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Abstract-In this paper, a weighted version of New Weibull Pareto (NWP) distribution known as weighted new Weibull Pareto 

(WNWP) distribution is obtained. Some structural properties of the new model are studied. Applications are provided using 

two real life data sets. It is shown that our new model performs better as compared to other models.  
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I. INTRODUCTION 

 

In real life, there exist some situations when for an investigator it is not possible to select a sample with equal probability. In 

such situations, sampling frames are not properly defined and recorded observations are biased and do not follow the original 

distribution. Modeling of these observations gives birth to the theory of weighted distributions which was given by Fisher [1] 

and then studied by Rao [2].There are many authors who have presented important results on weighted distributions among 

them are Jain et al. [3] introduced the weighted version of gamma distribution, Abd El-Moonsef and Ghoneim [4] studied the 

weighted version of Kumaraswamy distribution, Fatima and Ahmad [5] introduced the weighted form of inverse Rayleigh 

distribution and study its various properties, Sofi Mudasir and Ahmad [6] proposed the weighted version of Nakagami 

distribution and finds its application to real life, Sofi Mudasir and Ahmad [7] estimate the scale parameter of weighted Erlang 

distribution through classical and Bayesian methods of estimation, Jan et al. [8] studied the weighted Ailamujia distribution 

and find its applications to life time data.  

If 0V is a random variable with density function )(vf and 0),( vw is a weight function, then the weighted random 

variable WV has the density function given by   

 )(),()( vfvZwvfw               (1.1) 

Where Z is the normalizing constant.  

When ,0,),(   vvw then the distribution is called the weighted distribution of order . 

 

The probability density function of NWP distribution given by Nasiru and Luguterah [9] is given as  
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By using eq. (1.2) and 
vvw )( in eq. (1.1), we get the required pdf of WNWP distribution and is given by 
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II. SUB-MODELS 

 

(i) If in eq. (1.3) ,0,1   we get the Weibull distribution with pdf given as 

  .exp)( 1   vvvf  
 

 

 

(ii) If ,0 in eq.(1.3) we get the basic model given in eq. (1.2). 

 

(iii) When in eq.(1.3), ,1 the WNWP distribution reduces to length-biased new Weibull Pareto (LNWP) distribution with  

 

pdf given as 
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(iv) When in eq. (1.3), ,2 the WNWP distribution reduces to area-biased new Weibull Pareto (ANWP) distribution with 

pdf given as  
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III. FUNCTIONS RELATED TO WNWP DISTRIBUTION 

 

 

Proposition 1. Let V be a r.v. with pdf given in (1.3). The associated cumulative distribution function (cdf) is given by: 
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Proof. Using the definition of cdf, we find that  
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This completes the proof. 
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The survival and hazard rate functions follow immediately: 
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IV. ASYMPTOTIC BEHAVIOR 

Here it can be checked by finding out the value of )(lim vfw
v 

and )(lim
0

vfw
v

as follows 
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and 0v , then the pdf also tends to zero. Hence the WNWP distribution has mode.  

 

V. STATISTICAL PROPERTIES 

 

This section deals with the statistical properties of WNWP distribution.  

5.1. Mode of WNWP distribution 

The mode of the WNWP distribution can be found by solving the equation    .0)(log 
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5.2. Moments  

Proposition 2. Let V be a r.v. with pdf given by (3). Then the 
thr  non-central moment is given by  
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Proof. According to (3)  
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This ends the proof. 

By using eq. (5.2.1), the mean and variance of WNWP distribution are given by 
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5.3. Moment generating function(MGF) 

Proposition 3. Let V be a r.v. with pdf given by (1.3). Then the MGF denoted by )(tM  of V is given by 

  







0

!

)(
r

r

r

rr

r

t
tM









. 

Proof. The MGF is given by  
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By using Taylor’s series expansion of the function ,tve we obtain 
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This proves the theorem. 

5.4. Incomplete moments 

Proposition 4. If V is a r.v. with pdf given by (1.3). Then the 
thr  incomplete moment is given by  
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After the simplification, we get 
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This completes the proof. 

 

5.5. Standard deviation and coefficient of variation 

Standard deviation of WNWP distribution is given by 
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And the coefficient of variation (C.V.) is given as 
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5.6. Skewness and Kurtosis 

 

The coefficient of skewness (C.S.) and kurtosis (C.K.) of WNWPD are given by 
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Table 1: Statistical properties of WNWP distribution for different values of parameters. 
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Mean Variance Mode STD C.V C.S C.K 

 

1.5 

 

2.0 

 

1.5 

1.0 1.381977 0.340140 1.224745 0.583216 0.4220157 0.23589752 17.452060 

3.0 1.842635 0.354694 1.732051 0.595562 0.3232123 0.12548755 7.267858 

6.0 2.374317 0.362620 2.291288 0.602179 0.2536224 0.07247341 0.346280 

 

3.5 

 

2.0 

 

1.5 

1.0 3.224612 1.851877 2.857738 1.360837 0.4220157 0.23589752 17.452060 

3.0 4.299483 1.931115 4.041452 1.389646 0.3232123 0.12548755 7.267858 

6.0 5.540072 1.974268 5.346338 1.405086 0.2536224 0.07247341 0.346280 

 

1.5 

 

3.5 

 

1.5 

1.0 1.322362 0.131348 1.335917 0.362419 0.2740701 0.00013259 46.721030 

3.0 1.506848 0.112910 1.520070 0.336021 0.2229963 0.00168424 50.404920 

6.0 1.710039 0.096012 1.721392 0.309859 0.1811998 0.00273164 22.227070 

 

1.5 

 

5.5 

 

1.5 

1.0 1.343069 0.064833 1.393396 0.254624 0.1895835 0.10110789 105.629400 

3.0 1.433455 0.053631 1.474230 0.231584 0.1615562 0.09346717 140.050300 

6.0 1.535293 0.043358 1.567235 0.208225 0.1356259 0.07909058 126.843900 

 

1.5 

 

2.0 

 

4.0 

1.0 0.846284 0.127553 0.750000 0.357145 0.4220157 0.23589752 17.452060 

3.0 1.128379 0.133010 1.060660 0.364706 0.3232123 0.12548755 7.267858 

6.0 1.453966 0.135983 1.403122 0.368758 0.2536224 0.07247341 0.346280 

 

1.5 

 

2.0 

 

7.0 

1.0 0.639730 0.072887 0.566947 0.269976 0.4220157 0.23589752 17.452060 

3.0 0.852974 0.076006 0.801784 0.275692 0.3232123 0.12548755 7.267858 

6.0 1.099095 0.077704 1.060660 0.278755 0.2536224 0.07247341 0.346280 
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VI. LORENZ CURVE 

 

For a continuous random variable X, Lorenz curve is defined as  
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Proposition 5. If V follows WNWP distribution with pdf given in (1.3), then its Lorenz curve is given by: 
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Proof. Using eq. (1.3), we have 
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On solving the above integral and substituting the value of , we get 
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Hence proved.  

 
 

VII. SHANNON’S ENTROPY 

 

Shannon’s entropy is the most popular measure of entropy and is defined for a random variable V having pdf )(vf as 

  ))(log()( vfEfH  .            (7.1) 
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Proposition 6. For a r.v. V with pdf given in (1.3), the Shannon’s entropy is given by 
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Proof. Using equation (7.1), we have 
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By substituting the value of eq. (1.3) in eq. (7.3), we get 
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On substituting the value of eq. (7.4) and eq. (7.5) in eq. (7.2), we get 
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This proves the theorem. 

 

VIII. ENTROPY ESTIMATION OF WNWP DISTRIBUTION  

 

Suppose that we have a statistical model having likelihood function L and N be the number of parameters. Then Akaike 

information criteria (AIC) and Bayesian information criteria (BIC) of the model is given by  

 ).log(22AIC LN               (8.1) 

            ).log(2)log(BIC LnN              (8.2) 

From eq. (1.3), we have 
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On comparing eq. (7.2) and (8.3), we get 
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Thus from eq. (8.1) and eq. (8.2), we get 
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IX. CHARACTERIZATION OF WNWP DISTRIBUTION 

 

Proposition 7.  If nvvv ,...,, 21  are i.i.d. random samples drawn from (1.3), then  
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Proof. We have  
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X. REAL LIFE ILLUSTRATION 

 

In this section we have given the real data application of WNWP distribution. We have fitted the WNWP distribution for two 

different real life data sets. The data set first comprised of 72 exceedances of flood peaks ( /sm3
) of the Wheaton river near car 

cross in Yukon territory, Canada for the calender 1958-1984. The data set second represents the survival times (in days) of 

guinea pigs injected with different doses of tubercle bacilli. 
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Table 2: Descriptive Statistics for data set 1. 

Min. 1st Qu. Median Mean 3rd Qu. Max. Skewness Kurtosis 

0.10 1.85 9.50 12.09 20.12 64.00 1.4657 5.8268 

Table 3: Descriptive Statistics for data set 2. 

Min. 1st Qu. Median Mean 3rd Qu. Max. Skewness Kurtosis 

12.00 54.75 70.00 99.82 112.80 376.00 1.7962 5.6144 

Table 4. Maximum likelihood estimates, standard error in parentheses and statistics for model selection using data set 1. 

 

Table 5. Maximum likelihood estimates, standard error in parentheses and statistics for model selection using data set 2. 
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XI. CONCLUSION 

This paper deals with the weighted new Weibull Pareto (WNWP) distribution and studies its different statistical properties 

include reliability analysis, mode, moments, moment generating function, incomplete moments,standared deviation, 

coeffecient of variation, skewness, kurtosis, Lorenz curve, Shannon’s entropy. Graphs were plotted using R-software. The 

superiority of the new model over some other models viz LNWPD, NWPD and WD were checked. An application to real life 

data sets shows that the fit of WNWP distribution is superior to the fits using LNWPD, NWPD and WD. 
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