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Abstract— This article investigates some methods to construct Hadamard matrices, made up of other Hadamard blocks of
lower orders. Some methods are presented to construct families of real and complex block structuted Hadamard matrices using
real and complex orthogonal designs together with some suitable matrices. Other new arrays are also introduced to construct
block structured (complex) Hadamard matrices, along with a few methods for their constructions. Block structured (complex)
Hadamard matrices have further resulted in (block structured) weighing matrices. Also infinite families of orthogonal design of
order 4t and type (2t, 2t) are also constructed which depend upon the existence of Williamson matrices and Turyn-type

Williamson matrices.
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l. INTRODUCTION

Hadamard matrices were first studied by Sylvester in 1867
[13]. He gave a recursive formula for Hadamard matrices.
i.e., given a Hadamard matrix of order 2" a new Hadamard
matrix of order 2™ can be constructed. These Hadamard
matrices have each 2"x2" blocks Hadamard matrices. These
matrices are used in Walsh-Hadamard transform extensively
[17]. However, significance of these matrices were later
discovered by Jacques Hadamard in 1893. He had shown that
Hadamard matrices are the extremal solutions of maximum
determinant problem [4]. Later on such matrices were named
after J. Hadamard. Hadamard matrices exist only for orders
1, 2 or a multiple of 4. It is conjectured that these matrices
exist for each multiple of 4. In 1980s S. S. Agaian studied
block circulant Hadamard (BCH) matrices [1]. These
matrices can be regarded as the generalization of Sylvester’s
matrices, as BCH matrices are constructed from Hadamard
blocks of order 4. Sylvester’s matrices have number of
Hadamard blocks even in each row (column), whereas BCH
matrices have number of Hadamard blocks odd in a row
(column). In 2014 Singh and Topno [11] discovered the
infinite families of such matrices whose existence is
dependent upon existence of Williamson matrices. Such
matrices are constructed from a set of five Hadamard
matrices of order 4. Although, these matrices are block
circulant, we prefer to call them block structured Hadamard
(BSH) matrices for the purpose of generalization. Later in
2017, Topno and Singh reduced the number of constructing
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blocks to be 3 [14]. But in this case Turyn’s method [15] was
employed, which is a special case of Williamson’s matrix.
Moreover they produced block structured complex
Hadamard matrices. Also, they constructed families of block
structured half-full weighing matrices using such matrices.

In the present paper authors have generalized the result using
complex orthogonal designs. Block structured half-full
weighing matrices arose as a biproduct. Apart from
orthogonal designs, block structured complex Hadamard
matrices are also constructed using certain arrays having
special properties. Symmetric and  skew-symmetric
Hadamard matrices are of special interest among the authors
[9, 7]. The Hadamard matrices constructed in this paper are
block-wise symmetric or skew-symmetric according as the
array (OD or other) used is symmetric or skew.

Section | contains the introduction of the research work
presented in this paper. Section Il contains the basic
terminologies used in the main construction. Section Il
contains the main result of the paper in the forms of many
theorems and corollaries. Section IV is the concluding
section.

Il. PRELIMINARIES
We introduce certain elementary concepts here, which are

useful in constructing BSH matrices. A Hadamard matrix
(H-matrix) H is a (1, -1)-matrix of order n such that
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HH'=nl,. Here H' is transpose of H and 1, is identity matrix
of order n. This property implies that every two distinct rows
(columns) of Hadamard matrix have inner product zero. An
H-matrix of order mn (n, a multiple of 4) will be called block
structured Hadamard matrix (BSH matrix) if its nxn blocks
are H-matrices. A matrix H of order n is said to be a complex
Hadamard matrix if it has entries from {x1, #*i} and
HH=nl,. Here H" is conjugate transpose of H and I, is
identity matrix of order n. A complex Hadamard matrix of
order mn (n, a multiple of 2) will be called block structured
complex Hadamard matrix (BSCH matrix) if its nxn blocks
are complex Hadamard matrices. A (0, 1, -1)- matrix W of
order n is said to be a weighing matrix if WW'=Kl,, (k<n is a
positive integer). k is called the weight of W. In fact
Hadamard matrix is a special case of weighing matrix where
weight is equal to the order of the matrix. A complex
weighing matrix of weight k and order n is an nxn matrix 4,
with entries from {#1, *i} satisfying AA'=kl, (k<n). A
(complex) weighing matrix of order mn (n, order of a
(complex) weighing matrix) will be labeled as ‘block
structured” if each nxn block is a (complex) weighing
matrix. An orthogonal design (OD) of order n and type
(5,,5;,--+5,) (s; positive integers) on the commuting
variables is an n x n matrix X, with entries chosen from the
set {+X,,£X,,...,£ X} suchthat xxT I(z:,lsixiz)h [4]. A

complex orthogonal design (COD) of order n and type
(S;,S,,.-+S,) (s; positive integers) on the real commuting
variables X, X,,..., X, is an nxn matrix X, with entries
chosen from &, x,,&,X,,..., X, |& is a fourth root of 1
satisfying XX*:(Z::lsiXiz)ln [5]. If A=(a;) is an mxm
matrix and B = (b, ) is an nxn matrix, then the Kronecker
product AxB is the mnxmn matrix given by AxB = (a;B)-
It is easy to see that (AxB)( CxD)= ACxBD and
(AxB)" = A" xB" . Hadamard product of two matrices
A=(a;) and B = () of order n is a matrix of order n given
by A*B = (a;by)- The binary operation ‘+’ here should not be
confused with the symbol for conjugate transpose above.

Let the elements Z; of an additive abelian group G be
ordered in a fixed way. Let X =G . Then the matrix p = m,)

defined by
_ _J1 it -z eX,

My =y/(2,-7,), where W(Zj_zi)_{o otherwise,

is called type 1 incidence matrix of X in G . A Circulant
matrix M =(m;) defined by my =m,; ;,, is a special
case of type 1 matrix. A circulant matrix A with its first row
R, is denoted by A= circ(R,) - Following proposition is
useful in development of the results in this paper.
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Proposition 2.1 [16, p. 288] If X and Y are type 1 matrices
then XY =YX, XY =YXT, XYT =Y"X,XYT =Y"X".
If L,L,,...,L, be N type 1 (or circulant) (0,+1)-matrices of
order m which satisfy (i) L, *L;=0,i# ] (i) Zinzl'-i'-i =kl
where * denotes the Hadamard product, then these are
called L-matrices of weight K. Two matrices A and B of
order N are said to be amicable if AB™ =BAT and anti-

amicable if ABT + BAT =O. For details of these notions
authors refer to [5, 8, 6, 16].

1. MAINRESULT

3.1 Construction from orthogonal designs

These construction theorems are dependent upon existence of
certain matrices, special cases for which are known to exist.
Theorem 3. Existence of (+1,+i) -matrices A, A,,..., A, of
order M which satisfy (i) AA = AAL<i = j<k (i)
Z-n-ﬁ A =nml_ and orthogonal design OD(nttt,....1)
implies the existence of BSCH matrix of order nmt.

Proof. Let X be an OD(nttzt...,£) on the commuting
variables 0,+x,i =1,2,...n. We replace these variables with

A's above. Then X can be written as x = Zi”:lwi x A where
w, are (0,1,~1)-matrices such that (i) W, *W, =0 if 1+ ] .
() ww,' =t ,i=12,.,n . (i) ww’ +ww =0
1<i=j<n[4]. Lety= Zi”:lAi xW, then

YY" = Z(AA*xwiwi)+ 3 {(AA xWW,)

1<i# j<n

(A W)}
= (iAjA:)Xt' nt T Z AA:X(\/\IIWJ +WjWi)

1<i# j<n

=nml, xtl  +0
=mntl,,

i.e., Y is a complex Hadamard matrix of order mnt. Also
each ntxnt block H, | i,j=12..m is a linear

combination of W,'s over {1,-1,i,—i} ie., Hy = Y oW, o
k=1
o, €{1,-1,i,—i} then
H ii H; = Z(pkwk)(pkwk )*
k=1

+(1+01) Y WW, " +ww, ")
N + 0 1<k=l<n
=ntl,
i.e., each ntxnt block is a complex Hadamard matrix of
order nt. Hence Y is the required BSCH matrix.

=ntl
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Cor. 3.2 Existence of (+1,+i )-matrices A, A,,...,A of order
m  which satisfy (i) AA;:AjA*;lgi;thk (i)
Z-nzlpxpf=”m'm and orthogonal design OD(nttt,...,1)

implies the existence of block structured half-full weighing
matrix of order nmt.

Proof. By matrix representation of complex numbers
a+ib { a b} for 1 and 1 in above construction.
-b a

Cor. 3.3 Existence of (0,1, )-matrices A,A,,...,A of
order m which satisfy (i) AAJ?:AJA(;lgi;gjgk (i)
Z_{Ap‘*:rmm (r<m) and (complex) orthogonal design

OD(nt;tt,...,t) implies the existence of block structured
complex weighing matrix of order nmt and weight rmt each
block having weight rt.

Lemma 3.4 [5] Let X be an COD of order Nt and type
(t,t,t,t) on the commuting variables A,i=1,2,...,n such

that Zi”:lwi x A Where W, are (0,+1,+i)-matrices of order n
then (i) w,*w, =0 if i=j (i) WW™ =t ,i=12,..,n.
(i) WW+WW," =0, 1<i= j<n, where w" is transpose
conjugate of W .

Theorem 3.5 Existence of (+1,+i)-matrices A, A,..., A, of
order m which satisfy (i) AA;:AjA*;lgi;ejgk (i)
n * . - .

> AA =nml, and COD ( nt;tt,..t ) implies the
existence of BSCH matrix of order nmt.

Proof. Let X be an COD(ntt4t,...,t) on the commuting
variables 0,+x;,i =1,2,..n. We replace these variables with
A's above. Then X can be written as x:zi”:l\/\/ix,oﬁ
where W, are (0,+1,+i )-matrices satisfying conditions of
lemma (3.4). Define Y:Zi”:ﬁxwi then using same

argument as theorem (3.1) and employing the lemma (3.4)
above we get YY" =nmtl . i.e, Y is a complex Hadamard

matrix of order nmt. Now, each ntxnt block of Y s
H, :Z‘k‘:lpkwk; r,s=1,2,...,m, Which is a COD(nt;t,t,t,t)
on commuting variables +1+i since Hadamard product w,
and W, is zero matrix. Hence each H_ is a complex H-
matrix.
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Theorem 3.6 Existence of (1,—1)-matrices A, A,,..., A, of
order M which satisfy (i) AA" =AA 1<izj<k (i)
>UA A" =nml_ and COD(nt,11,...,t) implies the existence
of BSCH matrix of order nmt.

Proof. Proof is Similar to theorem (3.1) and (3.5).

Theorem 3.7 Existence of (1,—1)-matrices A, A,,..., A, of
order m which satisfy (i) AAJT :AjAT;lgi;gjgk (ii)

n T _ . - - .
Zi:lAiAi =nml and OD(nt1¢...,t) implies the existence
of BSCH matrix of order nmt.

Proof. Proof is Similar to theorem (3.1) and (3.5) using
lemma (3.4).

Remark 3.8 For n=4 and 8 matrices A are known to exist

for certain orders. These matrices are called Williamson-
type matrices and Eight- Williamson-type matrices
respectively.

Cor. 3.9 [11] Existence of Williamson matrices A B,C,D

of order N implies the existence of BCH matrix of order 4n,
whose each 4x4 block is Hadamard matrix.

Proof. Use Williamson’s array as OD.

Cor. 3.10 [12] Existence of symmetric, circulant (0,+1)-
matrices A, A,,...,A, of order m satisfying
Zf(_lp‘?:run,rgm and orthogonal design OD(nttt,...,1)

implies the existence of block-circulant weighing matrix of
order nmt and weight rmt each ntxnt block having weight
rt.

Remark 3.11 These weighing matrices can be used to
accelerate and compress deep neural networks as shown by
Ding et al. [3].

So far block structured (complex) Hadamard matrices are

constructed using real and complex orthogonal designs. Now
we construct infinite families of an orthogonal design.

3.1.1 Infinite families of OD(4t;2t,2t)

Theorem 3.12 Existence of Williamson matrices imply the
existence of OD(4t;2t,2t).

Proof. The proof is constructive. Let a and b be commuting
variables.
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Define h, = [_ba b}hz = {b ab} then
a a -

h? =hZ =(a® +b?)l,
hh,” +h,h," =0
T T
h, =h,h, =h,.
Again define
then

L e e A
h1hlyzhlhlysz_th4h2h2
T

Now using following Hadamard transform we obtain
matrices H,, i=1,2,3,4-

Hi 11 1 17H,
H.| 1|1 1 -1 -1|H,
Hs| 2[1 -1 1 -1|H,
Ha 1 -1 -1 1]|H,
such that
— T J—
HH; +HH, =+2@%+b?)l1<i=j<4
— T
HiHi =2(° +b ),1<i<4
— T
HiH; +H; Hi =0;1<i= j<4.

Replacing 1 by H: and 1234 by H,H,H,H,
respectively in the result of Singh and Topno [11] and in
Topno and Singh [14] we get the infinite family of
oD(4t;2t,2t) . Former depends upon the existence of
Williamson matrices and the later upon Turyn-type
Williamson matrices.

3.2 Construction from certain arrays

In this section BSCH matrices are constructed using certain
arrays having special properties. Some of their construction
methods are also discussed.

Theorem 3.13 LetM and N be two amicable (+1+i)-

matrices of order M such that MM™+NN"=2ml_, and
(M +£N)/2is a (+i,+1)— matrix, then there exists a BSCH

matrix of order mn whose blocks are complex H-matrices of
order n, where n is the order of a complex H-matrix.

Proof. Define A= (m +N)/2 and B=(M —N)/2 and let C

be a complex Hadamard matrix of order n . Then there exists
a complex Hadamard matrix D of order n such that
cD +DCc" =0 [16, p. ~296]. Define another matrix
H =AxC+BxD.Then
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HH = (AA"xCC"+BB xDD")+(AB" ><CD*) +(BA"+DC")
- (M;N)(u> ant, + (MMM 2”) nl,
(M+N)(M ) oD (M N)(M +N) bC
= %{(MM +NN +MN*+NM*)xn|n
+(MM™+NN"=MN"—NM")xnl
+(MM"=NN"-~MN"+NM")xCD"
+(MM™=NN"+MN" - NM")x DC}
= %(Zmlmxnln+2mlmxnln)
= mnl,,
i.e., H is a complex Hadamard matrix. Let (i, j)™ element
of AB,M and N be denoted by a;,b;,m;, and n,
respectively. Now, each nxn block Hyij=12,...,m of
H is given by
H; = ainC"‘binD
= %(mij+nij)xC+%(mij—nij)xD
= %{mij x(C+D)+n; x(C-D)}
and

1 — =
iH; = Z{m".X(C+D)+nijx(ch)}{mi,-x(c +D)+nix(C =D}
1, — .- .

= Z{m”mijx(C+D)(C +D)+nnix(C-D)(C -D')}
+m;ni x(C +D)(C"~D")+n;m;(C-D)(C"+D")
1, — e e e

= Z{m".mi,-x(cc +DD" +CD"+DC)
+n;n;x(CC"+DD"~CD" - DC")
+m; Ny x(CC"~DD"~CD"+DC")
+n,;m; x(CC"~DD"+CD"+DC")}
1 — —

= Z{mijm.,x(2n|n+0)+nijn.jx(2nln—0)
+m,nyx2(CC"~DD")} [mynj=n;m; as MN"=NM’]

1 _ _
= Z((mijmij+nijnij)x2nln)

2 if i=j
0 otherwise
[Since MN™+NM™ =2ml ]
Therefore
H.H; = %{2x2n|n}
= nl,
is a complex Hadamard matrix of order n.

Now m; Mij + Ny Nij :{

Hence H;

Remark 3.14 If matrices C and D in above theorem are
symmetric or skew-symmetric then resulting matrix is block-
wise symmetric or skew.
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Following result from Geramita et. al. [5] is a corollary to the
theorem (3.13) .
Cor. 3.15 Let M and N be circulant (0,+1,+i )-matrices of

order n such that MM™+NN" = fl_, f <n and (M +N)/2is
a (4i,+1)— matrix, then there exists a block structured
complex weighing matrix of weight f and order 2n.

In the above constructions BSCH matrices depend upon the
existence of matrices M & N. Now we discuss some of the
methods to construct M & N.

3.2.1 Construction of matrices M & N

Theorem 3.16 If A, B, C, D are Williamson-type matrices of
order n (odd) then M\ :£(1+i)A+1(1—i)B and
2 2

1, . 1, .
M =5(1+|)C +§(1—|)D-

Proof. Straightforward verification.

Theorem 3.17 If there exist complex Hadamard matrix H,

of the form | A B or |[C D | such that
-B* A* D*-C*

(A+B)/2 &(C+D)/2 are (+i,+1)— matrices, then M=A

and N=B are required M & N matrices of (3.13).

Theorem 3.18 [10] Existence of BIBD with
v=2k*-2k+1,b=2v,r=2v(k>2),A=1 implies the
existence of matrices M & N of orders 2(2k* -2k +1).

Now we discuss another method of construction for BSCH
matrix.

Theorem 3.19 |If there exist four
X;;1<i<4 of order 2t such that

(0,£1) -matrices

T

. T T T

(i) X Xy =XX5 , X, X, =X,X,
X X, 4+ X, X, =ty

(i) X, X," ==X, X, X, X, ==X, X,

(i) X, X, =X,X, =X, X, =X,X, =X,X,

T T T

=X,X, =X,X, =X,X, =0

and two L-matrices L, and L, of order m and weight m

(i) then there exists a complex Hadamard matrix of order 2mt

(if) and if two of X;’s have same sign then there exists a

BSCH matrix of order 2mt with complex Hadamard blocks
of order 2t.

T

Proof. Define
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A= L+LA=L+L,
A= -L+L,A=L-L,

then A;1<i<4 are type 1 (or circulant) matrices of order
m such that

3.1

(i) A1A1T +A3A3T =2ml, = AzAzT +A4A4T
()AA =AAAA =AA AA =A"A,

3.2)
T T _ TAT..
ATAT=ATATL {1,234

(i) AA, —AA +AAT-AA =0,

Let H= (LA XX + A <X, +AxX; +A xX,}

3.3)

+ N

%(1—i){A1T XX, + A, x X, + A, XX, +A,xX,}
Then

4
HH = SAA <X X,
i=1

SCHAA, = A+ (A A — A AP XX,
A A -ATADHATA AT A XX,
IE[{(AlAzT _AzAiT)"'(AaAAT —A4A3T)}>< X1X1T
A, A=A A (AT A -ATAIX, X,
HAA, — AA)+(AA, — A A XX,
AT -ATADFATAT -ATAT XX,
then by virtue of (3.2)
HH = iAATxxixf
= (AA"+ /;AJ)X XX, +(AA +AA) XXX,
= 2ml, <O X.X,)
= oml xtl,
= 2mtl,,.

= H is a complex Hadamard matrix of order 2mt. Also in
2tx2t partition of H, each pq™-block H,, is of the form

H, :%(1+i)(ixli X, + X, + x4)+%(1—i)(ix2 £X, X, EX,).
If two of X;’s have same sign then H qu;q =2tl,,,
which can be verified directly.

Cor. 3.20 If there exist L-matrices and X;’s-matrices of
theorem (3.19) then there exists a Hadamard matrix of order
4mt.

Proof. Render the matrix H obtained in theorem (3.19) in the

form H=P+iQ then, following the result of Craigen et. al. [2]
the required matrix is
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P 1 1 +Q -1 1
X X .
1 - 1 1

Cor. 3.21 If there exist X;’s -matrices and anti-amicable L-
matrices of theorem (3.19)

(i) then there exists a BSH matrix of order 2mt with
Hadamard blocks of order 2t

(ii) and if two of X;’s have same sign then there exists a BSH
matrix of order 2mt with Hadamard blocks of order 2t.

) 1

Proof, Defite H =_{(A+ A)x X, + (A" +A)x X, (A - A)xX,

+(A -AT)x X}
and follow the argument of (3.19).
Theorem 3.22 If there exist Xi-matrices of theorem (3.19 )
and two L-matrices L; and L, of order m and weight K,
(k<m)(i) then there exist complex weighing matrix of order
2mt and weight 2kt and (ii) if two of X;’s have same sign then
there exist complex weighing matrix of order 2mt and weight
2kt each 2tx2t blocks being a weighing matrices of weight k.
Matrices X;‘s used in this section exist for certain orders.

Following section deals with some of the methods of
construction of these matrices.

3.2.2 Construction of matrices X,; 1<i<4

Theorem 3.23 If X, 1<i<4 be the matrices of order n

satisfying theorem (3.19) then
X12n :l:))((ln _X)(ln :l’XZZn :|:);z" _X;“ :|'X32n :|:;(3” _Xx3" :|'.
Zn 2n 1n ln 4 4n
X X
X42n :|:X4n —)zn :|
3n 3n
Proof. Straightforward verification.

Remark 3.24 For n=2 following matrices satisfy the
equation:

10 0O O 01 00
X1: ’X2: ’X3: ’X4:
0 O 0 -1 00 1 0
Following section deals with the construction of L-matrices.

3.2.3 Construction of L-matrices
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Theorem 3.25 If there exist two Golay pairs A & B of order
k then L;=circ(A+B)/2 and L,=circ(A-B)/2 are two L-
matrices of same order.

Theorem 3.26 If there exist two L-matrices of order m and
two L-matrices of order n then there exist two L-matrices of
order mn.

Proof. Let I; & I, be L-matrices of order mand L; & L, be L-
matrices of order n. Define

P= %{01 +|2)X(L1 + L2)+(I1 —|2)><(L2 - Ll)}
Q= %{(|1+|2)><(L1— L)+, — 1) (L, + L)}

Then it can be directly verified that P & Q are required L-
matrices of order mn.

Remark 3.27 So far only one pair of anti-amicable L-
matrices are found viz circ(1 -1 0 0) and circ(0 0 1 1).

IV. CONCLUSION & FUTURE SCOPE

We have extended the results of Agaian and other authors in
this paper by constructing block structured (complex)
Hadamard matrices of orders nmt, where nt is order of a
(complex) Orthogonal Design and m is order of some
suitable matrices. Moreover BSCH matrices of orders mn
and 2mt are also constructed, where m, n, t are defined in
theorems 3.13 and 3.19. These methods use matrices X;, M, N
and L. Their methods of consructions are also discussed. In
addition to this infinite families of OD(4t; 2t, 2t) are
constructed. Block structured weighing matrices are also part
of the above results. Orthogonal Designs and other arrays X;,
M, N and L of new orders will produce BSCH matrices of
new orders.
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