International Journal of Scientific Research in \qquad
Mathematical and Statistical Sciences
Vol.6, Issue.3, pp.144-148, June (2019)
E-ISSN: 2348-4519

Operations on Graphs and its Minimum Diameter Spanning Tree

V.T. Chandrasekaran ${ }^{1 *}$, N. Rajasri ${ }^{{ }^{*}}$
${ }^{1}$ Department of Mathematics,Jawahar Science College,Neyveli-607803, India
${ }^{2}$ Department of Mathematics,Vallalar Arts and Science College,Vadalur-607303. India

Available online at: www.isroset.org

Received: 26/May/2019, Accepted: 16/Jun/2019, Online: 30/Jun/2019

Abstract

In this paper we present dominating sets, minimum diameter spanning tree for operations on graphs. We find out the minimum diameter spanning tree through the graph of P_{n} and S_{n} which have a minimum diameter spanning tree such that both have same domination number. The spanning tree T of the simple connected graph G is said to be a minimum diameter spanning tree. if there is no other spanning tree T^{\prime} of G such that $d\left(T^{\prime}\right)<d(T)$. The diameter of a graph G is length of the shortest path between the most distance node.

Keywords: Domination, Diameter, Ladder graph, Grid graph, star graph, Path, Spanning tree, Cartesian product, co-normal product, lexico graphic product, and union, sum.

I. INTRODUCTION

Researches have defined several operations on graphs depending on their need. some popular binary operations on graphs are given below. A subset S of vertices from V is called a dominating set for G , if every vertex of G is either a member of S or adjacent to a member of S. A dominating set of G is called a minimum dominating set, if G has no dominating set of smaller cardinality. The cardinality of minimum dominating set of G is called the dominating number for G and it is denoted by $\gamma(G)$ [4]. Chandrasekaran V.T and Rajasri.N (2018) Minimum Diameter Spanning Tree [1]. In this paper, we discuss path, star simple connected graphs for which the domination numbers of the graph and that of its minimum diameter spanning trees are the same.

Section I contains the sum of any two graphs, section II contains the operations of star graph, section III contains the oprations of path graph.

II. PRILIMINARIES

Let $G=(V, E)$ be a graph. A subset S of V is called dominating set if every vertex in $V-S$ is adjacent to a vertex in S. The minimum cardinality of a dominating set in G is called the domination number of G and it is denoted by $\gamma(G)$

Let $G=\left(v_{1}, \mathrm{x}_{1}\right)$ and $G=\left(v_{2}, \mathrm{x}_{2}\right)$ be two graphs with $v_{1} \cap v_{2}=\phi$ we define
(1) The UNION $G_{1} \cup G_{2}$ to be (V, X) where $V=V_{1} \cup V_{2}$ and $X=X_{1} \cup X_{2}$.
(2) The SUM $G_{1}+G_{2}$ as $G_{1} \cup G_{2}$ together with all the lines joining points V_{1} to points of V_{2}.
(3) The CARTESIAN $G_{1} \square G_{2}$ as having $V=V_{1} \times V_{2}$ and $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent if $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} in G_{2} or u_{1} is adjacent to v_{1} in G_{1} and $u_{2}=v_{2}$.
(4) CO NORMAL PRODUCT: For a graph G_{1} having having the vertex set $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\}$ and G_{2} having having the vertex set $\left\{\mathrm{v}_{1}, \underline{\mathrm{y}},{ }_{3} \mathrm{y} .,{ }_{n}\right.$, he graph having the vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)=\left\{\mathrm{u}_{i}, \mathrm{v}_{j}: \mathrm{u}_{i} \in V\left(G_{\mathrm{t}}\right)\right.$ and $\left.v_{j} \in V\left(G_{2}\right), 1 \leq i \leq m, 1 \leq j \leq n\right\}$

And the adjacency relation defined as
$\left(u_{i}, v_{j}\right) \square\left(u_{r}, v_{s}\right)$, if
$u_{i} \square u_{r}$ in G_{1} or $v_{j} \square v_{s}$ in G_{2} is called the co normal product graph.It is denoted as $\left(G_{1} * G_{2}\right)$.
(5) LEXICO GRAPHIC PRODUCT: For any two graphs G_{1} and G_{2} The graph obtained from the vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ by defining the adjacency relation as $\left(u_{i}, v_{j}\right) \square\left(u_{r}, v_{s}\right)$, if $u_{i} \square u_{r}$ in G_{1} or $\quad\left(u_{i}=u_{r}\right.$ and $u_{j} \square u_{s}$ in $\left.G_{2}\right)$ is called the lexico graphic product graph and denoted as $G_{1}\left[G_{2}\right]$

[1] Sum of any two graphs

LEMMA:1.1 Let G_{1} and G_{2} be any graph and T be the minimum diameter spanning tree of the graph, then $\gamma\left(G_{1}+G_{2}\right)=\gamma(T)$
Proof:
(i) Either $\quad \gamma\left(G_{1}\right)=1 \operatorname{or} \gamma\left(G_{2}\right)=1 \quad$ or both $\gamma\left(G_{1}\right)=1$ and $\gamma\left(G_{2}\right)=1$. let $\gamma\left(G_{1}\right)=1$ then G_{1} has a vertex $\mathrm{V} \in \mathrm{V}\left(\mathrm{G}_{1}\right)$ such that $\operatorname{deg} v=\left|V\left(G_{1}\right)\right|-1$. In the graph $G_{1}+G_{2}, \quad \gamma\left(G_{1}+G_{2}\right)=1$ and $\{v\}$ is the dominating set. Let T be a tree constructed by removing all edges except the edges incident to the vertex v. Clearly $\operatorname{diam}(T)=2$ and hence it is a minimal sp
(ii) anning tree also $\gamma(T)=1$. Thus $\gamma\left(G_{1}+G_{2}\right)=\gamma(T)$. Similarly we can prove when $\gamma\left(G_{2}\right)=1$ and both $\gamma\left(G_{1}\right)=1, \gamma\left(G_{2}\right)=1$.
(ii) Both $\gamma\left(\mathrm{G}_{1}\right) \neq 1$ and $\gamma\left(G_{2}\right) \neq 1$ Let G_{1} and G_{2} be any graph. And let $\left|V\left(G_{1}\right)\right|=m$ and $\left|V\left(G_{2}\right)\right|=n$ then $\{u, v\}$ is a dominating set where $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$ hence $\gamma\left(G_{1}+G_{2}\right)=2$ all edge between u to G_{2} and v to G_{1} together for a minimum diameter spanning tree T and it is isomorphic to bi-star graph $B_{m, n}$ hence, $\gamma(T)=\gamma\left(B_{m, n}\right)=2$. Therefore $\gamma\left(G_{1}+G_{2}\right)=\gamma(\mathrm{T})$

[2] Oprations of star graph

THEOREM :2.1 Let S_{m} and S_{n} be a graph and T be the minimum diameter spanning tree of the graph. Then $\gamma\left(S_{m} \cup S_{n}\right)=\gamma(T)$
(i) $\quad \gamma\left(S_{m}+S_{n}\right)=\gamma(T)$
(ii) $\quad \gamma\left(S_{m} * S_{n}\right)=\gamma(T)$
(iii) $\quad \gamma\left(S_{m} \square S_{n}\right)=\gamma(T)$
(iv) $\quad \gamma\left(S_{m}\left[S_{n}\right]\right)=\gamma(T)$

Proof

(i) $\quad \gamma\left(S_{m} \cup S_{n}\right)=\gamma(T)$

Its obviously true
(ii)

$$
\gamma\left(S_{m}+S_{n}\right)=\gamma(T)
$$

By lemma 01
(iii) $\quad \gamma\left(S_{m} * S_{n}\right)=\gamma(T)$

We need to show that $\operatorname{deg}\left(u_{m+1}, v_{n+1}\right)=\mathrm{u}_{m+1}+v_{n+1}-1$ by the definition of co-normal product $\left(u_{m+1}, v_{n+1}\right)$ is adjacent to all the vertex of $S_{m} * S_{n}$ as u_{m+1} is adjacent to all vertex $u_{1}, u_{2}, u_{3}, \ldots, u_{m}$ in S_{m} and v_{n+1} is adjacent to all the vertices of S_{n}.

Hence $\gamma\left(S_{m} * S_{n}\right)=1$ and $\operatorname{dim}\left(S_{m} * S_{n}\right)=2$ Let T be a spanning tree of $S_{m} * S_{n}$ obtain by removing the edge except the edge incident on the vertex $\left(u_{m+1}, v_{n+1}\right)$ in $S_{m} * S_{n}$. Clearly, $\mathrm{T}=S_{m n}$ and hence $\gamma(T)=1$ and $\operatorname{dim}(T)=2$.Thus T is a minimal spanning tree with domination number 2. Hence $\gamma\left(S_{m} * S_{n}\right)=\gamma(T)$.
(iv) $\gamma\left(S_{m} \square S_{n}\right)=\gamma(T)$

Let $\quad V\left(S_{m}\right)=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m+1}\right\}, \quad$ and $\operatorname{deg}\left(u_{m+1}\right)=\Delta\left(S_{m}\right)$
let $\quad V\left(S_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n+1}\right\}$, and $\operatorname{deg}\left(v_{n+1}\right)=\Delta\left(S_{n}\right)$
Assume that $\mathrm{m}<\mathrm{n}$, let vertex set of $S_{m} \square S_{n}=$

$$
\begin{aligned}
& \left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right), \ldots,\left(u_{1}, v_{n}\right),\left(u_{1}, v_{n+1}\right)\right. \\
& \left(u_{2}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{2}, v_{n}\right),\left(u_{2}, v_{n+1}\right) \\
& \vdots \\
& \left(u_{m}, v_{1}\right),\left(u_{m}, v_{2}\right), \ldots,\left(u_{m}, v_{n}\right),\left(u_{m}, v_{n+1}\right) \\
& \left(u_{2}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{2}, v_{n}\right),\left(u_{2}, v_{n+1}\right) \\
& \left.\left(u_{m+1}, v_{1}\right),\left(u_{m+1}, v_{2}\right), \ldots,\left(u_{m+1}, v_{n}\right),\left(u_{m+1}, v_{n+1}\right)\right\} \\
& \text { And egde set of } \\
& S_{m} \square S_{n}=\left\{\begin{array}{l}
\left(u_{i}, v_{j}\right) \text { is adjacent to }\left(u_{k}, v_{l}\right) \text { iff } \\
v_{j}=v_{l} u_{i} \text { is adjacent to } \mathrm{u}_{k} \text { in } S_{m} \text { or } \\
u_{i}=u_{k} v_{j} \text { is adjacent to } v_{l} \text { in } S_{n .}
\end{array}\right\} \\
& \int\left(u_{m+1}, v_{1}\right)\left(u_{1}, v_{1}\right),\left(u_{m+1}, v_{1}\right)\left(u_{2}, v_{1}\right), \ldots,\left(u_{m+1}, v_{1}\right)\left(u_{m}, v_{1}\right) \\
& \left(u_{m+1}, v_{2}\right)\left(u_{1}, v_{2}\right),\left(u_{m+1}, v_{2}\right)\left(u_{2}, v_{2}\right), \ldots,\left(u_{m+1}, v_{2}\right)\left(u_{m}, v_{2}\right) \\
& \left(u_{m+1}, v_{n}\right)\left(u_{1}, v_{n}\right),\left(u_{m+1}, v_{n}\right)\left(u_{2}, v_{n}\right), \ldots,\left(u_{m+1}, v_{n}\right)\left(u_{m}, v_{n}\right) \\
& \left(u_{m+1}, v_{n+1}\right)\left(u_{1}, v_{n+1}\right),\left(u_{m+1}, v_{n+1}\right)\left(u_{2}, v_{n+1}\right), \ldots,\left(u_{m+1}, v_{n+1}\right)\left(u_{m}, v_{n+1}\right) \\
& E\left(S_{m} \square S_{n}\right)=\{ \\
& \left(u_{2}, v_{n+1}\right)\left(u_{2}, v_{1}\right),\left(u_{2}, v_{n+1}\right)\left(u_{2}, v_{2}\right), \ldots,\left(u_{2}, v_{n+1}\right)\left(u_{2}, v_{n}\right) \\
& \left(u_{m}, v_{n+1}\right)\left(u_{m}, v_{1}\right),\left(u_{m}, v_{n+1}\right)\left(u_{m}, v_{2}\right), \ldots,\left(u_{m}, v_{n+1}\right)\left(u_{m}, v_{n}\right) \\
& \left(u_{m+1}, v_{n+1}\right)\left(u_{m+1}, v_{1}\right),\left(u_{m+1}, v_{n+1}\right)\left(u_{m+1}, v_{2}\right), \ldots,\left(u_{m+1}, v_{n+1}\right)\left(u_{m+1}, v_{n}\right)
\end{aligned}
$$

Let us find the Diameter of $S_{m} \square S_{n}$: $\left(u_{i}, v_{j}\right)$ and $\left(u_{k}, v_{l}\right)$ two vertices of $S_{m} \square S_{n}$

Case(i) $u_{i}=u_{k}$ and $v_{j} \neq v_{l}$
If $v_{j}=v_{n+1}$ or $v_{l}=v_{n+1}$ then v_{l} is adjacent to v_{n+1} and its distance is 1 .
If $v_{j} \neq v_{n+1}$ and $v_{l} \neq v_{n+1}$ then v_{j} is adjacent to v_{n+1} and its minimal path is $\left(u_{i}, v_{j}\right)-\left(u_{i}, v_{n+1}\right)-\left(u_{i}, v_{l}\right)$ and hence distance is 2 .
Case(ii) let $u_{i} \neq u_{k}$ and $v_{j}=v_{l}$ similar to previous case
Case (iii) $u_{i} \neq u_{k}$ and $v_{j} \neq v_{l}$
The minimal path between $\left(u_{i}, v_{j}\right)$ to $\left(u_{k}, v_{l}\right)$ is attained by travelling along the vertex $\left(u_{i}, v_{j}\right)$ to $\left(u_{m+1}, v_{j}\right)$ to $\left(u_{m+1}, v_{n+1}\right)$ to $\left(u_{m+1}, v_{l}\right)$ to $\left(u_{k}, v_{l}\right)$ and its distance 4. Hence the diameter of $S_{m} \square S_{n}$ is 4 .

$$
\begin{aligned}
\gamma\left(S_{m} \square S_{n}\right) & =\min \{m+1, n+1\} \\
& =\mathrm{m}+1
\end{aligned}
$$

Consider a spanning tree T of $\quad S_{m} \square S_{n}$ where $m<n$ have the following set as edge set

$$
\left\{\begin{array}{c}
\left(u_{m+1}, v_{n+1}\right)\left(u_{1}, v_{n+1}\right),\left(u_{m+1}, v_{n+1}\right)\left(u_{2}, v_{n+1}\right), \ldots,\left(u_{m+1}, v_{n+1}\right)\left(u_{m}, v_{n+1}\right) \\
\left(u_{1}, v_{n+1}\right)\left(u_{1}, v_{1}\right),\left(u_{1}, v_{n+1}\right)\left(u_{1}, v_{2}\right), \ldots,\left(u_{1}, v_{n+1}\right)\left(u_{1}, v_{n}\right) \\
\left(u_{2}, v_{n+1}\right)\left(u_{2}, v_{1}\right),\left(u_{2}, v_{n+1}\right)\left(u_{2}, v_{2}\right), \ldots,\left(u_{2}, v_{n+1}\right)\left(u_{2}, v_{n}\right) \\
\vdots \\
\left(u_{m}, v_{n+1}\right)\left(u_{m}, v_{1}\right),\left(u_{m}, v_{n+1}\right)\left(u_{m}, v_{2}\right), \ldots,\left(u_{m}, v_{n+1}\right)\left(u_{m}, v_{n}\right) \\
\left(u_{m+1}, v_{n+1}\right)\left(u_{m+1}, v_{1}\right),\left(u_{m+1}, v_{n+1}\right)\left(u_{m+1}, v_{2}\right), \ldots,\left(u_{m+1}, v_{n+1}\right)\left(u_{m+1}, v_{n}\right)
\end{array}\right\}
$$

Now let us find diameter of T , consider any vertex $\left(u_{i}, v_{j}\right)$, $\left(u_{k}, v_{l}\right)$
Diameter of T is $\left(u_{i}, v_{j}\right)$ to $\left(u_{i}, v_{n+1}\right)$ to $\left(u_{m+1}, v_{n+1}\right)$ to $\left(u_{k}, v_{n+1}\right)$ to $\left(u_{k}, v_{l}\right)$

Therefore diameter $\quad(\mathrm{T})=\quad$ 4. Hence $\operatorname{diam}\left(S_{m} \square S_{n}\right)=4=\operatorname{diam}(T)$
T is minimum spanning tree.
Minimal Domination set of T is $\left\{\left(u_{1}, v_{n+1}\right),\left(u_{2}, v_{n+1}\right), \ldots,\left(u_{m}, v_{n+1}\right),\left(u_{m+1}, v_{n+1}\right)\right\}$
Since, $\mathrm{m}<\mathrm{n}$ Hence $\gamma(T)=\mathrm{m}+1$
Therefore $\gamma\left(S_{m} \square S_{n}\right)=\gamma(T)$. Hence proved.
(v) $\gamma\left(S_{m}\left[S_{n}\right]\right)=\gamma(T)$

Let $\quad V\left(S_{m}\right)=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m+1}\right\}$, and $\operatorname{deg}\left(u_{m+1}\right)=\Delta\left(S_{m}\right)$
Let

$$
V\left(S_{n}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n+1}\right\}, \text { and }
$$ $\operatorname{deg}\left(v_{n+1}\right)=\Delta\left(S_{n}\right)$

By case (i) the diameter of $\left(S_{m}\left[S_{n}\right]\right)$ is 4. $\gamma\left(S_{m}\left[S_{n}\right]\right)=\min \{m+1, n+1\}=m+1 \quad$ Consider \quad a spanning tree T of $S_{m}\left[S_{n}\right]$ where $m<n$, the diameter of T is 4 and the minimum domination number of T is $m+1$,hence $\gamma\left(S_{m}\left[S_{n}\right]\right)=\gamma(T)$.

Example for $S_{5} \square S_{6}$

Figure 01 - Cartesian product graph for $S_{5} \square S_{6}$

Figure 02 - Minimum diameter spanning tree for $S_{5} \square S_{6}$

[3] Oprations of path graph

THEOREM : 3.1 Let P_{n} and P_{m} be path graph respectively and T be the minimum diameter spanning tree of the graph. Then $\gamma\left(P_{m} \cup P_{n}\right)=\gamma(T)$
(1) $\gamma\left(P_{m}+P_{n}\right)=\gamma(T)$
(2) $\gamma\left(P_{m} \square P_{n}\right) \leq \gamma(T)$
(3) $\gamma\left(P_{m}\left[P_{n}\right]\right)=\gamma(T)$

PROOF:

(i) Let P_{m} and P_{n} graph respectively.
we know that $\gamma\left(P_{m} \cup P_{n}\right)=\gamma\left(P_{m}\right)+\gamma\left(P_{n}\right)$
$=\gamma\left(P_{m}\right)+\gamma\left(P_{n}\right) \quad$ by definition
$\gamma\left(P_{m} \cup P_{n}\right)=\gamma(T)$.
(ii) Let G_{1} and G_{2} be P_{n} and P_{m} graph respectively. if $\mathrm{n} \leq 3$ or $m \leq 3$ then $\quad \gamma\left(G_{1}+G_{2}\right)=1 . \quad$ Suppose $G_{1}=P_{n}, n \leq 3$ then there exist a $u \in V\left(G_{1}\right)$ such that u is adjacent to all vertices in G_{1} and in $G_{1}+G_{2} .\{\mathrm{u}\}$ is the dominating set hence u is a dominating vertex in $G_{1}+G_{2}$, so $\quad \gamma\left(G_{1}+G_{2}\right)=1=\gamma(T)$.and If $\mathrm{n}>3$ or $m>3$ then $\gamma\left(G_{1}+G_{2}\right)=\gamma(\mathrm{T})$ by lemma 01
(iii) Case(1): Let G_{1} and G_{2} be P_{1}, P_{n} graph respectively, then $\quad G_{1} \square G_{2}$ is a P_{n} graph and hence $\gamma\left(G \square G_{2}\right)=\gamma\left(P_{1} \square P_{n}\right)=\gamma\left(P_{n}\right)=\gamma(T)$.
Case(2): Let G_{1} and G_{2} be P_{2}, P_{n} graph respectively, then $G_{1} \square G_{2}$ is a L_{n} graph. [1] The domination number of the minimum diameter spanning tree of L_{n} is $\gamma\left(G \sqcap G_{2}\right)<\gamma(T)$, when n is odd. And when n is even The domination number of the minimum diameter spanning tree of L_{n} is $\gamma\left(G \sqcap G_{2}\right)=\gamma(T)$.
Case(3): Let G_{1} and G_{2} be any P_{3}, P_{n} graph respectively where $\mathrm{n}>3$. then $G_{1} \square G_{2}$ is a $G_{3, n}$ graphSo, $\gamma\left(\mathrm{P}_{3} \square P_{n}\right)=\gamma\left(\mathrm{G}_{3, n}\right)=\left\lfloor\frac{3 n+4}{4}\right\rfloor \ldots(1)$. Let T be a spanning tree of $\quad P_{3} \square P_{n}$ obtain by removing the edge except the LINE and I-shape that is from the Figure(2A) the line is formed in first column and \mathcal{I} - shape formed in third column continue this process line and \mathbf{I} - shape are formed alternatively in odd columns. Lines are drawn continuously when there is not possibility to draw \mathbf{I}-shape. The domination number of the minimum diameter spanning tree is $\gamma(T)=\left\lfloor\frac{3 n+4}{4}\right\rfloor$, clearly from the $\operatorname{Figure}(2 \mathrm{~A})$ $\gamma\left(P_{n} \square P_{m}\right)=\gamma(T) \quad$ and \quad since from the above $\gamma\left(G_{1} \square G_{2}\right) \leq \gamma(T)$
(iii) For any P_{m}, P_{n} graph, by the definition of lexico graphic product $P_{m}\left[\mathrm{P}_{n}\right]$ where $m>3$ and $n>3$. $P_{m}\left[\mathrm{P}_{n}\right]$ has a minimum diameter spaning tree T . if $m \equiv 0 \operatorname{or} 3(\bmod 4)$ and let γ_{1} be the minimum dominating set of $P_{m}\left[P_{n}\right]$, where $\gamma_{1}=$
$\left\{\left(u_{4 i-2} v_{2}\right),\left(\mathrm{u}_{4 i-1} v_{n}\right)\right\}, \quad i \leq\left\lceil\frac{m}{4}\right\rceil$ then
$\gamma\left(\mathrm{P}_{m}\left[\mathrm{P}_{n}\right]\right)=\left\lceil\frac{m}{2}\right\rceil$. delete all the edges except the edges incident with $\left(u_{4 i-2} v_{2}\right)$ and $\left(u_{4 i-1} v_{n}\right)$ such that the cycle does not exist, thus T is obtained then $\gamma(T)=\left\lceil\frac{m}{2}\right\rceil$.

If $m \equiv 1(\bmod 4)$ and
the dominating set is $\gamma_{1} \cup\left\{\mathrm{u}_{m-1} \mathrm{v}_{n}\right\}$ then $\gamma\left(P_{m}\left[\mathrm{P}_{n}\right]\right)=\left\lceil\frac{m}{2}\right\rceil$. delete all the edges except the edges incident with $\left(u_{4 i-2} v_{2}\right),\left(u_{4 i-1} v_{n}\right)$ and $\left(u_{m-1} v_{n}\right)$ such that the cycle does not exist, thus T is obtained then $\gamma(T)=\left\lceil\frac{m}{2}\right\rceil$. if $m \equiv 2(\bmod 4)$ and the dominating set is $\gamma_{1} \cup\left\{\left(\mathrm{u}_{m-2} v_{n}\right),\left(\mathrm{u}_{m-1} v_{n}\right)\right\}$ then $\gamma\left(\mathrm{P}_{m}\left[\mathrm{P}_{n}\right]\right)=$ $\left(\frac{m}{2}\right)+1$ delete all the edges except the edges incident with $\quad\left(u_{4 i-2} v_{2}\right),\left(u_{4 i-1} v_{n}\right),\left(u_{m-2} v_{n}\right)$ and $\left(u_{m-1} v_{n}\right)$ such that the cycle does not exist, thus T is obtained then $\gamma(T)=\frac{m}{2}+1$.

FIGURE 4
(line)
(I-shape)

III. CONCLUSION

In this article, minimum diameter spanning tree for operations on graphs. We have analysed the minimum diameter spanning tree through the graph of P_{n} and S_{n} which have a minimum diameter spanning tree such that both have same domination number. Further research can be done in exploring various graphs and various domination with the same property. The condition for which a graph does not Posses such spanning tree may also be explored.

REFERENCE

[1] V.T Chandrasekaran, and N.Rajasri minimum diameter spanning tree, American journal of computational mathematics, 2018, 8, 203 - 208.
[2] Michael S. Jacobson and Lael F. Kinch On the Domination of the Products of Graphs
[3] S.Arumugam and S. Ramachandran, Invitation to Graph theory, copyright scitch puplications (india) pvt Ltd.
[4] Haray, F. (1969) Graph Theory. Addsion Wesley, Reading, MA. https://doi.org/10.21236/AD0705364
[5] P.Sharifani ,M.R Hooshmandasl and M.Alambardar Meybodi An explicit construction of optimal dominating and dominating sets in grid.arXiv:1707.0647v3[cs.DM] 2018
[6] Samu Alanko, Simon Crevils, Andon Isopoussu, Patric Ostergard and Ville Pettersson computing the domination number of grid graphs. The Electronic Journal of Combinatorics 18(2011), \# p141
[7] SHEHID UR REHMAN, I.JAVAID. Fixing number of co normal product of graphs :https://www.reserachgate.net/publication/314182293.arXiv: 1703.00709V1.

