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Abstract—In the present study, the most popular model selection criteria are used as the autoregressive order selection criteria 

and the performances of time series model selection criteria at different sizes of the same time series are observed. In time 

series analysis and forecasting, selecting the most suitable model for a given time series and size of available time series plays 

a vital role. We verified that Final Prediction Error Criterion and Akaike’s Information Criterion are asymptotically equivalent 

and Akaike’s Information Criterion and Bias-Corrected Akaike’s Information Criterion are asymptotically equivalent when the 

size of time series is large with respect to the dimension of the parameters of the autoregressive process using empirical study. 

All the time series model selection criteria presented in the paper are evaluated by log-likelihood function. 
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I. INTRODUCTION 

Model section criteria play important role in the selection of 

most appropriate model or the best model among the 

candidate models for the given time series. Mainly, we are 

determining the optimal order of the autoregressive model by 

these model selection procedures.  Selecting the order of 

autoregressive model is one of the critical issues in time 

series analysis. 

Some model selection procedures for time series data are 

A. Final Prediction Error (FPE) Criterion 

B. Akaike Information Criterion (AIC) 

C. Bias-Corrected Akaike Information Criterion (AICc) 

D. Bayes Information Criterion (BIC) 

E. Hannan-Quinn Criterion (HQC) 

F. Minimum Description Length (MDL) 

A review of literature on some time series model selection 

methods is presented in Section II. A detailed study of the 

derivation of the above model selection procedures for 

autoregressive models is presented in Section II given by the 

different authors. In Section III, the most useful time series 

model selection procedures by Information Criteria are 

tabulated and a brief overview of the present study is 

discussed.  In Section IV, we generated the autoregressive 

process of order 2 and the time series model selection 

procedures are used for selecting the optimal order of 

autoregressive process. Mainly, we observed the 

performance of the time series model selection procedures at 

different sizes of the same autoregressive process. In the 

present study, the behaviour of FPE, AIC, AICc, BIC, HQC, 

and MDL have been studied under standard normal errors. 

For this study, we used the most popular and powerful R-

software.   Section V contains the conclusions. 

II. SOME TIME SERIES MODEL SELECTION CRITERIA 

Most popular and widely used model selection procedures 

for time series are discussed below 

A. Final Prediction Error (FPE) Criterion: 

Originally, the FPE was designed for autoregressive time 

series models. The FPE Criterion was developed by Akaike 

(1969) to select the appropriate order of the autoregressive 

process to fit a time series data. The final prediction error 

(FPE) criterion has been used widely in time series model 

selection. 

Suppose that 
1 2, , ny y y  is an observed series from AR 

(p) process and  1 2, , nx x x  is an observed series from the 

same process which is independent of  ty  and p n  [1]. 

Thus the model is 

                              
1

p

t j t j t

j

x a x u



                                 (1) 

 2where are . . 0,tu i i d N 
 

No intercept included in the model. 

http://www.isroset.org/
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Akaike estimated the mean squared prediction error for 

predicting 
1nx 

by estimating the parameters from the 

observed series
1 2, , ny y y . Then the mean square 

prediction error is 

   
22

1 1 1 1 2 1 1
ˆ ˆ ˆ ˆ

n n n n n p n pE x x E x a x a x a x     
       
    

Where 
1 2

ˆ ˆ ˆ, pa a a are the maximum likelihood estimators 

of the coefficients of the AR (p) model based on
1 2, , ny y y . 

 
2

2

1 1 2 1 1

1
ˆ ˆ ˆ 1n n n p n p

p
E x a x a x a x

n
   

            
   

(2) 

For large n, 
2

2

ˆn


 distributed approximately chi-squared with 

 1n p  degrees of freedom. Where 2̂ is the maximum 

likelihood estimators of
2 . 

Replace 
2  in equation (2) by the estimator 

 

2ˆ

1

n

n p



 
 to 

get the estimated mean square prediction error of
1nx .  

 

2ˆ 1
1

1
 

n p

n p
PE

n
F

  


  
 


 

2 1
ˆ 

1

n p

n p
FPE

 


 
  

where n is the number of values in the estimation data.   

B. Akaike Information Criterion (AIC): 

AIC is probably the most commonly used model selection 

criterion for time series data. The most fundamental model in 

time series analysis is autoregressive model [2]. In the 

autoregressive model, the present value of the time series is 

expressed as a linear combination of past values of the time 

series and the random component. The AR (p) model is 

1

p

t j t j t

j

y a y 



    

 2where are . . 0,t i i d N   

Where p is called the order of the AR model and 'ia s  are 

called the AR coefficients. 

2

1

1

, ~ ,
p

t t p t j t j

j

y y y N a y   



 
 
 
 . 

Then the conditional density of 1given , t t p ty y y is 

given by 

 
2

1 2
1

1 1
, exp

22

p

t t p t t j t j

j

f y y y y a y  



   
     

   


 

The Likelihood of the AR model with order p can be written 

as 

 
2

2
2

1 2 2 2
1 1

1 1
, , exp

2 2

n
pn

p t j t j

t j

L a a a y a y 

 

    
      
     

 
 

 

The log-likelihood of the model can be expressed as 

   
2

2 2

1 2 2
1 1

1
, , log 2 (3)

2 2

pn

p t j t j

i j

n
l a a a y a y 

 

 
    

 
  


 

The maximum likelihood estimators of
1 2, pa a a 2and

are obtained by solving the system of equations. 

12
1 11

2
1 1

1
0

1
0

pn

t t j t j

t j

pn

t p t j t j

t jp

l
y y a y

a

l
y y a y

a



 



 

 

 

 

 

 
   

 

 
   

 

 

 

 

 and  

2

2 2 4
1 1

1
0

2 2

pn

t j t j

t j

l n
y a y 

 

 
     

 
 



  
 

The maximum likelihood estimators 
1 2

ˆ ˆ ˆ, pa a a are 

obtained as the solution to the normal equation. 

 

1(1,1) (1, ) (1,0)

(p,1) (p, ) (p,0)p

C C p a C

C C p a C

    
    

    
    
    

 

where  
1

,
n

t t

t

C y y 



    . 

The maximum likelihood estimator of 
2  is 

   2

1 1 1

1 1
ˆ 0,0 ,0

p pn

t j t j j

t j j

y a y C a C j
n n



  

   
      

   
    

After substitution of this results in equation (3), the 

maximum log-likelihood is  
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   2 2

1 2
ˆ ˆ ˆ ˆ ˆ, , log 2

2 2
p

n n
l a a a       

     2 2

1 2
ˆ ˆ ˆ ˆ ˆ2 , , log2 1 logpl a a a n n       

In derivation, Akaike made an assumption that the true 

model belongs to the set of candidate models.  

Akaike (1973) showed that the selection of the best model is 

determined by AIC score. 

  2 1 2   AIC log like ihood number of parameters     

Since the autoregressive model with order p has p+1 free 

parameters, the AIC is given by 

   2

1 2
ˆ ˆ ˆ ˆ, , 2 2 1  pA lI aC a pa     

     2  2 1ˆlog2 1 log  AI nC n p      

The constant  log 2 1n   play no practical role in the 

model selection and can be ignored. 

   2ˆlog  n 2 1  AIC p    

Where 
2̂   is the estimated error or innovation variance for 

the fitted p
th

 order candidate model. 

C. Bias-Corrected Akaike Information Criterion (AICc):  

The true auto regressive model with true order 
*p  is  

* *t t ty     

(i.e. 1 1 2 2 * * *t t t p t p ty a y a y a y       )  

 2

* *where are . . 0,t i i d N  .
 

Let
2

* 1 2 * *( , , , , )pa a a a  be the set of parameters for the 

true model. 

Under the assumption of normality, the likelihood function 

of the true model is 

     
22 22

* * *2
1*

1
( ) 2 exp

2

n nn

t t

t

L a y  






 
   

 


 
The log-likelihood function of the true model is 

       
22

* * *2
1*

1
log 2 log

2 2 2

n

t t

t

n n
l a y  

 

    
 

The AR (p) models is  

 

1 1 2 2t t t p t p ty a y a y a y        

 2where are . . 0,t i i d N 
 

Let
2

1 2( , , , , )p pa a a a  be the set of parameters for a 

candidate model. 

Under the assumption of normality, the likelihood function 

of the candidate model is 

     
2

2 22
2

1 1

1
2 exp

2

n pnn

p t j t j

t jp

L a y a y 






 

    
       

    

   

The log-likelihood function of the candidate model is 

     
2

2

2
1 1

1
log 2 log

2 2 2

pn

p t j t j

t jp

n n
l a y a y 




 

  
       

  
 

 

A useful measure of the discrepancy between the true and 

candidate model is the Kullback-Leibler information. 

The discrepancy between the true model and the candidate 

model is 

  * *( , ) 2d a a E l a   

Where  * .E  denotes expectation under the true model and 

 l a be the log-likelihood corresponding to the candidate 

model. 

The discrepancy between the true model and the fitted model 

is 

  * * ˆ
ˆ( , ) 2

a a
d a a E l a


     

Yet evaluation of 
*

ˆ( , )d a a is not possible, since doing so 

requires knowledge of 
*a  

Akaike (1973) noted that  ˆ2l a is a biased estimator of

*
ˆ( , )d a a . 

Bias adjustment made to obtain unbiased estimator of

*
ˆ( , )d a a  

                     * * *ˆ
ˆ2 2

a a
E E l a E l a


                      (4) 
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Equation (4) can be asymptotically estimated by twice of the 

dimension of â . 

In derivation, Akaike made an assumption that the true 

model belongs to the set of candidate models.  

Under the appropriate conditions, the expected value of 

   ˆ2 2 1AIC l a p     

should be asymptotically nearer to the expected value of 

*
ˆ( , )d a a . 

where  2

1 2
ˆ ˆ ˆ ˆ ˆ, ,pa a a a  are the parameter values that 

maximize the likelihood function. 

When n is large and the dimension of â is comparatively 

small, AIC is approximately unbiased estimator for

 * *
ˆ( , )E d a a . 

Twice of the dimension of â  may be much smaller than the 

bias adjustment (4), so AIC is negatively biased estimator of

 * *
ˆ( , )E d a a .To correct this negative bias, Hurvich and Tsai 

(1989) proposed AICc for linear regression and 

autoregressive modeling [3]. 

Hurvich and Tsai (1989) defined AICc as 

                    
 

 
2ˆAICc log

2
p

n n p
n

n p



 

 
                     

(5) 

For convenience, we will use the operationally equivalent 

definition 

 
 

 
2ˆAICc log log 2

2
p

n n p
n n

n p
 


  

 
 

 
 

 
2ˆAICc log log 2

2
p

n n p
n n n n

n p
 


    

 
 

           
 

 
2

2 1
ˆAICc log 1 log 2

2
p

n p
n n

n p
 


   

 
 

        (6) 

(6) is differ from (5), but it has no impact on selection 

behavior of criterion, by including additive constant. 

Derivation of AICc for Autoregressive Models 

Expectation of (–2 log- likelihood) of the true model is  

        
22

* * * * *2
1*

1
2 log 2 log

n

t t

t

E l a E n n y  
 

 
     

 
  

        
22

* * * * *2
1*

1
2 log 2 log

n

t t

t

E l a n n E y  
 

 
     

 
  

      2

* * *2 log 2 logE l a n n n      

               2

* * *2 log 1 log 2E l a n n                    (7) 

Expectation of (–2 log- likelihood) of the fitted model is  

      
2

2

* * 2
1 1

1
ˆ ˆ ˆ2 log 2 log

ˆ

pn

p t j t j

t jp

E l a E n n y a y 




 

    
         

    

   

       
2

2

* * * 2
1 1

1
ˆ ˆ ˆ2 log 2 log

ˆ

pn

p t j t j

t jp

E l a n E n E y a y 




 

    
         

    

   

        2

* *
ˆ ˆ2 log 1 log 2pE l a E n n                        (8) 

   7 8 implies that 

          2 2

* * * * *
ˆ ˆ2 2 log log pE l a E l a n E n       

           2 2

* * * * * *
ˆ ˆ2 2 log log pE l a E l a E n E n                                          

     
 
 

2

* * * * 2

*

ˆlog
ˆ2 2

log

p
E l a E l a E n





  
      

  

          (9) 

From equation (9), we have 

        
 
 

2

* * * * 2

*

ˆlog
ˆ2 2

log

p
E l a E l a E n





  
     

  

          (10)

 

  * ˆ
2

a a
E l a


  

 

   
2

2

* 2
1 1

ˆ

1
log 2 n log

pn

p t j t j

t jp
a a

E n y a y 




 



                    

 
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   2

2

* * *2
1 1

ˆ

ˆlog 2 n log

1

p
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t t j t j

t jp
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n

E a y

 

 




 



 
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   
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ˆlog 2 n log
ˆ

1
ˆ

ˆ

p

p

pn

t j t j

t jp

n
n

a y


 








 

  

  
    

  
 

 

   
2

2 *

2

2
*

2
1 1 1

ˆlog 2 n log
ˆ

1
ˆ

ˆ

p

p

p pn

j t j j t j

t j jp

n
n

a y a y


 




 

  

  

    
      

    
  

 

   
2

2 *

2
ˆlog 2 n log

ˆ
p

p

n
n


 


        

2
2 *

*

2 2
1 1 1*

1
ˆ

ˆ

p pn

j t j j t j

t j jp

n a y a y
n



 
 

  

    
      

    
      (11) 

2

2

2

*

ˆ
~

p

n p

n



 Its reciprocal follows inverse chi-square 

distribution. 

2

*

2 2

1
~

ˆ
p n pn



  

.The expectation of the reciprocal 

of the chi-square random variable with n p  degrees of 

freedom is 
1

2n p 
 .  

The quadratic form

2
*

2

2
1 1 1*

1
ˆ ~

p pn

j t j j t j p

t j j

a y a y 


 

  

    
     

    
    

 

   * * ˆ
2

a a
E E l a


  

 

    
   

2 2

*

1 1
ˆlog 2 log

2 2
pn n E n np

n p n p
    

   
 

    
   

2
2

*
ˆlog 2 log

2 2
p

n np
n n E

n p n p
    

   
  (12) 

   12 7 implies that 

      * * * *ˆ
2 2

a a
E E l a E l a


      

  
   

 
2

2 2

* *
ˆlog log

2 2
p

n np
n E n n

n p n p
     

   
 

     
   

2
2 2

* * *
ˆlog log

2 2
p

n np
E n E n n

n p n p
     

   
 

     
 

2 2

* * *

2 2
ˆlog log

2
p

np n
E n E n

n p
 


  

 
 

 
 

 

 

2

* 2

*

ˆlog 2 1

2log

p n p
E n

n p





   
  

   

                                    (13)

 

From equation (13), we have 

   * * ˆ
2

a a
E E l a


  

  

  
 
 

 

 

2

* * * 2

*

ˆlog 2 1
2

2log

p n p
E l a E n

n p





   
    

     

Substituting (10) in the above equation, we have 

  
 
 

 
 

 

 

2 2

* * *2 2

* *

ˆ ˆlog log 2 1
ˆ2

2log log

p p n p
E l a E n E n

n p

 

 

       
       

       

  
 

 
*

2 1
ˆ2

2

n p
E l a

n p


  

 
 

Under the appropriate conditions, the expected value of 

 
 

 

2 1
ˆ2

2

n p
AICc l a

n p


  

 
  

is exactly unbiased to the expected value of
*

ˆ( , )d a a . 

The relationship between AIC and AICC is 

  2 1 2

2

p p
AICc AIC

n p

 
 

 
  

When n is large with respect to the dimension of â , AICc 

and AIC are asymptotically equivalent and hence AICc is 

asymptotically efficient but not consistent. 
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D. Bayesian Information Criterion (BIC): 

BIC has been widely used for model identification in time 

series and linear regression analysis. 

Schwarz (1978) developed a model selection criterion that 

was derived from a Bayesian modification of the AIC. It is 

also known as Schwarz Bayesian information criterion 

(SBC).  

Let 
1 2, rM M M be r candidate models and assume that 

each model 
iM  is characterized by a parametric distribution  

 if y   and the prior distribution of parameter vector 
i  

[4]. 

The marginal likelihood of the thi  model (when the data 

 1 2, , ny y y y  is given) is   

                             i i i i i ip y f y d                        (14) 

where 
i is the vector of parameters in the thi  model. 

Applying Bayes theorem to calculate the posterior 

probability of the  thi  model given the data 

 1 2, , ny y y y  is  

 
   

   
1

; 1,2
i i i

i r

i i i

i

p y M P M
P M y i r

p y M P M


 


 

Bayes factor  12B y is used to choose between two models 1 

and 2. 

 
 

 

   

   

1

12

2

1 1

2 2

P M y
B y

P M y

p y P M

p y P M





 

If all the candidate models are equally likely then the Bayes 

factor  12B y is 

 
 

 

   

   

1 1 1 1 11

12

2 2 2 2 2 2

f y dp y
B y

p y f y d
 





   

   
 

Laplace approximation of integrals: let  q   be a real 

valued function of a p-dimensional parameter vector    and 

̂  be the mode of  q   [5]. Then the Laplace 

approximation of the integral is 

  
 

 
  

/2

/2 1/2

2
exp exp

ˆ

p

p

q

nq d nq
n J




  


 

Where  
 2

ˆ

ˆ
q

q
J




 

 
 




 
  

The marginal likelihood or the marginal distribution of data 

 1 2, , ny y y y  can be approximated by using Laplace’s 

method for integrals. 

The marginal likelihood (14) can be written as 

      exp logp y f y d       

                   
      expp y l d                 (15) 

where  l  is the log-likelihood function. 

The Taylor expansion of the log-likelihood  l   around ̂  

is 

         
        ˆ ˆ ˆ ˆ

2

n
l l J


                 (16) 

Where ̂  is the solution of  
 

0
l


 


 (i.e. ̂  is maximum 

likelihood estimator for ) and  
 2

ˆ

ˆ
q

q
J




 

 
 




 
 

The Taylor expansion of the prior distribution     around 

̂  is 

     
 

ˆ

ˆ ˆ
2

ln




   

 

 
     


                 (17) 

Substituting equations (16) & (17) in equation (15) and 

simplifying the result leads to the approximation of the 

marginal likelihood. 

 

          
 

ˆ

ˆ ˆ ˆ ˆ ˆ ˆexp
2 2

p y

ln n
l J d



    
         

   


 

 
          



         ˆ ˆ ˆ ˆ ˆ( ) exp exp (18)
2

n
p y l J d        

 
    

 


Where p-dimensional parameter vector    follows p-variate 
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normal distribution with mean vector ̂  and variance-

covariance matrix

 
1

ˆn J 
. 

Using Laplace approximation of the integral to the integral in 

equation (18), we get 

        /2 /2 1/2ˆ ˆ ˆ ˆexp 2 (19)
2

p pn
J d n J         

    
 



When sample size n is large, the marginal likelihood can be 

approximated as follows 

Substituting equation (19) in equation (18), we get 

         /2 /2 1/2ˆ ˆ ˆexp 2
p pp y l n J        

Taking logarithm and multiplying with –2, we get 

      

         

2log 2log

ˆ ˆ ˆ2 1 log log log 2 log

p y f y d

l p n J p n

 

     

    

    

     ˆ ˆlog log 2 logJ p n      play no practical role in 

model selection and can be ignored. 

Then the Bayesian information criterion BIC is given by  

   ˆ2 1 logBIC l p n     

   ˆ2 log 1 logBIC f y p n     

where  ˆf y  is the statistical model estimated by 

maximum likelihood method. 

Several authors have pointed out AIC’s inconsistency that 

may lead to an overestimate of the true order. To overcome 

this inconsistency, the BIC was introduced with the penalty 

term on the sample size and it is a consistent estimator for 

large samples [6]. 

E. Hannan-Quinn's Criterion (HQC): 

The autoregressive time series model for order p is  

1

p

t j t j t

j

y a y 



    ;  2where are . . 0,t i i d N   

They made the assumptions about t  are 

(i).  1 0n nE F     

(ii).   2 2

1n nE F     

(iii). 
 

 4

1n nE F     

nF  is the  algebra generated by  1 1, , ,n n    [7]. 

Hannan-Quinn (1979) proposed an order selection criterion 

of the form  

                
   2 1ˆlog 2 1 log logp n p c n     

It provides a consistent estimator of order p. 

Where n is the number of observations (large) and c is an 

arbitrary real number greater than 1. 

The information criteria suggested by Hannan-Quinn is 

                   
   2ˆlog 2 1 log lognHQ pIC n p c     (20)                    

Levinson's formula for estimating the variance 
2ˆ
p  of the AR 

model is 

 2 2 2

1
ˆˆ ˆ 1 p p pb   

Where  
2 2

,p
ˆ ˆ

p pb a  

2 th

, AR coefficient of the fitted ARˆ j (p  mo l) dep ja   

     
1

1
2

, 1,k 1

1

p

p p n p

k

a p a n k




 



 
   
 

    

and  2

0
ˆ 0    

2ˆ
p  is the noise variance of the fitted AR(p) model 

Levinson's formula is 

 

  

   

2 2 2

1

2 2 2

1 2

2 2 2 2

1 2 3

ˆˆ ˆ1

ˆ ˆ ˆ1 1

ˆ ˆ ˆ ˆ1 1 1



 

  

 

  

   

p p p

p p p

p p p p

b

b b

b b b

 





 

Finally, we get by repeating the recurrence relation of 

variance 

   
     2 2 2 2 2 2

1 2 1 0
ˆ ˆ ˆ ˆˆ ˆ1 1 1 1p p p pb b b b           (21) 

Substituting equation (21) in equation (20), we obtain 

Hannan-Quinn Information Criteria 

     2 2

0

1

ˆˆlog log 1 2 1 log log n
p

HQ j

j

IC n n b p c


      
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Where 2

0̂  is the variance of the AR model of order 0 (i.e. 

the variance of the time series ty .) 

Hannan and Quinn wanted a model selection criterion of a 

form similar to AIC yet still strongly consistent for the order 

p [8]. 

   2ˆlog 2 1 log log ;c 1HQ pIC n p c n     

Strong consistency hold for c = 1, then we obtain Hannan 

and Quinn Criterion. 

   2ˆlog 2 1 log lognpHQC n p  
 

For convenience, we will use the operationally equivalent 

definition 

      2ˆlog 1 log2 2 1 log lognpHQC n n p     
 

   ˆ2 ( ) 2 1 log lognHQC l a p   
 

Hannan and Quinn criterion is not asymptotically efficient 

and is strongly consistent. The behavior of HQC is 

asymptotically very well. 

Of these criteria, HQC and BIC are consistent, and AICc, 

AIC, FPE are asymptotically efficient [9].  

F. Minimum Description Length (MDL):  

Minimum Description Length (MDL) was introduced by 

Rissanen in 1978.  Let   ; pf y R   is a family of 

probability models. Assume that the data 

 1 2, , ny y y y  are obtained from  .f y    

The Total Description Length (TDL) is defined as 

   TDL log  DL probability distribution modelf y    

The probability distribution model that minimizes this total 

description length is such a model that can encode the data 

 1 2, , ny y y y in minimum length. 

Dividing the parametric space 
pR into infinitesimal 

cubes of size  . Then the TDL depends on  and its 

minimum can be approximated as 

   

   1/2

1 1ˆlog log log 2
2 2

log

p p
l y f y n

J d O n

 

  

 
   

 

 

Where  J  is Fisher's information matrix [5, 10]. 

The Minimum Description length is defined as 

 
1ˆlog log

2

p
MDL f y n


    

   ˆlog 1 logMDL f y p n     

Where ̂  is maximum likelihood estimator for . 

 

III. METHODOLOGY 

The true auto regressive model with true order 
*p  is  

1 1 2 2 * * *      t t t p t p ty a y a y a y  

 2

*Where are . . 0,t i i d N 
 

The candidate models are  

1 1 1: t t ty a y  M   

2 1 1 2 2: t t t ty a y a y    M  

3 1 1 2 2 3 3: t t t t ty a y a y a y      M  

4 1 1 2 2 3 3 4 4: t t t t t ty a y a y a y a y        M  

5 1 1 2 2 3 3 4 4 5 5: t t t t t t ty a y a y a y a y a y          M
 

The main objective of the study is to determine the true order 

*p  of the true auto regressive model using autoregressive 

order selection criterion like FPE, AIC, AICc, BIC, HQC, 

and MDL. 

Information Criterion to choose the best model amongst the 

candidate model is defined as 

   ˆ2 2 ,IC l f n p    

Where  ˆl  is the maximized log-likelihood function. 

  is the (p+1)-vector of unknown free parameters. 
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 ,f n p is the penalty function. 

The model with the smallest value of IC is the chosen model 

[11]. The penalty functions of commonly used information 

criteria are as follows 

Table 1. Penalty Functions of Some Commonly Used IC 

Criterion Penalty function  ,f n p  

FPE 
   log 1 log 1

2

n n p n n p    
 

AIC  1p   

AICc 
 1

2

n p

n p



   

BIC 
 1

log n
2

p 
 

HQC    p 1 log logn  

The Minimum Description length is 

 
 1

ˆ log
2

p
MDL l n


  

 

The selected model 
*pM can be obtained by minimizing the 

value of the autoregressive order selection criterion. 

IV. RESULTS AND DISCUSSION 

The true autoregressive model  used in the present study is  

1 20.58 0.65t t t ty y y     ,  where are . . 0,1 .t i i d N
 

We generated different sizes of the same time series (i.e. AR 

(2) model with coefficients 0.58 and –0.65). Then 

autoregressive models with orders 1,2,3,4 and 5 are 

constructed.  

Autoregressive order selection criterion like FPE, AIC, 

AICc, BIC, HQC, and MDL is used to select the best model. 

To fit the models and to find the optimal order of 

autoregressive model, we used packages “fpp”, “forecast”, 

“lmtest”, “zoo”, “fma”, “expsmooth”, “tseries” in R-

Software. 

The model with the minimum FPE, AIC, AICc, BIC, HQC, 

and MDL is highlighted with gray colour in Table 2 to 7. 

 

FPE for each candidate model is determined by the following 

formula   

log( 1) log( 1)
2log( ) 2

2

n n p n n p
FPE likelihood

     
    

 
 

using R Software and these values are presented in table 2. 
 

Table 2. Final Prediction Error 

Size of 

Time 

Series 

Order of AR Model 

1 2 3 4 5 

15 53.702 54.608 56.614 53.312 54.757 

30 97.905 96.813 98.618 98.718 100.481 

50 157.817 144.544 146.184 144.669 145.854 

70 228.470 205.687 207.654 206.283 208.291 

100 337.534 289.534 291.429 292.466 294.296 

200 651.020 563.014 564.731 566.610 568.595 

400 1318.666 1120.588 1122.403 1124.091 1125.040 

800 2630.590 2289.880 2291.812 2291.356 2292.550 

1600 5347.701 4592.093 4594.086 4594.327 4595.140 

Akaike’s final prediction error criterion is not performing 

well for n =15.  

AIC for each candidate model for different sizes of the same 

time series are obtained using R Software and these values 

are presented in table 3. 
 

Table 3. Akaike’s Information Criterion 

Size of 

Time 

Series 

Order of AR Model 

1 2 3 4 5 

15 53.678 54.526 56.416 52.915 54.048 

30 97.900 96.793 98.570 98.624 100.317 

50 157.815 144.537 146.167 144.635 145.796 

70 228.469 205.683 207.645 206.266 208.261 

100 337.533 289.532 291.424 292.457 294.282 

200 651.020 563.014 564.730 566.608 568.592 

400 1318.666 1120.588 1122.403 1124.090 1125.039 

800 2630.590 2289.880 2291.812 2291.356 2292.550 

1600 5347.701 4592.093 4594.086 4594.327 4595.140 

Akaike’s information criterion is not performing well for n 

=15. FPE and AIC values are approximately equal for n 

exceeding 100.We observed that FPE and AIC are 

asymptotically equivalent from table 2 and 3. 

AICc for each candidate model for different sizes of the same 

time series are obtained using R Software and these values 

are presented in table 4. 
 

Table 4. Bias-Corrected Akaike’s Information Criterion 

Size of 

Time 

Series 

Order of AR Model 

1 2 3 4 5 

15 54.678 56.708 60.416 59.581 64.548 

30 98.344 97.716 100.170 101.124 103.969 

50 158.070 145.058 147.056 145.999 147.749 

70 228.648 206.047 208.260 207.204 209.595 

100 337.657 289.782 291.845 293.096 295.185 

200 651.081 563.136 564.935 566.918 569.027 

400 1318.696 1120.648 1122.504 1124.242 1125.253 

800 2630.605 2289.911 2291.862 2291.431 2292.656 

1600 5347.709 4592.108 4594.111 4594.364 4595.193 
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Bias-Corrected Akaike’s information criterion is not 

performing well for n =15. AIC and AICc values are 

approximately equal for n exceeding 100. We observed that 

AIC and AICc are asymptotically equivalent from table 3 

and 4. We observed that AICc values are slightly higher than 

AIC. 

BIC for each candidate model for different sizes of the same 

time series are obtained using R Software and these values 

are presented in table 5. 
 

Table 5. Bayesian Information Criterion  

Size of 

Time 

Series 

Order of AR Model 

1 2 3 4 5 

15 55.094 56.650 59.248 56.455 58.296 

30 100.702 100.997 104.175 105.630 108.724 

50 161.639 150.273 153.815 154.195 157.268 

70 232.966 212.429 216.639 217.509 221.752 

100 342.743 297.347 301.845 305.483 309.913 

200 657.616 572.909 577.923 583.100 588.382 

400 1326.649 1132.562 1138.369 1144.047 1148.988 

800 2639.959 2303.934 2310.550 2314.779 2320.658 

1600 5358.457 4608.226 4615.597 4621.215 4627.407 

Bayesian information criterion is not performing well for n 

=15 and 30. 

HQC for each candidate model for different sizes of the same 

time series are obtained using R Software and these values 

are presented in table 6. 
 

Table 6. Hannan-Quinn Criterion  

Size of 

Time 

Series 

Order of AR Model 

1 2 3 4 5 

15 53.663 54.503 56.385 52.877 54.002 

30 98.796 98.138 100.363 100.865 103.006 

50 159.271 146.721 149.079 148.276 150.165 

70 230.255 208.362 211.217 210.732 213.620 

100 339.642 292.695 295.642 297.729 300.608 

200 653.689 567.018 570.069 573.282 576.600 

400 1321.827 1125.330 1128.726 1131.993 1134.523 

800 2634.189 2295.279 2299.010 2300.354 2303.348 

1600 5351.695 4598.084 4602.073 4604.311 4607.122 

Hannan-Quinn criterion is not performing well for n =15. 

 

MDL for each candidate model for different sizes of the 

same time series are obtained using R Software and these 

values are presented in table 7. 
 

Table 7. Minimum Description Length  

Size 

of 

Time 

Series 

Order of AR Model 

1 2 3 4 5 

15 27.547 28.325 29.624 28.228 29.148 

30 50.351 50.498 52.088 52.815 52.661 

50 80.819 75.136 76.908 77.098 78.634 

70 116.483 106.214 108.319 108.754 110.876 

100 171.372 148.674 150.923 152.742 154.956 

200 328.808 286.454 288.962 291.550 294.191 

400 663.324 566.281 569.185 572.024 574.494 

800 1319.980 1151.967 1155.275 1157.389 1160.329 

1600 2679.228 2304.113 2307.798 2310.608 2313.703 

Minimum description length is not performing well for n 

=15, 30.The performance of minimum description length is 

similar as the performance of Bayesian information criterion 

in model selection.  

V. CONCLUSION and Future Scope  

In the present work, we have investigated the use of 

autoregressive order selection criteria for determining the 

order of autoregressive model. These autoregressive order 

selection procedures useful for obtaining best model among 

the candidate models in time series and forecasting. Final 

Prediction Error (FPE) Criterion, Akaike Information 

Criterion (AIC), Bias-Corrected Akaike Information 

Criterion (AICc), Bayesian Information Criterion (BIC), 

Hannan and Quinn Criterion (HQC) and Minimum 

Description Length (MDL) are also useful for determining 

best ARMA model among the candidate ARMA models. 
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