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Abstract- Nonstandard analysis is a branch of Mathematics introduced by Abraham Robinson
[1]

 in 1966. In 1977, Edward 

Nelson
[2]

 gave an axiomatic approach to Non-standard analysis. In many instances, analysis on infinite sets can be reduced to a 

finiteness argument using Nonstandard methods. In this expository article, we present an introduction to the theory and indicate 

an application to infinite graphs. The application is to a result by De Bruijn and Paul R. Erdos that it is enough to study 

colouring problem only in finite graphs. 
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I. INTRODUCTION 

  Abraham Robinson constructed a superstructure to work in 

any given structure like the Euclidean spaces, topological 

spaces, algebraic structures (rings, fields etc., .) , graphs and 

so on. Instead, Edward Nelson restructured the axiomatics of 

set theory by introducing three new principles (IST) - 

Idealization, Standardization, Transfer - to the Zermelo 

Fraenkel set of axioms with the axiom of choice (ZFC) . 

Nelson proved the consistency of the new system (IST + 

ZFC) . This allows standard and nonstandard elements to 

work within sets.  

           First we present the axioms and discuss the 

immediate outcomes as in [3]. Finally we present an 

application to Graph Colourings.  

          .  

II. AXIOMATICS 

 

Henceforth whatever we refer to as ’classical’ is anything 

we have come across in Mathematics so far. For instance, 

sets, cartesian products of sets, relations and functions 

studied so far, all axioms, mathematical structures and 

results in classical set theory (ZFC) still hold in our extended 

analysis - namely Nonstandard analysis. Like the binary 

predicate 
′
 ∈′

 (belongs to) and its governing rules in classical 

set theory, 
[2]

Nelson introduces a unary predicate (for 

example, complement operation in sets is a unary predicate 

in classical set theory) ’standard’ and spells out its 

governing rules in the following three axioms. We present 

the axioms with some discussions in between. The 

fundamentals are as in Alain Robert 
[3]

. 

 

Idealization (I ) : Let R (x, y) be a classical relation between 

two sets X and Y, that is, R ⊆ X × Y . If for every standard 

and finite F ⊆ X , there exists yF ∈ Y such that R (x, yF ) ∀ x 

∈ F , then there exists y ∈ Y such that R (x, y) for all 

standard x ∈ X . 

 

We use the symbols ∀ 
s
 , ∃ s

 , ∀ 
f
 , ∃ f

 , ∀ 
sf
 and ∃ sf

 to mean 

’for every standard’, ’there exists standard’, ’for every 

finite’, ’there exists finite’, ’for every standard finite’ and 

’there exists standard finite’ respectively. Hence restated 

Idealization axiom is as follows. 

 

Let R (x, y) be a classical relation between two sets X and Y. 

That is, R ⊆ X × Y . ∀ 
sf
   F ⊆ X, ∃ yF  ∈ Y  such that R (x, 

yF )  ∀ x ∈ F ⇒ ∃ y ∈ Y  such that  R (x, y) ∀ 
s
  x ∈ X.  

We discuss some consequences before proceeding to the 

next two axioms. An element which is not standard will be 

called  nonstandard. 

Consequence 1. Every infinite set has nonstandard 

elements. 

Proof. Let X be an infinite set and R be a relation on X 

defined by R (x, y) if x ≠ y . Now ∀ 
sf
 F ⊆ X,        ∃ yF ∈ X 

such that R (x, yF ) , since X is infinite. By (I), ∃ y ∈ X such 

that R (x, y) ∀ s 
 x ∈ X . That is,      y  ≠  x ∀ 

s 
 x ∈ X . This y 

must be nonstandard. 

Consequence 2. Given any set X, there exists a finite subset 

F of X containing all standard elements of X. 

http://www.isroset.org/
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Proof. Let Pf (X ) denote the collection of all finite subsets 

of  X. Let R be a relation between X and Pf (X ) defined by 

R (x, A) if x ∈ A . ∀ 
sf
 A ⊆ X,           ∃ A ∈ Pf (X ) such that 

R (x, A) ∀ x ∈ A . By (I),      ∃ F ∈ Pf (X) such that R (x, F) 

∀ 
s
 x ∈ X . That is,                        x ∈ F ∀ 

s
 x ∈ X . Hence 

proved. 

Next we move to Standardization axiom. 

Standardization (S) : Let P be a property (classical or not) 

on a standard set X. Then there exists a unique standard 

subset E of X such that the standard elements of  E are 

precisely the standard elements of  X satisfying the property 

P. E is denoted by   

S
 {x ∈ X / P (x)}. 

It will be appropriate to discuss consequences of 

Standardization axiom after presenting Transfer axiom and 

some of its consequences. 

Transfer (T) : Let F be a formula involving a variable x and 

standard parameters  A,B,C etc.,. Then 

 (∀s
 x) [F (x, A, B, C...)] ⇔ (∀x) [F (x, A, B, C...)] (*). 

Applying it for the negation ¬ F of F, we get   

(∀s
 x) [¬F (x, A, B, C...)] ⇔ (∀x) [¬F (x, A, B, C...)] . This 

is equivalent to the dual Transfer Principle. 

(∃s
 x) [F (x, A, B, C...)] ⇔ (∃x) [F (x, A, B, C...)] (**). 

Thus the Transfer principle is valid with the existential 

quantifier 
′∃′

 in place of the universal quantifier 
′∀′

 too. 

 

Consequence 3. The Transfer may be extended to any finite 

number of quantifiers. For instance, if A,B,C..... are 

standard parameters, (∀x) (∀y) ..... [F (x, y, ...A, B....)] ⇔ 

(∀ 
s
 x) (∀ 

s
 y) .... [F (x, y, ...A, B....)]. 

 

Consequence 4. In view of (**), whenever an entity is 

uniquely established in classical theory, this entity must be 

standard. Thus the numbers like 3,        ⁄ , e,  , √ , the 

set  of natural numbers N, the set of  real numbers R etc.,. 

are all standard. 

Consequence 5. Let A,B be standard  sets. To show A ⊆ B , 

it is enough to check  x ∈ A ⇒ x ∈ B for standard elements. 

This follows from Transfer axiom: (∀ 
s
 x) [x ∈ A ⇒ x ∈ B] 

⇔ (∀ x) [x ∈ A ⇒ x ∈ B]. Thus two standard sets are equal 

if both have the same standard elements. 

Consequence 6. In a set E every element is standard if and 

only if  E is a finite and standard set. 

Proof. 

(∃ x ∈ E) [x is nonstandard]    

     (∃ x ∈ E) (∀ 
s
  y ∈ E) [y   x]                                            

  (∀ 
sf
  F)  (∃ x ∈ E) (∀ y ∈ F ) [y   x] , by (I).                                            

  (∀ 
sf
  F)  (∃ x ∈ E) [x   F ]                                             

  (∀ 
sf
  F)  [E   F ]  

Negating the above equivalence,  (∀x ∈ E) [x is standard]  

⇔ ∃ sf
   F  [E ⊆ F ] (*) 

We shall use the above equivalence (*) to establish the 

statement of consequence 6. 

If E is standard and finite, taking F = E, the implication   

of (*) gives that every x ∈ E is standard. 

Conversely let every x ∈ E be standard. Then ⇒ of (*) gives 

a standard, finite F such that E ⊆ F . First of all this says E is 

finite. F is standard and finite implies the power set P (F) is 

standard and finite. P (F) is standard (by Consequence 4). By 

what we have established, every element of P (F) is standard 

and hence E  is standard. 

III. AN APPLICATION 

As a finishing touch we wish to give an application to 

infinite graphs. It explains why it is enough to study 

colouring problem only in finite graphs. A Nonstandard 

proof of it is by De Bruijn and Paul R.Erdos as presented in
 

[4] and is
 
based on Robinson’s ultrapower construction. We 

present a nonstandard proof based on Nelson’s Internal Set 

theory.  

Theorem 2.1. If every finite subgraph of an infinite 

graph G is k-colourable, then G itself is k-

colourable. 

Proof. First we assume G is a standard graph. Let F 

⊆ V (G) such that F is finite and contains all 

standard elements of V (G). Since F is finite, ∃ f : 
F → {1, 2, ....k} such that x, y ∈ F and 〈   〉 ∈ E 

(G) ⇒ f (x)   f (y) . Extend f  to V (G) in any way.  

We have (∃ f : V (G) → {1, 2, ....k}) (∀ 
s
  x, y ∈ V 

(G)) [〈   〉 ∈ E (G) ⇒ f (x)   f (y)]. By transfer (∃ 
s
  f : V (G) → {1, 2, ....k}) (∀ 

s
  x, y ∈ V (G)) 

[〈   〉 ∈ E (G) ⇒ f (x)   f (y)] , since the 

parameters involved are all standard. 

(∀ 
s
 graph G) (∃s

 f : V (G) → {1, 2, ....k}) (∀s
  x, y 

∈ V (G)) [〈   〉 ∈ E (G) ⇒ f (x)   f (y)] . 

Again by Transfer, 

(∀ graph G) (∃ f : V (G) → {1, 2, ....k}) (∀ x, y ∈ 

V (G)) [〈   〉 ∈ E (G) ⇒ f (x)   f (y)]  This 

completes the proof. 
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