6 and these two vertices will have atleast 4 white vertices adjacent to it. Therefore, further forcing is not possible, since the vertices forced by the vertex u are not adjacent to the black vertex v, a contradiction.

Subcase 5. 2. Assume that $w \sim u$ and $w \sim v$. In this case u and v together can force a maximum of 4 more vetices to black. By considering the above cases, it can be concluded that

$$Z_2[S(G)] \ge 4 \tag{7}$$

To prove the reverse inequality let us consider the graph depicted in Figure 1.

Figure 1: The splitting graph of the prism graph $C_4 \square K_2$.

In figure 1, the orange vertices represents white vertices. Consider the set of black vertices $\{1,2,3,4\}$. The vertex 1 forces the vertices 6 and 10 to black. Now consider the vertex 2. Since 6 and 10 are black and they are in the open neighborhood of 2. Therefore the vertex 2 again forces the vertices 5 and 9. Since there are two white neighbors in the open neighborhood of the vertex 4. Therefore, vertex 4 forces the vertices 7 and 11. Now if we consider the vertex 3 it can forces the vertices 8 and 12. We can continue the process with the vertex set $\{5,6,7,8\}$ or $\{9,10,11,12\}$ to force the remaining vertices to black. The same argument is true for splitting graph of the prism graph of order $n \ge 5$. Hence

$$Z_2[S(G)] \le 4 \tag{8}$$

Therefore from (7) and (8) the result follows.

The star graph $K_{1,n}$ is a tree on n vertices with one vertex having degree n and all other vertices have degree one.

III. GRAPHS FOR WHICH $Z_2(G) > 4$

In this section, we consider some more graph classes for which $Z_2(G) > 4$. We start with the splitting graph of a star graph.

Proposition 18. Let G be the star graph $K_{1,n}$ on n+1 vertices, $n \ge 3$. Then $Z_2[S(G)] = 2n - 4$.

Proof. Assume that we have a zero forcing set consisting of 2n - 5 vertices. Then the number of white vertices in S(G) is 7, that is $\{2n + 2 - (2n - 5) = 7\}$. We divide the vertex

set of S(G) into four sets $A = \{u'\}$, $B = \{u_1, u_2, \dots, u_n\}$, $C = \{u\}$ and $D = \{u'_1, u'_2, \dots, u'_n\}$ as depicted in Figure 2

Figure 2: Splitting graph of the graph $K_{1,n}$

Case 1. Assume that the vertices in A and C are white. Consider the remaining 5 white vertices in S(G). Then we have the following subcases.

Subcase 1.1. Assume that either 3 of them will be in B and 2 of them will be in D or vice versa. It can be easily seen that the color changing rule is not applicable in this case because three vertices will remain as white either in B or in D.

Subcase 1.2. Assume that 4 of them will be in B and 1 will be in D or vice versa. In this case, colour changing rule is not possible since four vertices will remain as white either in B or in D.

Subcase 1.3. Assume that there exist no white vertices in the set B and all 5 white vertices are in the set D or vice versa. Here also we cannot apply the colour changing rule.

Case 2. Assume that the vertices in A and C are black. The remaining 7 white vertices can be distributed in the sets B and D are as follows.

m 1 1 1

l able 1								
В	7	6	5	4				
D	0	1	2	3				

From the above partition, we can observe that in each case, at least 3 white vertices will be either in B or in D. There fore, colour changing rule is not possible.

Case 3. Assume that the vertx $u' \in A$ or the vertex $u \in C$ is black. Consider the following distribution of the 7 white vertices among the sets *A*, *B*, *C* and *D*.

Vol. 6(3), Jun 2019, ISSN: 2348-4519

Table 2

I dule 2								
В	6	0	1	5	4	3	2	
D	0	6	5	1	2	3	4	
A or C	1	1	1	1	1	1	1	

From the above partition, it can be seen that at least 3 white vertices will be in B or in D. Therefore, the colour changing rule is not possible in this case. From the above cases, we conclude that

$$Z_2[S(G)] \ge 2n - 4 \tag{9}$$

Let $A = \{u'\}, \quad B = \{u_1, u_2, \dots, u_{n-1}, u_n\},\$

 $C = \{u\}, D = \{u'_1, u'_2, ..., u'_{n-1}, u'_n\}$. Consider the 6 white vertices $\{u, u', u_n, u_{n-1}, u'_n, u'_{n-1}\}$. Consider one black vertex, say u_1 in *B*. Clearly $u_1 \rightarrow u$ and $u_1 \rightarrow u'$ to black. Consider the vertex u', clearly the vertex u', 2-forces the vertices u_{n-1} and u_n as black. Again the vertex u 2-forces u'_n and u'_{n-1} to black. Therefore, the set $\{u_1, u_2, ..., u_{n-2}\} \cup \{u'_1, u'_2, ..., u'_{n-2}\}$ forms a zero forcing set *Z* for the graph *S*(*G*). There fore, we get a derived colouring of *S*(*G*) with allvertices coloured black. This implies $Z_2[S(G)] \leq n - 2 + n - 2 = 2n - 4$. Therefore,

$$Z_2[S(G)] \le 2n - 4 \tag{10}$$

Hence from (9) and (10) the result follows.

Remark 19. If G is the star graph $K_{1,2}$ then $Z_2[S(G)] = 1$.

Let F_p^k be the graph obtained by taking *k* copies of the cycle graph $C_p, p \ge 4, k \ge p$ by joining the k copies of the cycle graph C_p with a common vertex v_p of each cycle C_p . For example, the graph F_3^5 is the graph obtained by taking the cycle graph C_3 five times by joining each vetex v_3 of each cycle C_3 . The graph F_4^5 is obtained by joining 5 copies of C_4 with a common vertex v_4 and is dipicted in Figure 3.

Figure 3: The graph F_3^5 .

Proposition 20. Let G be the graph F_p^k , $p \ge 4$. Then $Z_2(G) = k - 1$.

Proof. Denote the cycles $C_1, C_2, ..., C_k$ in F_p^k as follows.

$$C_{1} = v_{1}^{1}, v_{2}^{1}, \dots, v_{p}, v_{1}^{1}$$

$$C_{2} = v_{1}^{2}, v_{2}^{2}, \dots, v_{p}, v_{1}^{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$C_{k} = v_{1}^{k}, v_{2}^{k}, \dots, v_{p}, v_{1}^{k}$$

Consider the set of black vertices $Z = \{v_1^1, v_1^2, ..., v_1^{k-1}\}$. We can see that $N(v_1^1)$ contains only two white vertices v_p and v_2^1 . Therefore, v_1^1 2-forces v_p and v_2^1 to black. v_2^1 2-forces v_3^1 to black and so on . Similarly, we can observe that $N(v_1^2)$ contains the vertices v_p and v_2^2 of which v_p is already black. Now, $v_1^2 \rightarrow v_2^2$ and $v_2^2 \rightarrow v_3^2$ and so on. In a similar way $v_1^{k-1} \rightarrow v_2^{k-1}$ and $v_2^{k-1} \rightarrow v_3^{k-1}$ and so on. Now consider the cycle C_k . The vertex set of the cycle C_k is $\{v_1^k, v_2^k, ..., v_p\}$. Now the black vertex v_p is adacent to two white vertices v_1^k and v_n^k . So the black vertex v_p 2 forces v_1^k and v_n^k to black. Now $v_1^k \rightarrow v_2^k$, $v_2^k \rightarrow v_3^k$ and so on. Therefore the set Z forms a 2- forcing set for F_p^k . The cardinality of the set Z is k - 1 and one can easily observe that with k - 2 black vertices it is not possible to form a 2-forcing set. Therefore, $Z_2(G) = k - 1$.

IV. BOUNDS ON $Z_2(G)$

In this section we consider some bounds on $Z_2[G]$.

Proposition 21. For any connected graph G of order $n \ge 3$, $Z_2[S(G)] \le 2 Z_2[G]$.

Proof. Assume that $Z_2 = \{u_1, u_2, ..., u_m\}, 1 \le m \le n$ be a 2-forcing set of *G*. Now consider the set

 $Z'_2 = \{u_1, u_2, \dots, u_m\} \cup \{u'_1, u'_2, \dots, u'_m\} \in V[S(G)]$, where $\{u'_1, u'_2, \dots, u'_m\}$ be the copies of the vertices of $\{u_1, u_2, \dots, u_m\}$ in V[S(G)]. Color all the vertices in Z'_2 as black.

We prove that the set Z'_2 will form a 2-forcing set for S(G). Assume that *G* is colored with black and white vertices and the vertices in Z_2 are black. Consider the vertices in *G* which has exactly two white neighbors in *G*. Let it be $u_1, u_2, ..., u_l, l \le m$ and $u'_1, u'_2, ..., u'_l$ be the vertices corresponds to $u_1, u_2, ..., u_l$ in S(G). We see that in S(G), $N(u'_1), N(u'_2), ..., N(u'_l)$, each one contains exactly two white vertices. Let it be $v_1, v_2, ..., v_l$. Now clearly $u'_1 \rightarrow v_1$, $u'_2 \rightarrow v_2, ..., u'_l \rightarrow v_l$. Now again consider the set $\{u_1, u_2, ..., u_l\}$ in S(G). At this point of time we can see that $u_1 \rightarrow v'_1, u_2 \rightarrow v'_2, ..., u_l \rightarrow v'_l$. Consider the white vertices which are adjacent to $v_1, v_2, ..., v_l$ in *G*. Let it be $w_1, w_2, ..., w_l$. Clearly $v'_1 \rightarrow w_1 v_1 \rightarrow w'_1$ and so on. Therefore, the set Z'_2 forms a 2- forcing set for S(G).

We consider the following result from [7], [2] and [13] to prove a relationship between Z(G), $Z_2(G)$ and Z(S(G)).

Proposition 22[2]. Let G be a connected graph of order $n \ge 3$. Then $Z(S(G)) \le 2Z(G)$.

Proposition 23[7]. Let G = (V, E) be a connected graph. Then $Z(G) \ge Z_2(G)$.

Next we prove a relationship between Z(G), $Z_2(G)$ and Z(S(G)).

Proposition 24. Let G be a connected graph of order $n \ge 3$. Then $Z_2(G) + Z(S(G)) \le 3Z(G)$, and the bound is sharp if G is a path on 3 vertices, that is if $G \equiv P_3$.

Proof. We have from Proposition 22 and Propositon 23,

$$Z_2(G) + Z(S(G)) \le Z(G) + 2Z(G) = 3Z(G)$$

V. CONCLUSION

In this article we deals with the characterization of graphs *G* for which $1 \le Z_2(G) \le 4$. Also we determined the k-forcing number of some classes of splitting graphs. Infact there are many graph classes for which $1 \le Z_2(G) \le 4$. Therefore, it is open to characterize S(G) and *G* for which $Z_2(S(G)) = 1$, $Z_2(G) = 1$, $Z_2(S(G)) = 2$, $Z_2(G) = 2$, $Z_2(S(G)) = 3$, $Z_2(G) = 3$, $Z_2(G) = 3$, $Z_2(G) = 4$. It is also open to characterize $Z_2(G) + Z(S(G)) = 3Z(G)$.

REFERENCES

- [1]. E. Sampathkumar and H.B. Walikaer, "On the splitting graph of a graph", Journal of Karnatak University Science, Vol.25, pp.13-16, 1981.
- [2]. K. P. Premodkumar, Ch. Dominic and B. Chacko, "On the Zero Forcing Number of Graphs and Their Splitting Graphs", Algebra and Discrete Mathematics, Accepted, 2018.
- [3]. H. Van der Holst et al., "Zero forcing sets and the minimum rank of graphs", Linear Algebra and its Applications, Vol. 428, pp. 1628–1648, 2008.
- [4]. D. Burgarth and V. Giovannetti. "Full control by locally induced relaxation", Physical review letters, Vol. 99, Issue.10,pp 100501-100504, 2007.
- [5]. D. Burgarth, V. Giovannetti, L. Hogben, S. Severini, and M. Young. "Logic circuits from zero forcing".arXiv preprint arXiv:1106.4403, 2011.
- [6]. L. Hogben, D. Burgarth, D. Alessandro, S.Severini, and M. Young. "Zero forcing, linear and quantum controllability for

systems evolving on networks", IEEE Transactions on Automatic Control, vol. 58, Issue. 9, pp. 2349-2354, 2013.

- [7]. D Amos, Y caro, R Davila and R Pepper, "Upper bounds on the k-forcing number of a graph", Discrete Applied Mathematics, Vol.181, pp 1–10, 2015.
- [8]. E. Sampathkumar, M.S. Subramanya and Ch. Dominic, "3-Consecutive vertex Coloring of a Graph", Proc. ICDM 2008, RMS-Lecture Notes Series Vol.13, pp.161-170, 2010.
- [9]. H. Whitney, "Congruent graphs and the connectivity of graphs". Amer. J. Math. Vol.54,pp 150-168, 1932.
- [10]. F. Harary, Graph Theory, Addison-Wesely, Massachusethes, 1969.
- [11]. R. Frucht and F. Harary, "On the Corona of two Graphs", A equationes Math, Vol. 4 pp. 322-325, 1970.
- [12]. M. Hladnik., Marusic, D. and Pisanski, "Cyclic Haar Graphs", Discrete. Mathematics. Vol 244, pp.137-153, 2002.
- [13]. Y Zhao, L Chen and H Li., "On Tight Bounds for the k-Forcing Number of a Graph", Bull. Malays. Math. Sci. Sco., DOI 10.1007/s40840-017-0507-7.