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Abstract— This article investigates some methods to construct Hadamard matrices, made up of other Hadamard blocks of 

lower orders. Some methods are presented to construct families of real and complex block structuted Hadamard matrices using 

real and complex orthogonal designs together with some suitable matrices. Other new arrays are also introduced to construct 

block structured (complex) Hadamard matrices, along with a few methods for their constructions. Block structured (complex) 

Hadamard matrices have further resulted in (block structured) weighing matrices. Also infinite families of orthogonal design of 

order 4t and type (2t, 2t) are also constructed which depend upon the existence of Williamson matrices and Turyn-type 

Williamson matrices.  
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I.  INTRODUCTION  

 

Hadamard matrices were first studied by Sylvester in 1867 

[13]. He gave a recursive formula for Hadamard matrices. 

i.e., given a Hadamard matrix of order 2
n
 a new Hadamard 

matrix of order 2
n+1

 can be constructed. These Hadamard 

matrices have each 2
n
×2

n
 blocks Hadamard matrices. These 

matrices are used in Walsh-Hadamard transform extensively 

[17]. However, significance of these matrices were later 

discovered by Jacques Hadamard in 1893. He had shown that 

Hadamard matrices are the extremal solutions of maximum 

determinant problem [4]. Later on such matrices were named 

after J. Hadamard. Hadamard matrices exist only for orders 

1, 2 or a multiple of 4. It is conjectured that these matrices 

exist for each multiple of . In 1980s S. S. Agaian studied 

block circulant Hadamard (BCH) matrices [1]. These 

matrices can be regarded as the generalization of Sylvester‘s 

matrices, as BCH matrices are constructed from Hadamard 

blocks of order 4. Sylvester‘s matrices have number of 

Hadamard blocks even in each row (column), whereas BCH 

matrices have number of Hadamard blocks odd in a row 

(column). In 2014 Singh and Topno [11] discovered the 

infinite families of such matrices whose existence is 

dependent upon existence of Williamson matrices. Such 

matrices are constructed from a set of five Hadamard 

matrices of order 4. Although, these matrices are block 

circulant, we prefer to call them block structured Hadamard 

(BSH) matrices for the purpose of generalization. Later in 

2017, Topno and Singh reduced the number of constructing  

 

blocks to be 3 [14]. But in this case Turyn‘s method [15] was 

employed, which is a special case of Williamson‘s matrix. 

Moreover they produced block structured complex 

Hadamard matrices. Also, they constructed families of block 

structured half-full weighing matrices using such matrices. 

 

In the present paper authors have generalized the result using 

complex orthogonal designs. Block structured half-full 

weighing matrices arose as a biproduct. Apart from 

orthogonal designs, block structured complex Hadamard 

matrices are also constructed using certain arrays having 

special properties. Symmetric and skew-symmetric 

Hadamard matrices are of special interest among the authors 

[9, 7]. The Hadamard matrices constructed in this paper are 

block-wise symmetric or skew-symmetric according as the 

array (OD or other) used is symmetric or skew. 

 

Section I contains the introduction of the research work 

presented in this paper. Section II contains the basic 

terminologies used in the main construction. Section III 

contains the main result of the paper in the forms of many 

theorems and corollaries. Section IV is the concluding 

section. 

 

II. PRELIMINARIES 

 

We introduce certain elementary concepts here, which are 

useful in constructing BSH matrices. A Hadamard matrix 

(H-matrix) H is a (1, -1)-matrix of order n such that 

http://www.isroset.org/
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HH
T
=nIn. Here H

T
 is transpose of H and In is identity matrix 

of order n. This property implies that every two distinct rows 

(columns) of Hadamard matrix have inner product zero. An 

H-matrix of order mn (n, a multiple of 4) will be called block 

structured Hadamard matrix (BSH matrix) if its n×n blocks 

are H-matrices. A matrix H of order n is said to be a complex 

Hadamard matrix if it has entries from {±1, ±i} and 

HH
*
=nIn. Here H

*
 is conjugate transpose of H and In is 

identity matrix of order n. A complex Hadamard matrix of 

order mn (n, a multiple of 2) will be called block structured 

complex Hadamard matrix (BSCH matrix) if its n×n blocks 

are complex Hadamard matrices. A (0, 1, -1)- matrix W of 

order n is said to be a weighing matrix if WW
T
=kIn, (k≤n is a 

positive integer). k is called the weight of W. In fact 

Hadamard matrix is a special case of weighing matrix where 

weight is equal to the order of the matrix. A complex 

weighing matrix of weight k and order n is an n×n matrix , 

with entries from {±1, ±i} satisfying AA
*
=kIn (k≤n). A 

(complex) weighing matrix of order mn (n, order of a 

(complex) weighing matrix) will be labeled as ‗block 

structured‘ if each n×n block is a (complex) weighing 

matrix. An orthogonal design (OD) of order  and type 

)...,,,( 21 lsss  (
is  positive integers) on the commuting 

variables  is an  matrix , with entries chosen from the 

set }...,,,{ 21 lxxx    such that 
n

l

i ii

T IxsXX )(
1

2

 
  [4]. A 

complex orthogonal design (COD) of order  and type 

)...,,,( 21 lsss  (
is   positive integers) on the real commuting 

variables lxxx ...,,, 21  is an n×n matrix X, with entries 

chosen from 
ill xxx  |...,,, 2211

 is a fourth root of 1 

satisfying 
n

l

i ii IxsXX )(
1

2*  
  [5]. If )(= ijaA  is an m×m 

matrix and )(= rsbB  is an n×n matrix, then the Kronecker 

product BA  is the mn×mn matrix given by )(= BaBA ij . 

It is easy to see that (A×B)( C×D)= AC×BD and 

=)( TTT BABA  . Hadamard product of two matrices 

)(= ijaA  and )(= ijbB  of order n is a matrix of order n given 

by )(=* ijijbaBA . The binary operation ‗ ‘ here should not be 

confused with the symbol for conjugate transpose above. 

Let the elements iz  of an additive abelian group G  be 

ordered in a fixed way. Let GX  . Then the matrix )(= ijmM  

defined by 

 



 


,0

,1
=)(),(=

otherwise

Xzzif
zzwherezzm

ij

ijijij   

is called type 1 incidence matrix of X  in G . A Circulant 

matrix )(= ijmM  defined by 11,=  jiij mm  is a special 

case of type 1 matrix. A circulant matrix A with its first row 

1R  is denoted by A= )( 1Rcirc . Following proposition is 

useful in development of the results in this paper.  

Proposition 2.1 [16, p. 288] If X and Y are type 1 matrices 

then YXXY = , = TT YXYX , XYXY T T= , TTT XYYX T= .  

 If 
nLLL ,,, 21   be n  type 1 (or circulant) ( 10, )-matrices of 

order m which satisfy (i) jiLL ji  0,=  (ii) 
mii

n

i
kILL =

1=  

where   denotes the Hadamard product, then these are 

called L-matrices of weight k . Two matrices A  and B  of 

order n  are said to be amicable if TT = BAAB  and anti-

amicable if OBAAB T =T  . For details of these notions 

authors refer to [5, 8, 6, 16]. 

 

III. MAIN RESULT 

 

3.1  Construction from orthogonal designs 

These construction theorems are dependent upon existence of 

certain matrices, special cases for which are known to exist.  

Theorem 3. Existence of )1,( i -matrices 
nAAA ,...,, 21

 of 

order m  which satisfy (i) kjiAAAA ijji ;1= **  (ii) 

mii

n

i
nmIAA =*

1=  and orthogonal design OD(nt;t,t,…,t)  

implies the existence of BSCH matrix of order nmt.  

  

Proof. Let X  be an OD(nt;t,t,…,t) on the commuting 

variables nixi 1,2,=,0, . We replace these variables with 

sAi '  above. Then X  can be written as 
ii

n

i
AWX  1=

=  where 

iW  are ( 10,1, )-matrices such that (i) 0=* ji WW  if ji   . 

(ii) nitIWW nt

T

ii ,1,2,=,=  . (iii) 0=T T

ijji WWWW  , 

nji 1 [4]. Let 
ii

n

i
WAY  1=

=  then  

 

mnt

ntm

ijjiji

nji

ntii

n

i

ijij

jiji

nji

iiii

n

i

mntI

tInmI

WWWWAAtIAA

WWAA

WWAAWWAAYY

=

0=

)()(=

)}(

){()(=

*

1

*

1=

*

*

1

*

1=

*

















 

i.e., Y  is a complex Hadamard matrix of order mnt. Also 

each ntnt  block 
ijH ; mji 1,2,=,  is a linear 

combination of sWi '  over },1,{1, ii   i.e., 
kk

n

k

ij WH 
1=

= ; 

},1,{1, iik   then  

nt

nt

T

kl

T

lk

nlk

kkkk

n

k

ijij

ntI

ntI

WWWWi

WWHH

=

0=

)()(1

))((=

1

*

1=

*



 







  

 i.e., each nt×nt block is a complex Hadamard matrix of 

order nt. Hence Y is the required BSCH matrix.  



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                    Vol. 6(2), 2019, ISSN: 2348-4519 

  © 2019, IJSRMSS All Rights Reserved                                                                                                                                    126 

  

Cor. 3.2 Existence of ( i1, )-matrices 
nAAA ,,, 21   of order 

m  which satisfy (i) kjiAAAA ijji ;1= **  (ii) 

mii

n

i
nmIAA =*

1=  and orthogonal design OD(nt;t,t,…,t) 

implies the existence of block structured half-full weighing 

matrix of order nmt.  

  

Proof. By matrix representation of complex numbers 













ab

ba
iba =  for 1 and i  in above construction.  

  

Cor. 3.3 Existence of ( i1,0, )-matrices 
kAAA ,,, 21   of 

order m  which satisfy (i) kjiAAAA ijji ;1= **  (ii) 

mii

k

i
rmIAA =*

1= ( mr  ) and (complex) orthogonal design 

OD(nt;t,t,…,t) implies the existence of block structured 

complex weighing matrix of order nmt and weight rmt each 

block having weight rt.  

  

Lemma 3.4 [5] Let X be an COD of order nt  and type 

( tttt ,,, ) on the commuting variables niAi ,1,2,=,   such 

that 
ii

n

i
AW  1=

 where 
iW  are ( i1,0, )-matrices of order n 

then (i) 0=* ji WW  if ji   (ii) nitIWW ntii ,1,2,=,=*  . 

(iii) 0=**

ijji WWWW  , nji 1 , where *W  is transpose 

conjugate of W .  

 

 

Theorem 3.5  Existence of ( i1, )-matrices 
nAAA ,,, 21   of 

order m  which satisfy (i) kjiAAAA ijji ;1= **  (ii) 

mii

n

i
nmIAA =*

1=  and COD ( tttnt ,,,;  ) implies the 

existence of BSCH matrix of order nmt.  

  

Proof. Let X be an COD(nt;t,t,…,t) on the commuting 

variables nixi 1,2,...=,0, . We replace these variables with 

sAi '  above. Then X  can be written as 
ii

n

i
AWX  1=

=  

where 
iW  are ( i1,0, )-matrices satisfying conditions of 

lemma (3.4). Define 
ii

n

i
WAY  1=

=  then using same 

argument as theorem (3.1) and employing the lemma (3.4) 

above we get 
nmtnmtIYY =* . i.e., Y  is a complex Hadamard 

matrix of order nmt. Now, each ntnt  block of Y  is 

;=
4

1= kkkrs WH   ,,1,2,=, msr   which is a COD(nt;t,t,t,t) 

on commuting variables i1,  since Hadamard product 
iW  

and 
jW  is zero matrix. Hence each 

rsH  is a complex H-

matrix.  

 

Theorem 3.6  Existence of ( 11, )-matrices 
nAAA ,,, 21   of 

order m  which satisfy (i) kjiAAAA
T

ij

T

ji ;1=  (ii) 

m

T

ii

n

i
nmIAA =

1=  and COD(nt;t,t,…,t) implies the existence 

of BSCH matrix of order nmt.  

  

Proof. Proof is Similar to theorem (3.1) and (3.5).  

 

Theorem 3.7  Existence of ( 11, )-matrices 
nAAA ,,, 21   of 

order m  which satisfy (i) kjiAAAA
T

ij

T

ji ;1= (ii) 

m

T

ii

n

i
nmIAA =

1=  and OD(nt;t,t,…,t) implies the existence 

of BSCH matrix of order nmt.  

  

Proof. Proof is Similar to theorem (3.1) and (3.5) using 

lemma (3.4).  

 

Remark 3.8 For 4=n  and 8  matrices 
iA  are known to exist 

for certain orders. These matrices are called Williamson-

type matrices and Eight- Williamson-type matrices 

respectively.  

 

Cor. 3.9  [11] Existence of Williamson matrices DCBA ,,,  

of order n  implies the existence of BCH matrix of order 4n, 

whose each 44  block is Hadamard matrix.  

  

Proof. Use Williamson‘s array as OD.  

 

Cor. 3.10  [12] Existence of symmetric, circulant ( 10, )-

matrices 
KAAA ,,, 21   of order m satisfying 

mrrtIA ni

k

i
 ,=2

1=
 and orthogonal design OD(nt;t,t,…,t) 

implies the existence of block-circulant weighing matrix of 

order nmt and weight rmt each ntnt  block having weight 

rt.  

 

Remark 3.11 These weighing matrices can be used to 

accelerate and compress deep neural networks as shown by 

Ding et al. [3]. 

  

So far block structured (complex) Hadamard matrices are 

constructed using real and complex orthogonal designs. Now 

we construct  infinite families of an orthogonal design. 

  

3.1.1  Infinite families of OD(4t;2t,2t) 

  

Theorem 3.12 Existence of Williamson matrices imply the 

existence of OD(4t;2t,2t).  

  

Proof. The proof is constructive. Let a  and b  be commuting 

variables. 
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Define 



















ba

ab
h

ab

ba
h =,= 21

 then  

.=,=

=

)(==

2211

1221

2

222

2

2

1

hhhh

Ohhhh

Ibahh

TT

TT




 

 Again define  

 


























 









 22

22

4

22

22

3

11

11

2

11

11

1 =,=,=,=
hh

hh
H

hh

hh
H

hh

hh
H

hh

hh
H  

then  

T 

Now using following Hadamard transform we obtain 

matrices 
iH , 1,2,3,4=i .     

    































































4

3

2

1

4

3

2

1

1111

1111

1111

1111

2

1
=

H

H

H

H

H

H

H

H

 

such that  

4.;1=

4;1)2(=

4;1)2(=

4

22

4

22







jiOHHHH

iIbaHH

jiIbaHHHH

T

ij

T

ji

T

ii

T

ij

T

ji

  

Replacing 1̂  by 1H  and 4,3,2,1  by 
4321 ,,, HHHH  

respectively in the result of Singh and Topno [11] and in 

Topno and Singh [14] we get the infinite family of 

),2;2(4 tttOD . Former depends upon the existence of 

Williamson matrices and the later upon Turyn-type 

Williamson matrices.  

 

 

3.2  Construction from certain arrays 

 

 In this section BSCH matrices are constructed using certain 

arrays having special properties. Some of their construction 

methods are also discussed.  

Theorem 3.13  Let M  and N  be two amicable ( i1, )-

matrices of order m  such that 
mmINNMM 2=**  , and 

2/)( NM  is a  )1,( i matrix, then there exists a BSCH 

matrix of order mn whose blocks are complex H-matrices of 

order n,  where n is the order of a complex H-matrix.  

  

Proof. Define )/2(= NMA   and )/2(= NMB   and let C  

be a complex Hadamard matrix of order n . Then there exists 

a complex Hadamard matrix D  of order n such that 

0=** DCCD   [16, p. ~296]. Define another matrix 

DBCAH = .Then  

  

mn

nmnm

n

n

nn

mnI

nImInImI

DCNMMNNNMM

CDNMMNNNMM

nINMMNNNMM

nINMMNNNMM

DC
NMNM

CD
NMNM

nI
NMNM

nI
NMNM

DCBACDABDDBBCCAAHH

=

)2(2
4

1
=

})(

)(

)(

){(
4

1
=

)
2

)(
2

()
2

)(
2

(

)
2

)(
2

()
2

)(
2

(=

)()()(=

*****

*****

****

****

*
**

*
**

****

*********



























 

i.e., H  is a complex Hadamard matrix. Let thji ),(  element 

of MBA ,,  and N  be denoted by 
ijijij mba ,, , and 

ijn  

respectively. Now, each nn  block mjiHij ,1,2,=,;   of 

H is given by  

)}()({
2

1
=

)(
2

1
)(

2

1
=

=

DCnDCm

DnmCnm

DbCaH

ijij

ijijijij

ijijij






    

 and  

 

)2)((
4

1
=

]==[)}2(

0)(20)(2{
4

1
=

)}(

)(

)(

)({
4

1
=

))(())((

)})(())(({
4

1
=

)}()()}{()({
4

1
=

****

****

****

****

****

****

****

*****

nijijijij

ijijijijijij

nijijnijij

ijij

ijij

ijij

ijij

ijijijij

ijijijij

ijijijijijij

nInnmm

NMMNasmnnmDDCCnm

nInnnImm

DCCDDDCCmn

DCCDDDCCnm

DCCDDDCCnn

DCCDDDCCmm

DCDCmnDCDCnm

DCDCnnDCDCmm

DCnDCmDCnDCmHH





















 

 Now 






otherwise

jiif
nnmm ijijijij

0

=2
=  

 [Since 
mmINMMN 2=**  ] 

Therefore  

n

nijij

nI

nIHH

=

}2{2
4

1
=*   

 Hence 
ijH  is a complex Hadamard matrix of order n.  

  

Remark 3.14 If matrices C and D in above theorem are 

symmetric or skew-symmetric then resulting matrix is block-

wise symmetric or skew.  
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Following result from Geramita et. al. [5] is a corollary to the 

theorem (3.13) .  

Cor. 3.15 Let M and N be circulant ( i1,0, )-matrices of 

order n such that 
nfINNMM =**  , nf   and 2/)( NM  is 

a  )1,( i matrix, then there exists a block structured 

complex weighing matrix of weight f  and order n2 . 

 

In the above constructions BSCH matrices depend upon the 

existence of matrices M & N. Now we discuss some of the 

methods to construct M & N. 

 

3.2.1  Construction of matrices M & N 

  

Theorem 3.16 If A, B, C, D are Williamson-type matrices of 

order n (odd) then BiAiM )1(
2

1
)1(

2

1
  and 

DiCiM )1(
2

1
)1(

2

1
 .  

Proof. Straightforward verification.  

  

Theorem 3.17 If there exist complex Hadamard matrix 
nH2
 

of the form









 ** AB

BA   or 









 ** CD

DC  such that 

2/)(&2/)( DCBA  are  )1,( i matrices, then M=A 

and N=B are required M & N matrices of (3.13).  

 

Theorem 3.18 [10] Existence of BIBD with 

1=2),(2=,2=1,22= 2  kvrvbkkv  implies the 

existence of matrices M  & N  of orders 1)22(2 2  kk .  

 

 

Now we discuss another method of construction for BSCH 

matrix.  

 

Theorem 3.19 If there exist four 1)(0, -matrices 

4;1  iX i
 of order 2t  such that  
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and two L-matrices L1 and L2 of order  and weight  

(i) then there exists a complex Hadamard matrix of order 2mt 

(ii) and if two of Xi‘s have same sign then there exists a 

BSCH matrix of order 2mt with complex Hadamard blocks 

of order 2t.  

  

Proof. Define 
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212211

=,=

=,=

LLALLA

LLALLA




 (3.1) 

 then 4;1  iAi
 are type 1 (or circulant) matrices of order 

m  such that  
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 (3.2) 
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 (3.3) 

Then 
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 then by virtue of (3.2)  
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   is a complex Hadamard matrix of order 2mt. Also in 

2t×2t partition of , each pq
th

-block  is of the form  

 

).)((1
2

1
))((1

2

1
= 34124321 XXXXiXXXXiH pq   

If two of Xi‟s have same sign then 
tpqpq tIHH 2

* 2= ,  

which can be verified directly.  

 

 

Cor. 3.20 If there exist L-matrices and Xi‟s-matrices of 

theorem (3.19) then there exists a Hadamard matrix of order 

4mt.  

  

Proof. Render the matrix  obtained in theorem (3.19) in the 

form H=P+iQ then, following the result of Craigen et. al. [2] 

the required matrix is  
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.
11

11

11

11



















 QP  

  

  

Cor. 3.21 If there exist  Xi‟s -matrices and anti-amicable L-

matrices of theorem (3.19)  

(i) then there exists a BSH matrix of order 2mt with 

Hadamard blocks of order 2t 

(ii) and if two of Xi‟s have same sign then there exists a BSH 

matrix of order 2mt with Hadamard blocks of order 2t.  

  

Proof. 

})(

)()(){(
2

1
=

443

343221121

XAA

XAAXAAXAAHDefine

TT

TT



  

  

 and follow the argument of (3.19).  

  

Theorem 3.22 If there exist Xi-matrices of theorem (3.19 ) 

and two L-matrices L1 and L2 of order m and weight k, 

(k≤m)(i) then there exist complex weighing matrix of order 

2mt and weight 2kt and (ii) if two of Xi‟s have same sign then 

there exist complex weighing matrix of order 2mt and weight 

2kt each 2t×2t blocks being a weighing matrices of weight k.  

 

Matrices Xi„s used in this section exist for certain orders. 

Following section deals with some of the methods of 

construction of these matrices. 

 

3.2.2  Construction of matrices 
iX ; 41  i  

  

Theorem 3.23 If 
n

iX ; 41  i  be the matrices of order n 

satisfying theorem (3.19) then 
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Proof. Straightforward verification.  

  

Remark 3.24 For n=2 following matrices satisfy the 

equation:  
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01

00
=,

00

10
=,

10

00
=,

00

01
= 4321 XXXX  

.  

Following section deals with the construction of L-matrices. 

 

3.2.3  Construction of L-matrices 

  

Theorem 3.25 If there exist two Golay pairs A & B of order 

 then L1=circ(A+B)/2  and L2=circ(A-B)/2 are two L-

matrices of same order.  

  

Theorem 3.26 If there exist two L-matrices of order  and 

two L-matrices of order n then there exist two L-matrices of 

order mn.  

  

Proof. Let l1 & l2 be L-matrices of order m and L1 & L2 be L-

matrices of order n. Define  

 

)}.()()(){(
2

1
=

)}()()(){(
2

1
=

12212121

12212121

LLllLLllQ

LLllLLllP
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  

Then it can be directly verified that P & Q are required L-

matrices of order mn.  

 

 

Remark 3.27 So far only one pair of anti-amicable L-

matrices are found viz circ(1 -1 0 0) and circ(0 0 1 1).  

 

IV. CONCLUSION & FUTURE SCOPE 

We have extended the results of Agaian and other authors in 

this paper by constructing block structured (complex) 

Hadamard matrices of orders nmt, where nt is order of a 

(complex) Orthogonal Design and  m is order of some 

suitable matrices. Moreover BSCH matrices of orders mn 

and 2mt are also constructed, where m, n, t are defined in 

theorems 3.13 and 3.19. These methods use matrices Xi, M, N 

and L. Their methods of consructions are also discussed. In 

addition to this infinite families of OD(4t; 2t, 2t) are 

constructed. Block structured weighing matrices are also part 

of the above results. Orthogonal Designs and other arrays Xi, 

M, N and L of new orders will produce BSCH matrices of 

new orders. 

REFERENCES 

[1]  S. S. Agaian,  “Hadamard matrices and their Applications”, 

Springer- Verlag, Berlin Heidelberg, New York, Tokyo, pp.78-102, 

1985. 

[2]  R. Craigen, W. Holzmann and H. Kharaghani, ―Complex Golay 

sequences: structure and applications‖ Discrete Math., Vol. 252 ,pp 

73–89, 2002. 

[3]  C. Ding, S. Liao, Y. Wang, et. al. ―CircNN: Accelerating and 

compressing deep neural networks using block-circulant weight 

matrices‖, International symposium on microarchitecture (MICRO) 

pp.395-408, 2017.. 

[4]  J. Hadamard, ―Résolutiond‟une question relative aux déterminants‖, 

Bull. Sci. Math., Vol. 17, pp. 240-246, 1893. 

[5]  A. V. Geramita  and J. M. Geramita, ―Complex orthogonal designs‖ 

J. Combin. Theory Ser. A, Vol. 25 , pp.211–225, 1978. 

[6]  M. Hall (Jr.),  “Combinatorial Theory”, Wiley- Interscience, 2nd 

edition, pp.238-263, 1988. 



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                    Vol. 6(2), 2019, ISSN: 2348-4519 

  © 2019, IJSRMSS All Rights Reserved                                                                                                                                    130 

[7]  O. Mateo,  D. Ž. Doković and I. S. Kotsireas, ―Symmetric Hadamard 

matrices of order 116 and 172 exist‖, Spec. Matrices, Vol. 3, 

pp.227–234, 2015. 

[8]  J. Seberry,  “Orthogonal Designs: Hadamard Matrices, Quadratic 

Forms and Algebras”, Springer International Publishing AG 2017. 

[9]  J. Seberry and N. A. Balonin, ―Two infinite families of symmetric 

Hadamard matrices‖, Australas. J. Combin. Vol. 69, No. 3, pp.349–

357, 2017. 

[10] M. K. Singh, K. Sinha and S. Kageyama, ―A construction of 

Hadamard matrices from BIBD( )‖, Australas. 

J. Combin., Vol. 26, pp.93–97, 2002. 

[11]  M. K. Singh, and S. N. Topno, ―On the construction of Hadamard 

matrices of order 4n (n odd, n 3) with Hadamard blocks of order 

4‖, Acta Cient. Indica, Vol XL M, No.  3, pp.309–313, 2014. 

[12]  M. K. Singh, S. N. Topno and  T. Paswan, ―Anticirculant structured 

block weighing matrices from Williamson matrices‖, Int. J. Math. 

Trends Tech., Vol. 52, No. 4, pp.43-47, 2017. 

[13] J. J. Sylvester, ―Thoughts on inverse orthogonal matrices, 

simultaneous sign successions, and tessellated pavements two or 

more colours, with applications to Newton‟s rule, ornamental tile-

work, and the theory of numbers‖, Phil. Mag. Vol. 34, No. 1, pp. 

461–475, 1867. 

[14]  S. N. Topno and M. K. Singh, ―Construction of Block Structured 

Complex Hadamard Matrices‖, Acta Cient. Indica, Vol. XLIII M,  

No. 2 , pp.109–115, 2017. 

[15]  R. J. Turyn,―An infinite Class of Williamson Matrices‖, J. Combin. 

Theory Ser. A, Vol. 12, pp. 319–321, 1972. 

[16]  W. D. Wallis, A. P. Street and J. S. Wallis,  Combinatorics: Room 

Squares, Sum-Free Sets, Hadamard matrices, Springer-Verlag, 

Berlin-Heidelberg, New York, pp.279-299, 1972. 

[17] P. Mazumder, R. Middya and M. K. Naskar, ―Hardware 

Implementation of Fast Recursive Walsh-Hadamard Transform‖, 

International Journal of Computer Sciences and Engineering, Vol.7, 

Issue.1, pp.28-32, 2019. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AUTHORS PROFILE 

Mr. S. N. Topno is a research scholar in 

the Department of Mathematics, Ranchi 

University, Ranchi, India. He is working 

under the supervision of Prof. M. K. 

Singh. His area of specialization is 

Combinatorics. 

 

 

 

Dr. M. K. Singh is a retired professor of 

Mathematics, Department of 

Mathematics, Ranchi University, Ranchi, 

India. His area of specialization is 

Combinatorics. He has published several 

papers in the reputed journals. 
 


