International Journal of Scientific Research in \qquad

Construction of Some Block Structured (Complex) Hadamard Matrices

S. N. Topno ${ }^{1^{*}}$, M. K. Singh ${ }^{2}$
${ }^{1,2}$ Dept. of Mathematics, Ranchi University, Ranchi, India
*Corresponding Author: sheetnihal45@gmail.com

Available online at: www.isroset.org
Received: 29/Mar/2019, Accepted: 14/Apr/2019, Online: 30/Apr/2019

Abstract

$\overline{\text { Abstract - This article investigates some methods to construct Hadamard matrices, made up of other Hadamard blocks of }}$ lower orders. Some methods are presented to construct families of real and complex block structuted Hadamard matrices using real and complex orthogonal designs together with some suitable matrices. Other new arrays are also introduced to construct block structured (complex) Hadamard matrices, along with a few methods for their constructions. Block structured (complex) Hadamard matrices have further resulted in (block structured) weighing matrices. Also infinite families of orthogonal design of order $4 t$ and type $(2 t, 2 t)$ are also constructed which depend upon the existence of Williamson matrices and Turyn-type Williamson matrices.

Keywords-Hadamard matrix, weighing matrix, orthogonal design, plug-in arrays, Kronecker product.

I. INTRODUCTION

Hadamard matrices were first studied by Sylvester in 1867 [13]. He gave a recursive formula for Hadamard matrices. i.e., given a Hadamard matrix of order 2^{n} a new Hadamard matrix of order $2^{\text {n+1 }}$ can be constructed. These Hadamard matrices have each $2^{\mathrm{n}} \times 2^{\mathrm{n}}$ blocks Hadamard matrices. These matrices are used in Walsh-Hadamard transform extensively [17]. However, significance of these matrices were later discovered by Jacques Hadamard in 1893. He had shown that Hadamard matrices are the extremal solutions of maximum determinant problem [4]. Later on such matrices were named after J. Hadamard. Hadamard matrices exist only for orders 1,2 or a multiple of 4 . It is conjectured that these matrices exist for each multiple of 4. In 1980s S. S. Agaian studied block circulant Hadamard (BCH) matrices [1]. These matrices can be regarded as the generalization of Sylvester's matrices, as BCH matrices are constructed from Hadamard blocks of order 4. Sylvester's matrices have number of Hadamard blocks even in each row (column), whereas BCH matrices have number of Hadamard blocks odd in a row (column). In 2014 Singh and Topno [11] discovered the infinite families of such matrices whose existence is dependent upon existence of Williamson matrices. Such matrices are constructed from a set of five Hadamard matrices of order 4. Although, these matrices are block circulant, we prefer to call them block structured Hadamard (BSH) matrices for the purpose of generalization. Later in 2017, Topno and Singh reduced the number of constructing
blocks to be 3 [14]. But in this case Turyn's method [15] was employed, which is a special case of Williamson's matrix. Moreover they produced block structured complex Hadamard matrices. Also, they constructed families of block structured half-full weighing matrices using such matrices.

In the present paper authors have generalized the result using complex orthogonal designs. Block structured half-full weighing matrices arose as a biproduct. Apart from orthogonal designs, block structured complex Hadamard matrices are also constructed using certain arrays having special properties. Symmetric and skew-symmetric Hadamard matrices are of special interest among the authors [9,7$]$. The Hadamard matrices constructed in this paper are block-wise symmetric or skew-symmetric according as the array (OD or other) used is symmetric or skew.

Section I contains the introduction of the research work presented in this paper. Section II contains the basic terminologies used in the main construction. Section III contains the main result of the paper in the forms of many theorems and corollaries. Section IV is the concluding section.

II. PRELIMINARIES

We introduce certain elementary concepts here, which are useful in constructing BSH matrices. A Hadamard matrix (H-matrix) H is a (1, -1)-matrix of order n such that
$H H^{T}=n I_{n}$. Here H^{T} is transpose of H and I_{n} is identity matrix of order n. This property implies that every two distinct rows (columns) of Hadamard matrix have inner product zero. An H-matrix of order $m n$ (n, a multiple of 4) will be called block structured Hadamard matrix (BSH matrix) if its $n \times n$ blocks are H-matrices. A matrix H of order n is said to be a complex Hadamard matrix if it has entries from $\{ \pm 1, \pm i\}$ and $H H^{*}=n I_{n}$. Here H^{*} is conjugate transpose of H and I_{n} is identity matrix of order n. A complex Hadamard matrix of order $m n$ (n, a multiple of 2) will be called block structured complex Hadamard matrix (BSCH matrix) if its $n \times n$ blocks are complex Hadamard matrices. A ($0,1,-1$)- matrix W of order n is said to be a weighing matrix if $W W^{T}=k I_{n},(k \leq n$ is a positive integer). k is called the weight of W. In fact Hadamard matrix is a special case of weighing matrix where weight is equal to the order of the matrix. A complex weighing matrix of weight k and order n is an $n \times n$ matrix A, with entries from $\{ \pm 1, \pm i\}$ satisfying $A A^{*}=k I_{n} \quad(k \leq n)$. A (complex) weighing matrix of order $m n$ (n, order of a (complex) weighing matrix) will be labeled as 'block structured' if each $n \times n$ block is a (complex) weighing matrix. An orthogonal design (OD) of order n and type $\left(s_{1}, s_{2}, \ldots, s_{l}\right)$ (s_{i} positive integers) on the commuting variables is an $n \times n$ matrix X, with entries chosen from the set $\left\{ \pm x_{1}, \pm x_{2}, \ldots, \pm x_{l}\right\}$ such that $X X^{T}=\left(\sum_{i=1}^{l} s_{i} x_{i}{ }^{2}\right) I_{n}$ [4]. A complex orthogonal design (COD) of order n and type $\left(s_{1}, s_{2}, \ldots, s_{l}\right)\left(s_{i}\right.$ positive integers) on the real commuting variables $x_{1}, x_{2}, \ldots, x_{l}$ is an $n \times n$ matrix X, with entries chosen from $\varepsilon_{1} x_{1}, \varepsilon_{2} x_{2}, \ldots, \varepsilon_{l} x_{l} \mid \varepsilon_{i}$ is a fourth root of 1 satisfying $X X^{*}=\left(\sum_{i=1}^{l} s_{i} x_{i}^{2}\right) I_{n}$ [5]. If $A=\left(a_{i j}\right)$ is an $m \times m$ matrix and $B=\left(b_{r s}\right)$ is an $n \times n$ matrix, then the Kronecker product $A \times B$ is the $m n \times m n$ matrix given by $A \times B=\left(a_{i j} B\right)$. It is easy to see that $(A \times B)(C \times D)=A C \times B D$ and $(A \times B)^{T}=A^{T} \times B^{T}$. Hadamard product of two matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ of order n is a matrix of order n given by $A * B=\left(a_{i j} b_{i j}\right)$. The binary operation '*' here should not be confused with the symbol for conjugate transpose above.
Let the elements z_{i} of an additive abelian group G be ordered in a fixed way. Let $X \subset G$. Then the matrix $M=\left(m_{i j}\right)$ defined by
$m_{i j}=\psi\left(z_{j}-z_{i}\right)$, where $\psi\left(z_{j}-z_{i}\right)=\left\{\begin{array}{cc}1 & \text { if } \\ 0 & z_{j}-z_{i} \in X, \\ 0 & \text { otherwise },\end{array}\right.$
is called type 1 incidence matrix of X in G. A Circulant matrix $M=\left(m_{i j}\right)$ defined by $m_{i j}=m_{1, i-j+1}$ is a special case of type 1 matrix. A circulant matrix A with its first row R_{1} is denoted by $\mathrm{A}=\operatorname{circ}\left(R_{1}\right)$. Following proposition is useful in development of the results in this paper.

Proposition 2.1 [16, p. 288] If X and Y are type 1 matrices then $X Y=Y X, X^{T} Y=Y X^{T}, X Y^{T}=Y^{\mathrm{T}} X, X^{T} Y^{T}=Y^{\mathrm{T}} X^{T}$. If $L_{1}, L_{2}, \ldots, L_{n}$ be n type 1 (or circulant) ($0, \pm 1$)-matrices of order m which satisfy (i) $L_{i} * L_{j}=0, i \neq j$ (ii) $\sum_{i=1}^{n} L_{i} L_{i}=k I_{m}$ where $*$ denotes the Hadamard product, then these are called L-matrices of weight k. Two matrices A and B of order n are said to be amicable if $A B^{\mathrm{T}}=B A^{\mathrm{T}}$ and antiamicable if $A B^{\mathrm{T}}+B A^{T}=O$. For details of these notions authors refer to $[5,8,6,16]$.

III. MAIN RESULT

3.1 Construction from orthogonal designs

These construction theorems are dependent upon existence of certain matrices, special cases for which are known to exist.
Theorem 3. Existence of $(\pm 1, \pm i)$-matrices $A_{1}, A_{2}, \ldots, A_{n}$ of order m which satisfy (i) $A_{i} A_{j}^{*}=A_{j} A_{i}^{*} ; 1 \leq i \neq j \leq k \quad$ (ii) $\sum_{i=1}^{n} A_{i} A_{i}^{*}=n m I_{m}$ and orthogonal design OD(nt;t,t, ..,t) implies the existence of BSCH matrix of order nmt.

Proof. Let X be an $\mathrm{OD}(n t ; t, t, \ldots, t)$ on the commuting variables $0, \pm x_{i}, i=1,2, \ldots n$. We replace these variables with $A_{i}{ }^{\prime} s$ above. Then X can be written as $X=\sum_{i=1}^{n} W_{i} \times A_{i}$ where W_{i} are ($0,1,-1$)-matrices such that (i) $W_{i} * W_{j}=0$ if $i \neq j$.
(ii) $W_{i} W_{i}^{T}=t I_{n t}, i=1,2, \ldots, n$.
(iii) $W_{i} W_{j}^{\top}+W_{j} W_{i}^{T}=0$, $1 \leq i \neq j \leq n$ [4]. Let $Y=\sum_{i=1}^{n} A_{i} \times W_{i}$ then

$$
\begin{aligned}
Y Y^{*}= & \sum_{i=1}^{n}\left(A_{i} A_{i}^{*} \times W_{i} W_{i}\right)+\sum_{1 \leq i \neq j \leq n}\left\{\left(A_{i} A_{j}^{*} \times W_{i} W_{j}\right)\right. \\
& \left.+\left(A_{j} A_{i}^{*} \times W_{j} W_{i}\right)\right\} \\
= & \left(\sum_{i=1}^{n} A_{i} A_{i}^{*}\right) \times t I_{n t}+\sum_{1 \leq i \neq j \leq n} A_{i} A_{j}^{*} \times\left(W_{i} W_{j}+W_{j} W_{i}\right) \\
= & n m I_{m} \times t I_{n t}+0 \\
= & m n t I_{m n t}
\end{aligned}
$$

i.e., Y is a complex Hadamard matrix of order mnt. Also each $n t \times n t$ block $H_{i j} ; i, j=1,2, \ldots m$ is a linear combination of W_{i}^{\prime} 's over $\{1,-1, i,-i\}$ i.e., $H_{i j}=\sum_{k=1}^{n} \rho_{k} W_{k}$; $\rho_{k} \in\{1,-1, i,-i\}$ then

$$
\begin{aligned}
H_{i j} H_{i j}^{*}= & \sum_{k=1}^{n}\left(\rho_{k} W_{k}\right)\left(\rho_{k} W_{k}\right)^{*} \\
& \pm(1+i) \sum_{1 \leq k \neq l \leq n}\left(W_{k} W_{l}^{T}+W_{l} W_{k}^{T}\right) \\
= & n t I_{n t} \pm 0 \\
= & n t I_{n t}
\end{aligned}
$$

i.e., each $n t \times n t$ block is a complex Hadamard matrix of order $n t$. Hence Y is the required BSCH matrix.

Cor. 3.2 Existence of $(\pm 1, \pm i)$-matrices $A_{1}, A_{2}, \ldots, A_{n}$ of order $m \quad$ which satisfy (i) $A_{i} A_{j}^{*}=A_{j} A_{i}^{*} ; 1 \leq i \neq j \leq k \quad$ (ii) $\sum_{i=1}^{n} A_{i} A_{i}^{*}=n m I_{m}$ and orthogonal design OD(nt;t,t,...,t) implies the existence of block structured half-full weighing matrix of order nmt.

Proof. By matrix representation of complex numbers $a+i b=\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ for 1 and i in above construction.

Cor. 3.3 Existence of $(0, \pm 1, \pm i)$-matrices $A_{1}, A_{2}, \ldots, A_{k}$ of order m which satisfy (i) $A_{i} A_{j}^{*}=A_{j} A_{i}^{*} ; 1 \leq i \neq j \leq k \quad$ (ii) $\sum_{i=1}^{k} A_{i} A_{i}^{*}=r m I_{m}(r \leq m)$ and (complex) orthogonal design $O D(n t ; t, t, \ldots, t)$ implies the existence of block structured complex weighing matrix of order nmt and weight rmt each block having weight rt.

Lemma 3.4 [5] Let X be an COD of order nt and type (t, t, t, t) on the commuting variables $A_{i}, i=1,2, \ldots, n$ such that $\sum_{i=1}^{n} W_{i} \times A_{i}$ where W_{i} are $(0, \pm 1, \pm i)$-matrices of order n then (i) $W_{i} * W_{j}=0$ if $i \neq j$ (ii) $W_{i} W_{i}^{*}=t I_{n t}, i=1,2, \ldots, n$. (iii) $W_{i} W_{j}^{*}+W_{j} W_{i}^{*}=0,1 \leq i \neq j \leq n$, where W^{*} is transpose conjugate of W.

Theorem 3.5 Existence of $(\pm 1, \pm i)$-matrices $A_{1}, A_{2}, \ldots, A_{n}$ of order m which satisfy (i) $A_{i} A_{j}^{*}=A_{j} A_{i}^{*} ; 1 \leq i \neq j \leq k \quad$ (ii) $\sum_{i=1}^{n} A_{i} A_{i}^{*}=n m I_{m}$ and COD ($\left.n t ; t, t, \ldots, t\right)$ implies the existence of BSCH matrix of order nmt.

Proof. Let X be an $\operatorname{COD}(n t ; t, t, \ldots, t)$ on the commuting variables $0, \pm x_{i}, i=1,2, \ldots n$. We replace these variables with A_{i} ' s above. Then X can be written as $X=\sum_{i=1}^{n} W_{i} \times A_{i}$ where W_{i} are $(0, \pm 1, \pm i)$-matrices satisfying conditions of lemma (3.4). Define $Y=\sum_{i=1}^{n} A_{i} \times W_{i}$ then using same argument as theorem (3.1) and employing the lemma (3.4) above we get $Y Y^{*}=n m t I_{n m t}$. i.e., Y is a complex Hadamard matrix of order $n m t$. Now, each $n t \times n t$ block of Y is $H_{r s}=\sum_{k=1}^{4} \rho_{k} W_{k} ; r, s=1,2, \ldots, m$, which is a $\operatorname{COD}(n t ; t, t, t, t)$ on commuting variables $\pm 1, \pm i$ since Hadamard product W_{i} and W_{j} is zero matrix. Hence each $H_{r s}$ is a complex Hmatrix.

Theorem 3.6 Existence of $(1,-1)$-matrices $A_{1}, A_{2}, \ldots, A_{n}$ of order m which satisfy (i) $A_{i} A_{j}{ }^{T}=A_{j} A_{i}{ }^{T} ; 1 \leq i \neq j \leq k$ (ii) $\sum_{i=1}^{n} A_{i} A_{i}{ }^{T}=n m I_{m}$ and $\operatorname{COD}(n t ; t, t, \ldots, t)$ implies the existence of BSCH matrix of order nmt.

Proof. Proof is Similar to theorem (3.1) and (3.5).
Theorem 3.7 Existence of (1,-1)-matrices $A_{1}, A_{2}, \ldots, A_{n}$ of order m which satisfy (i) $A_{i} A_{j}{ }^{T}=A_{j} A_{i}{ }^{T} ; 1 \leq i \neq j \leq k$ (ii) $\sum_{i=1}^{n} A_{i} A_{i}{ }^{T}=n m I_{m}$ and $O D(n t ; t, t, \ldots, t)$ implies the existence of BSCH matrix of order nmt.

Proof. Proof is Similar to theorem (3.1) and (3.5) using lemma (3.4).

Remark 3.8 For $n=4$ and 8 matrices A_{i} are known to exist for certain orders. These matrices are called Williamsontype matrices and Eight- Williamson-type matrices respectively.

Cor. 3.9 [11] Existence of Williamson matrices A, B, C, D of order n implies the existence of $B C H$ matrix of order $4 n$, whose each 4×4 block is Hadamard matrix.

Proof. Use Williamson's array as OD.
Cor. 3.10 [12] Existence of symmetric, circulant ($0, \pm 1$)matrices $A_{1}, A_{2}, \ldots, A_{K} \quad$ of order m satisfying $\sum_{i=1}^{k} A_{i}^{2}=r t I_{n}, r \leq m$ and orthogonal design $O D(n t ; t, t, \ldots, t)$ implies the existence of block-circulant weighing matrix of order nmt and weight rmt each $n t \times n t$ block having weight $r t$.

Remark 3.11 These weighing matrices can be used to accelerate and compress deep neural networks as shown by Ding et al. [3].

So far block structured (complex) Hadamard matrices are constructed using real and complex orthogonal designs. Now we construct infinite families of an orthogonal design.

3.1.1 Infinite families of $O D(4 t ; 2 t, 2 t)$

Theorem 3.12 Existence of Williamson matrices imply the existence of $O D(4 t ; 2 t, 2 t)$.

Proof. The proof is constructive. Let a and b be commuting variables.

Define $h_{1}=\left[\begin{array}{cc}-a & b \\ b & a\end{array}\right], h_{2}=\left[\begin{array}{cc}b & a \\ a & -b\end{array}\right]$ then

$$
h_{1}^{2}=h_{2}^{2}=\left(a^{2}+b^{2}\right) I_{2}
$$

$$
h_{1} h_{2}^{T}+h_{2} h_{1}^{T}=O
$$

$$
h_{1}^{T}=h_{1}, h_{2}^{T}=h_{2}
$$

Again define

$$
H_{1}=\left[\begin{array}{cc}
h_{1} & h_{1} \\
-h_{1} & h_{1}
\end{array}\right], H_{2}=\left[\begin{array}{cc}
h_{1} & -h_{1} \\
h_{1} & h_{1}
\end{array}\right], H_{3}=\left[\begin{array}{cc}
h_{2} & h_{2} \\
h_{2} & -h_{2}
\end{array}\right], H_{4}=\left[\begin{array}{cc}
-h_{2} & h_{2} \\
h_{2} & h_{2}
\end{array}\right]
$$

then
T
Now using following Hadamard transform we obtain matrices $\overline{H_{i}}, i=1,2,3,4$.

$$
\left[\begin{array}{l}
\bar{H}_{1} \\
\bar{H}_{2} \\
\bar{H}_{3} \\
\bar{H}_{4}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
H_{1} \\
H_{2} \\
H_{3} \\
H_{4}
\end{array}\right]
$$

such that

$$
\begin{aligned}
& H_{i} \bar{H}_{j}{ }^{T}+\bar{H}_{j} H_{i}{ }^{T}= \pm 2\left(a^{2}+b^{2}\right) I_{4} ; 1 \leq i \neq j \leq 4 \\
& \bar{H}_{i} \bar{H}_{i}{ }^{T}=2\left(a^{2}+b^{2}\right) I_{4} ; 1 \leq i \leq 4 \\
& \bar{H}_{i} \bar{H}_{j}{ }^{T}+\bar{H}_{j} \bar{H}_{i}{ }^{T}=O ; 1 \leq i \neq j \leq 4 .
\end{aligned}
$$

Replacing $\hat{1}$ by \bar{H}_{1} and $\underline{1,2,2, \underline{4}}$ by $H_{1}, H_{2}, H_{3}, H_{4}$ respectively in the result of Singh and Topno [11] and in Topno and Singh [14] we get the infinite family of $O D(4 t ; 2 t, 2 t)$. Former depends upon the existence of Williamson matrices and the later upon Turyn-type Williamson matrices.

3.2 Construction from certain arrays

In this section BSCH matrices are constructed using certain arrays having special properties. Some of their construction methods are also discussed.
Theorem 3.13 Let M and N be two amicable ($\pm 1, \pm i$)matrices of order m such that $M M^{*}+N N^{*}=2 m I_{m}$, and $(M \pm N) / 2$ is a $(\pm i, \pm 1)$ - matrix, then there exists a BSCH matrix of order mn whose blocks are complex H-matrices of order n, where n is the order of a complex H-matrix.

Proof. Define $A=(M+N) / 2$ and $B=(M-N) / 2$ and let C be a complex Hadamard matrix of order n. Then there exists a complex Hadamard matrix D of order n such that $C D^{*}+D C^{*}=0 \quad[16$, p. ~296]. Define another matrix $H=A \times C+B \times D$.Then

$$
\begin{aligned}
H H^{*}= & \left(A A^{*} \times C C^{*}+B B^{*} \times D D^{*}\right)+\left(A B^{*} \times C D^{*}\right)+\left(B A^{*}+D C^{*}\right) \\
= & \left(\frac{M+N}{2}\right)\left(\frac{M^{*}+N^{*}}{2}\right) \times n I_{n}+\left(\frac{M-N}{2}\right)\left(\frac{M^{*}-N^{*}}{2}\right) \times n I_{n} \\
& +\left(\frac{M+N}{2}\right)\left(\frac{M^{*}-N^{*}}{2}\right) \times C D^{*}+\left(\frac{M-N}{2}\right)\left(\frac{M^{*}+N^{*}}{2}\right) \times D C^{*} \\
= & \frac{1}{4}\left\{\left(M M^{*}+N N^{*}+M N^{*}+N M^{*}\right) \times n I_{n}\right. \\
& +\left(M M^{*}+N N^{*}-M N^{*}-N M^{*}\right) \times n I_{n} \\
& +\left(M M^{*}-N N^{*}-M N^{*}+N M^{*}\right) \times C D^{*} \\
& \left.+\left(M M^{*}-N N^{*}+M N^{*}-N M^{*}\right) \times D C^{*}\right\} \\
= & \frac{1}{4}\left(2 m I_{m} \times n I_{n}+2 m I_{m} \times n I_{n}\right) \\
= & m n I_{m n}
\end{aligned}
$$

i.e., H is a complex Hadamard matrix. Let $(i, j)^{\text {lh }}$ element of A, B, M and N be denoted by $a_{i j}, b_{i j}, m_{i j}$, and $n_{i j}$ respectively. Now, each $n \times n$ block $H_{i j} ; i, j=1,2, \ldots, m$ of H is given by

$$
\begin{aligned}
& H_{i j}=a_{i j} \times C+b_{i j} \times D \\
& =\quad \frac{1}{2}\left(m_{i j}+n_{i j}\right) \times C+\frac{1}{2}\left(m_{i j}-n_{i j}\right) \times D \\
& =\quad \frac{1}{2}\left\{m_{i j} \times(C+D)+n_{i j} \times(C-D)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& H_{i j} H_{i j}^{*}=\frac{1}{4}\left\{m_{i j} \times(C+D)+n_{i j} \times(C-D)\right\}\left\{\bar{m}_{i j} \times\left(C^{*}+D^{*}\right)+\bar{n}_{i j} \times\left(C^{*}-D^{*}\right)\right\} \\
& =\quad \frac{1}{4}\left\{m_{i j} \bar{m}_{i j} \times(C+D)\left(C^{*}+D^{*}\right)+n_{i j} \bar{n}_{j} \times(C-D)\left(C^{*}-D^{*}\right)\right\} \\
& +m_{i j} \bar{n}_{i j} \times(C+D)\left(C^{*}-D^{*}\right)+n_{i j} \bar{m}_{i j}(C-D)\left(C^{*}+D^{*}\right) \\
& =\quad \frac{1}{4}\left\{m_{i j} \bar{m}_{i j} \times\left(C C^{*}+D D^{*}+C D^{*}+D C^{*}\right)\right. \\
& +n_{i j} \bar{n}_{i j} \times\left(C C^{*}+D D^{*}-C D^{*}-D C^{*}\right) \\
& +m_{i j} \bar{n}_{i} \times\left(C C^{*}-D D^{*}-C D^{*}+D C^{*}\right) \\
& \left.+n_{i j} \bar{m}_{i j} \times\left(C C^{*}-D D^{*}+C D^{*}+D C^{*}\right)\right\} \\
& =\quad \frac{1}{4}\left\{m_{i j} \bar{m}_{i_{j} \times\left(2 n I_{n}+0\right)+n_{i j} \bar{n}_{j} \times\left(2 n I_{n}-0\right)}\right. \\
& \left.+m_{i j}^{-} \bar{n}_{j i} \times 2\left(C C^{*}-D D^{*}\right)\right\}\left[m_{i j}^{-} \bar{n}_{i j}=n_{i j} \bar{m}_{i j} \text { as } M N^{*}=N M^{*}\right] \\
& =\quad \frac{1}{4}\left(\left(m_{i j} \bar{m}_{i j}+n_{i j} \bar{n}_{j}\right) \times 2 n I_{n}\right)
\end{aligned}
$$

Now $m_{i j} \bar{m}_{i j}+n_{i j} \bar{n}_{i j}=\left\{\begin{array}{cc}2 & \text { if } \quad i=j \\ 0 & \text { otherwise }\end{array}\right.$
[Since $M N^{*}+N M^{*}=2 m I_{m}$]
Therefore

$$
\begin{aligned}
H_{i j} H_{i j}^{*} & =\frac{1}{4}\left\{2 \times 2 n I_{n}\right\} \\
& =n I_{n}
\end{aligned}
$$

Hence $H_{i j}$ is a complex Hadamard matrix of order n.
Remark 3.14 If matrices C and D in above theorem are symmetric or skew-symmetric then resulting matrix is blockwise symmetric or skew.

Following result from Geramita et. al. [5] is a corollary to the theorem (3.13) .
Cor. 3.15 Let M and N be circulant $(0, \pm 1, \pm i)$-matrices of order n such that $M M^{*}+N N^{*}=f I_{n}, f \leq n$ and $(M \pm N) / 2$ is $a(\pm i, \pm 1)$ - matrix, then there exists a block structured complex weighing matrix of weight f and order $2 n$.

In the above constructions BSCH matrices depend upon the existence of matrices $M \& N$. Now we discuss some of the methods to construct $M \& N$.

3.2.1 Construction of matrices $M \& N$

Theorem 3.16 If A, B, C, D are Williamson-type matrices of order $n \quad(o d d)$ then $\quad M=\frac{1}{2}(1+i) A+\frac{1}{2}(1-i) B \quad$ and $M=\frac{1}{2}(1+i) C+\frac{1}{2}(1-i) D$.
Proof. Straightforward verification.
Theorem 3.17 If there exist complex Hadamard matrix $H_{2 n}$ of the form $\left[\begin{array}{cc}A & B \\ -B^{*} & A^{*}\end{array}\right]$ or $\left[\begin{array}{ll}C & D \\ D^{*}-C^{*}\end{array}\right]$ such that $(A \pm B) / 2 \&(C \pm D) / 2$ are $(\pm i, \pm 1)-$ matrices, then $M=A$ and $N=B$ are required $M \& N$ matrices of (3.13).

Theorem 3.18 [10] Existence of BIBD with $v=2 k^{2}-2 k+1, b=2 v, r=2 v(k \geq 2), \lambda=1$ implies the existence of matrices $M \& N$ of orders $2\left(2 k^{2}-2 k+1\right)$.

Now we discuss another method of construction for BSCH matrix.

Theorem 3.19 If there exist four $(0, \pm 1)$-matrices $X_{i} ; 1 \leq i \leq 4$ of order $2 t$ such that
(i) $X_{1} X_{1}{ }^{T}=X_{3} X_{3}{ }^{T}, X_{2} X_{2}{ }^{T}=X_{4} X_{4}{ }^{T}$ $X_{1} X_{1}{ }^{T}+X_{2} X_{2}{ }^{T}=t I_{2 t}$
(ii) $X_{1} X_{4}{ }^{T}=-X_{3} X_{2}{ }^{T}, X_{4} X_{1}{ }^{T}=-X_{2} X_{3}{ }^{T}$
(iii) $X_{1} X_{2}{ }^{T}=X_{2} X_{1}{ }^{T}=X_{1} X_{3}{ }^{T}=X_{3} X_{1}{ }^{T}=X_{2} X_{4}{ }^{T}$ $=X_{4} X_{2}{ }^{T}=X_{3} X_{4}{ }^{T}=X_{4} X_{3}{ }^{T}=0$
and two L-matrices L_{1} and L_{2} of order m and weight m
(i) then there exists a complex Hadamard matrix of order $2 m t$
(ii) and if two of X_{i} 's have same sign then there exists a BSCH matrix of order $2 m t$ with complex Hadamard blocks of order $2 t$.

Proof. Define

$$
\begin{align*}
& A_{1}=L_{1}+L_{2}, A_{2}=L_{1}+L_{2} \tag{3.1}\\
& A_{3}=-L_{1}+L_{2}, A_{4}=L_{1}-L_{2}
\end{align*}
$$

then $A_{i} ; 1 \leq i \leq 4$ are type 1 (or circulant) matrices of order m such that
(i) $A_{1} A_{1}{ }^{T}+A_{3} A_{3}{ }^{T}=2 m I_{m}=A_{2} A_{2}{ }^{T}+A_{4} A_{4}{ }^{T}$
(ii) $A_{i} A_{j}=A_{j} A_{i}, A_{i}{ }^{T} A_{j}=A_{j} A_{i}{ }^{T}, A_{i} A_{j}{ }^{T}=A_{j}{ }^{T} A_{i}$, $A_{i}{ }^{T} A_{j}{ }^{\mathrm{T}}=A_{j}{ }^{T} A_{i}{ }^{T} ; i, j \in\{1,2,3,4\}$
(iii) $A_{1} A_{2}{ }^{T}-A_{2} A_{1}{ }^{T}+A_{3} A_{4}{ }^{T}-A_{4} A_{3}{ }^{T}=0$.

$$
\text { Let } \begin{align*}
H= & \frac{1}{2}(1+i)\left\{A_{1} \times X_{1}+A_{2}^{T} \times X_{2}+A_{3} \times X_{3}+A_{4}^{T} \times X_{4}\right\} \tag{3.3}\\
& +\frac{1}{2}(1-i)\left\{A_{1}^{T} \times X_{2}+A_{2} \times X_{1}+A_{3}^{T} \times X_{4}+A_{4} \times X_{3}\right\}
\end{align*}
$$

Then

$$
\begin{aligned}
H H^{*}= & \sum_{i=1}^{4} A_{i} A_{i} \times X_{i} X_{i}{ }^{T} \\
& +\frac{1}{2}\left[\left\{\left(A_{1} A_{4}-A_{4} A_{1}\right)+\left(A_{2} A_{3}-A_{3} A_{2}\right)\right\} \times X_{1} X_{4}{ }^{T}\right. \\
& \left.+\left\{\left(A_{4}{ }^{T} A_{1}{ }^{T}-A_{1}{ }^{T} A_{4}{ }^{T}\right)+\left(A_{3}{ }^{T} A_{2}{ }^{T}-A_{2}{ }^{T} A_{3}{ }^{T}\right)\right\} \times X_{4} X_{1}{ }^{T}\right] \\
& \frac{i}{2}\left[\left\{\left(A_{1} A_{2}{ }^{T}-A_{2} A_{1}{ }^{T}\right)+\left(A_{3} A_{4}{ }^{T}-A_{4} A_{3}{ }^{T}\right)\right\} \times X_{1} X_{1}{ }^{T}\right. \\
& +\left\{\left(A_{2}{ }^{T} A_{1}-A_{1}{ }^{T} A_{2}\right)+\left(A_{4}{ }^{T} A_{3}-A_{3}{ }^{T} A_{4}\right)\right\} \times X_{2} X_{2}{ }^{T} \\
& +\left\{\left(A_{1} A_{3}-A_{3} A_{1}\right)+\left(A_{4} A_{2}-A_{2} A_{4}\right)\right\} \times X_{1} X_{4}{ }^{T} \\
& \left.+\left\{\left(A_{4}{ }^{T} A_{2}{ }^{T}-A_{2}{ }^{T} A_{4}{ }^{T}\right)+\left(A_{3}{ }^{T} A_{1}{ }^{T}-A_{1}{ }^{T} A_{3}{ }^{T}\right)\right\} \times X_{4} X_{1}{ }^{T}\right]
\end{aligned}
$$

then by virtue of (3.2)

$$
\begin{aligned}
H H^{*} & =\sum_{i=1}^{4} A_{i} A_{i}^{T} \times X_{i} X_{i}^{T} \\
& =\left(A_{1} A_{1}^{T}+A_{3} A_{3}^{T}\right) \times X_{1} X_{1}{ }^{T}+\left(A_{2} A_{2}^{T}+A_{4} A_{4}^{T}\right) \times X_{2} X_{2}{ }^{T} \\
& =2 m I_{m} \times\left(\sum_{i=1}^{2} X_{i} X_{i}^{T}\right) \\
& =2 m I_{m} \times t I_{2 t} \\
& =2 m t I_{2 m t} .
\end{aligned}
$$

$\Rightarrow H$ is a complex Hadamard matrix of order $2 m t$. Also in $2 t \times 2 t$ partition of H, each $p q^{\text {th }}$-block $H_{p q}$ is of the form

$$
H_{p q}=\frac{1}{2}(1+i)\left(\pm X_{1} \pm X_{2} \pm X_{3} \pm X_{4}\right)+\frac{1}{2}(1-i)\left(\pm X_{2} \pm X_{1} \pm X_{4} \pm X_{3}\right) .
$$

If two of X_{i} 's have same sign then $H_{p q} H_{p q}^{*}=2 t I_{2 t}$,
which can be verified directly.

Cor. 3.20 If there exist L-matrices and X_{i} 's-matrices of theorem (3.19) then there exists a Hadamard matrix of order $4 m t$.

Proof. Render the matrix H obtained in theorem (3.19) in the form $H=P+i Q$ then, following the result of Craigen et. al. [2] the required matrix is

$$
P \times\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]+Q \times\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right]
$$

Cor. 3.21 If there exist X_{i} 's -matrices and anti-amicable Lmatrices of theorem (3.19)
(i) then there exists a BSH matrix of order $2 m t$ with Hadamard blocks of order $2 t$
(ii) and if two of X_{i} 's have same sign then there exists a BSH matrix of order $2 m t$ with Hadamard blocks of order $2 t$.

Proof. Define $\quad H=\frac{1}{2}\left\{\left(A_{1}+A_{2}\right) \times X_{1}+\left(A_{1}^{T}+A_{2}^{T}\right) \times X_{2}+\left(A_{3}-A_{4}\right) \times X_{3}\right.$

$$
\left.+\left(A_{3}^{T}-A_{4}^{T}\right) \times X_{4}\right\}
$$

and follow the argument of (3.19).
Theorem 3.22 If there exist X_{i}-matrices of theorem (3.19) and two L-matrices L_{1} and L_{2} of order m and weight k, $(k \leq m)(i)$ then there exist complex weighing matrix of order 2 mt and weight 2 kt and (ii) if two of X_{i} 's have same sign then there exist complex weighing matrix of order $2 m t$ and weight $2 k t$ each $2 t \times 2 t$ blocks being a weighing matrices of weight k.

Matrices X_{i} ' s used in this section exist for certain orders. Following section deals with some of the methods of construction of these matrices.

3.2.2 Construction of matrices $X_{i} ; 1 \leq i \leq 4$

Theorem 3.23 If $X_{i_{n}} ; 1 \leq i \leq 4$ be the matrices of order n satisfying theorem (3.19) then

$$
\begin{aligned}
& X_{1_{2 n}}=\left[\begin{array}{cc}
X_{1_{n}} & X_{1_{n}} \\
X_{2_{n}} & -X_{2_{n}}
\end{array}\right], X_{2_{2 n}}=\left[\begin{array}{cc}
X_{2_{n}} & X_{2_{n}} \\
X_{1_{n}} & -X_{1_{n}}
\end{array}\right], X_{3_{2 n}}=\left[\begin{array}{cc}
X_{3_{n}} & X_{3_{n}} \\
X_{4_{n}} & -X_{4_{n}}
\end{array}\right], \\
& X_{4_{2 n}}=\left[\begin{array}{cc}
X_{4_{n}} & X_{4_{n}} \\
X_{3_{n}} & -X_{3_{n}}
\end{array}\right] .
\end{aligned}
$$

Proof. Straightforward verification.
Remark 3.24 For $n=2$ following matrices satisfy the equation:

$$
X_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], X_{2}=\left[\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right], X_{3}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], X_{4}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

Following section deals with the construction of L-matrices.

3.2.3 Construction of L-matrices

Theorem 3.25 If there exist two Golay pairs A \& B of order k then $L_{1}=\operatorname{circ}(A+B) / 2$ and $L_{2}=\operatorname{circ}(A-B) / 2$ are two L matrices of same order.

Theorem 3.26 If there exist two L-matrices of order m and two L-matrices of order n then there exist two L-matrices of order mn.

Proof. Let $l_{1} \& l_{2}$ be L-matrices of order m and $L_{1} \& L_{2}$ be L matrices of order n. Define

$$
\begin{aligned}
& P=\frac{1}{2}\left\{\left(l_{1}+l_{2}\right) \times\left(L_{1}+L_{2}\right)+\left(l_{1}-l_{2}\right) \times\left(L_{2}-L_{1}\right)\right\} \\
& Q=\frac{1}{2}\left\{\left(l_{1}+l_{2}\right) \times\left(L_{1}-L_{2}\right)+\left(l_{1}-l_{2}\right) \times\left(L_{2}+L_{1}\right)\right\}
\end{aligned}
$$

Then it can be directly verified that $\mathrm{P} \& \mathrm{Q}$ are required L matrices of order $m n$.

Remark 3.27 So far only one pair of anti-amicable Lmatrices are found viz $\operatorname{circ}(1-100)$ and $\operatorname{circ}\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)$.

IV. CONCLUSION \& FUTURE SCOPE

We have extended the results of Agaian and other authors in this paper by constructing block structured (complex) Hadamard matrices of orders $n m t$, where $n t$ is order of a (complex) Orthogonal Design and m is order of some suitable matrices. Moreover BSCH matrices of orders mn and $2 m t$ are also constructed, where m, n, t are defined in theorems 3.13 and 3.19. These methods use matrices X_{i}, M, N and L. Their methods of consructions are also discussed. In addition to this infinite families of $\operatorname{OD}(4 t ; 2 t, 2 t)$ are constructed. Block structured weighing matrices are also part of the above results. Orthogonal Designs and other arrays X_{i}, M, N and L of new orders will produce BSCH matrices of new orders.

REFERENCES

[1] S. S. Agaian, "Hadamard matrices and their Applications", Springer- Verlag, Berlin Heidelberg, New York, Tokyo, pp.78-102, 1985.
[2] R. Craigen, W. Holzmann and H. Kharaghani, "Complex Golay sequences: structure and applications" Discrete Math., Vol. 252 ,pp 73-89, 2002.
[3] C. Ding, S. Liao, Y. Wang, et. al. "CircNN: Accelerating and compressing deep neural networks using block-circulant weight matrices", International symposium on microarchitecture (MICRO) pp.395-408, 2017..
[4] J. Hadamard, "Résolutiond'une question relative aux déterminants", Bull. Sci. Math., Vol. 17, pp. 240-246, 1893.
[5] A. V. Geramita and J. M. Geramita, "Complex orthogonal designs" J. Combin. Theory Ser. A, Vol. 25 , pp.211-225, 1978.
[6] M. Hall (Jr.), "Combinatorial Theory", Wiley- Interscience, 2nd edition, pp.238-263, 1988.
[7] O. Mateo, D. Ž. Doković and I. S. Kotsireas, "Symmetric Hadamard matrices of order 116 and 172 exist", Spec. Matrices, Vol. 3, pp.227-234, 2015.
[8] J. Seberry, "Orthogonal Designs: Hadamard Matrices, Quadratic Forms and Algebras", Springer International Publishing AG 2017.
[9] J. Seberry and N. A. Balonin, "Two infinite families of symmetric Hadamard matrices", Australas. J. Combin. Vol. 69, No. 3, pp.349357, 2017.
[10] M. K. Singh, K. Sinha and S. Kageyama, "A construction of Hadamard matrices from $\operatorname{BIBD}\left(2 k^{2}-2 k+1_{v} k_{v} 1\right)$ ", Australas. J. Combin., Vol. 26, pp.93-97, 2002.
[11] M. K. Singh, and S. N. Topno, "On the construction of Hadamard matrices of order $4 n$ (n odd, $n \geq 3$) with Hadamard blocks of order 4", Acta Cient. Indica, Vol XL M, No. 3, pp.309-313, 2014.
[12] M. K. Singh, S. N. Topno and T. Paswan, "Anticirculant structured block weighing matrices from Williamson matrices", Int. J. Math. Trends Tech., Vol. 52, No. 4, pp.43-47, 2017.
[13] J. J. Sylvester, "Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements two or more colours, with applications to Newton's rule, ornamental tilework, and the theory of numbers", Phil. Mag. Vol. 34, No. 1, pp. 461-475, 1867.
[14] S. N. Topno and M. K. Singh, "Construction of Block Structured Complex Hadamard Matrices", Acta Cient. Indica, Vol. XLIII M, No. 2 , pp.109-115, 2017.
[15] R. J. Turyn,"An infinite Class of Williamson Matrices", J. Combin. Theory Ser. A, Vol. 12, pp. 319-321, 1972.
[16] W. D. Wallis, A. P. Street and J. S. Wallis, Combinatorics: Room Squares, Sum-Free Sets, Hadamard matrices, Springer-Verlag, Berlin-Heidelberg, New York, pp.279-299, 1972.
[17] P. Mazumder, R. Middya and M. K. Naskar, "Hardware Implementation of Fast Recursive Walsh-Hadamard Transform", International Journal of Computer Sciences and Engineering, Vol.7, Issue.1, pp.28-32, 2019.

AUTHORS PROFILE

Mr. S. N. Topno is a research scholar in the Department of Mathematics, Ranchi University, Ranchi, India. He is working under the supervision of Prof. M. K. Singh. His area of specialization is Combinatorics.

Dr. M. K. Singh is a retired professor of Mathematics, Department of Mathematics, Ranchi University, Ranchi, India. His area of specialization is Combinatorics. He has published several papers in the reputed journals.

