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I. INTRODUCTION 

      The concept of s-normal matrix, (conjugate) con-s-

normal matrix was introduced in [6], [7] and [8], some 

properties of s-normal matrix given in [1] .In this paper, our 

intention is to define s-normal circulant matrix, con-s 

normal circulant matrix also we discussed some properties 

and results on normal circulant  matrix. Let A be circulant 

normal matrix,   is called conjucate of A, A
T
 is called 

transpose of A , A
S
 is called secondary transpose of A, A

Ɵ
 is 

called conjugate secondary transpose of A,A
-1

 is called 

inverse of A, A
ϯ
 is called Moore Penrose of A  

II. s-NORMAL CIRCULANT MATRICES 

 

DEFINITION: 2.1 

 For any given c0 , c1,c2 ,…cn-1 Є C
nx n

  the 

Circulant matrix A=(Ai,j) n x n is defined by  

         (Ai,j) = Aj-1(mod n)                                
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DEFINITION: 2.2 

A  Circulant matrix A Є C
nx n

  is said to be normal Circulant 

matrix if AA* = A*A 

DEFINITION: 2.3 

A matrix A Є C
nx n

  is said to be s-normal Circulant matrix if 

A A
Ɵ
 = A

Ɵ
A where A

Ɵ 
= SA  

 

EXAMPLE: 2.4 

            A = [
       

       
       

]     

           A A
Ɵ
 = [

     
    
      

]   A
Ɵ
A 

RESULT:2.5 

    (i) If A is Circulant matrix then A=A
S 

   (ii) Let a Circulant matrix A Є C
nx n

  is said to be s-normal 

Circulant matrix if A A = A A (A= A
S
) 

THEOREM: 2.6 

 Let A, B Є C
nx n

 are s-normal circulant matrices 

then A±B is also s-normal circulant matrices. 

Proof: 

 Let A, B are s-normal circulant matrices then 

AA
Ɵ
=AA and BB

Ɵ
=B

Ɵ
B 

To prove A±B are s-normal circulant matrices. We will 

show that (A±B) (A±B)
Ɵ
= (A±B)

Ɵ
 (A±B) 

Now (A±B) (A±B)
Ɵ 

= (A±B) (A
Ɵ
±B

Ɵ
) 

           = (A±B) (A
Ɵ
±B

Ɵ
) 

http://www.isroset.org/
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           = AA
Ɵ
±BA

Ɵ
±AB

Ɵ
±BB

Ɵ
 

           = A
Ɵ
A±B

Ɵ
A±A

Ɵ
B±B

Ɵ
B 

           = (A
Ɵ
±B

Ɵ
) A ± (A

Ɵ
±B

Ɵ
) B 

           = (A
Ɵ
±B

Ɵ
) (A±B) 

           = (A±B)
Ɵ 

(A±B) 

Therefore A±B are s-normal circulant matrices. 

 

THEOREM: 2.7 

    Let A, B Є C
nx n

 are s-normal circulant matrices and 

AB=BA then AB is also s-normal circulant matrix 

Proof: 

 Let A, B are s-normal circulant matrices then 

AA
Ɵ
=A

Ɵ
A and BB

Ɵ
=B

Ɵ
B given AB=BA  

      To prove AB is s-normal circulant matrix. We will show 

that (AB) (AB)
Ɵ 

= (AB)
Ɵ
 (AB) 

Now   (AB) (AB)
Ɵ
 = AB A

Ɵ
B

Ɵ
 

         = BA A
Ɵ
B

Ɵ
 

         = BA
Ɵ
AB

Ɵ
 

         = BA
Ɵ
B

Ɵ
A 

         = A
Ɵ
BB

Ɵ
A 

         = A
Ɵ
B

Ɵ
BA 

         = (AB)
Ɵ
(AB) 

Therefore AB is s-normal circulant matrix. 

THEOREM: 2.8 

 Let A, B Є C
nx n

 are s-normal circulant matrices and 

AB = BA then AB
Ɵ
 and A

Ɵ
B are also  s-normal circulant 

matrices. 

Proof: 

Let A, B are s-normal circulant matrices then AA
Ɵ
 = A

Ɵ
A 

and BB
Ɵ
 = B

Ɵ
B given AB = BA 

To prove AB
Ɵ
 is s-normal circulant matrix. We will show 

that (AB
Ɵ
) (AB

Ɵ
)

Ɵ
 = (AB

Ɵ
)

Ɵ
 (AB

Ɵ
) 

Now(AB) (AB)
Ɵ
 = (AB)

Ɵ
(AB) 

           AB B
Ɵ
A

Ɵ
 = (BA)

Ɵ
(BA)     Where AB=BA 

           AB B
Ɵ
A

Ɵ
 =  A

Ɵ
B

Ɵ
BA 

            AB
Ɵ
BA

Ɵ
 = A

Ɵ
BB

Ɵ
          Where B

Ɵ
B=BB

Ɵ
 

     AB
Ɵ 

(B
Ɵ
)

Ɵ
A

Ɵ
 =  A

Ɵ
(B

Ɵ
)

Ɵ
B

Ɵ
A   Where (B

Ɵ
)

Ɵ
=B 

    (AB
Ɵ
)(AB

Ɵ
)

Ɵ
 = (AB

Ɵ
)

Ɵ
(AB

Ɵ
) 

Therefore AB
Ɵ
 is s-normal circulant matrices. 

Similarly we can prove A
Ɵ
B is s-normal circulant matrices. 

THEOREM: 2.9 

Let A Є C
nx n

 be s-normal circulant matrix then 

(i) iA is s-normal circulant matrix 

(ii) –iA is s-normal circulant matrix 

Proof: 

 Let A be a s-normal circulant matrix then 

AA
Ɵ
=A

Ɵ
A 

 

To prove (i) iA is s-normal circulant matrix. We will show 

that (iA) (iA)
Ɵ
= (iA)

Ɵ
 (iA) 

Now AA
Ɵ
=A

Ɵ
A 

       -i
2
 AA

Ɵ
 = -i

2
 A

Ɵ
A 

  (iA)(-i)A
Ɵ
 =  (-i)A

Ɵ
(iA) 

 (iA)( i ) A
Ɵ
 = ( i )A

Ɵ
(iA) where (–i) = i   

            (iA)( i )
S 

A
Ɵ
 = ( i )

S 
A

Ɵ
(iA) where ( i )

S
 = i   

     (iA) i
Ɵ
A

Ɵ
 =  i

Ɵ
A

Ɵ
(iA) where i

Ɵ
= ( i )

S
  

    (iA) (iA)
Ɵ
 =  (iA)

Ɵ
(iA) 

          Therefore iA is s-normal circulant matrix. 

(ii)  -iA is s-normal circulant matrix. We will show that (-

iA) (-iA)
Ɵ
=(-iA)

Ɵ
 (-iA) 

Now AA
Ɵ
=A

Ɵ
A 

       -i
2
 AA

Ɵ
 = -i

2
 A

Ɵ
A 

   (-i) i A A
Ɵ
 = i (-i)A

Ɵ
A 

 (-iA) (i) A
Ɵ
 = (i) A

Ɵ
(-iA) 

            (-iA)(   )AƟ
 = (   A

Ɵ
(-iA) where i =    

            (-iA)(   )S 
A

Ɵ
 = (   S

A
Ɵ
(-iA) 

  (-iA) -i
Ɵ
A

Ɵ
 =  -i

Ɵ
A

Ɵ
(-iA) where -i

Ɵ
= (  )S

  

  (-iA) (-iA)
Ɵ
 = (-iA)

Ɵ
(-iA) 
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     Therefore -iA is s-normal circulant matrix. 

THEOREM: 2.9 

  Let A Є C
nx n

 are s-normal circulant matrix then 

        (i)    is s-normal circulant matrix 

        (ii)  A
S
 is s-normal circulant matrix 

        (iii) A
Ɵ
 is s-normal circulant matrix 

         (iv) λA is s-normal circulant matrix (Where λ is a non 

zero real no)  

 

Proof:  

Let A be a s-normal circulant matrix then AA
Ɵ
 = A

Ɵ
A 

Proof of (i) AA
Ɵ
 = A

Ɵ
A 

       AA = AA  

    A A   = A  A  

                  Ɵ   =      Ɵ
  

        Ɵ
 =    Ɵ

   

      Therefore   is s-normal circulant matrix 

 Proof of (ii) AA
Ɵ
 = A

Ɵ
A 

 (AA
Ɵ
)

S
 = (A

Ɵ
A)

S
 

  (A
Ɵ
)

S
 A

S
 = (A)

S
 (A

Ɵ
)

S 
 

  (A
S
)

Ɵ
 A

S
 = (A)

S
 (A

S
)

Ɵ 
 

 (A)
S
 (A

S
)

Ɵ 
= (A

S
)

Ɵ
 A

S
 

      Therefore A
S
 is s-normal circulant matrix 

Proof of (iii) AA
Ɵ
 = A

Ɵ
A 

 (AA
Ɵ
)

Ɵ
 = (A

Ɵ
A)

Ɵ
 

 (A
Ɵ
)

Ɵ
A

Ɵ
 = A

Ɵ
(A

Ɵ
)

Ɵ
 

  A
Ɵ
(A

Ɵ
)

Ɵ
 =  (A

Ɵ
)

Ɵ
A

Ɵ
 

    Therefore A
Ɵ
 is s-normal circulant matrix 

Proof of (iv)   AA
Ɵ
 = A

Ɵ
A 

     λ
2
 AA

Ɵ
   = λ

2
A

Ɵ
A 

          (λ A)(λ A)
Ɵ
 = (λ A)

Ɵ
 (λ A) where λ=λ

Ɵ
 

    Therefore λA is s-normal circulant matrix 

THEOREM: 2.10 

Let A Є C
nx n

 and A
-1

 be an inverse of A then A is s-normal 

circulant matrix iff A
-1

 is s-normal circulant matrix 

Proof: 

 Let A be a s-normal circulant matrix then AA
Ɵ
 = 

A
Ɵ
A 

To prove A
-1

 is k-normal circulant matrix. We will show 

that (A
-1

) (A
-1

)
Ɵ
 = (A

-1
)

Ɵ
 (A

-1
) 

Now          A A
Ɵ
 = A

Ɵ
A 

       (AA
Ɵ
)

-1 
= (A

Ɵ
A)

-1
 

 (A
Ɵ
)

-1
 A

-1
 = A

-1 
(A

Ɵ
)

-1
  

  (A
Ɵ
)

-1
 A

-1
 = A

-1 
(A

Ɵ
)

-1
  

  (A
-1

)
Ɵ
 A

-1
 = A

-1 
(A

-1
)

Ɵ
 

 A
-1 

(A
-1

)
Ɵ
  = (A

-1
)

Ɵ
 A

-1
 

    Therefore A
-1

 is s-normal circulant matrix. 

Let as assume that, A
-1

 is s-normal circulant matrix. 

To prove A is s-normal circulant matrix. We will show that 

A A
Ɵ
 = A A

Ɵ
 

Now        A
-1 

(A
-1

)
Ɵ
  =  (A

-1
)

Ɵ
 A

-1
 

           (A
-1 

(A
-1

)
Ɵ
 )

-1
 = ((A

-1
)

Ɵ
 A

-1
)

-1
 

  A
Ɵ
 (A

-1
)

-1
 = (A

-1
)

-1
 A

Ɵ
  

           A
Ɵ
A = A A

Ɵ
   

                      A A
Ɵ
 = A

Ɵ
A 

  Therefore A is s-normal circulant matrix  

THEOREM: 2.11 

Let A Є C
nx n

 and A
ϯ
 be the Moore Penrose inverse of A then 

A is s-normal circulant matrix iff A
ϯ
 is s-normal circulant 

matrix 

Proof: 

 Let A be a s-normal circulant matrix then 

AA
Ɵ
=A

Ɵ
A 

To prove A
ϯ
 is s-normal circulant matrix. We will show that 

(A
ϯ
) (A

ϯ
)

Ɵ
= (A

ϯ
)

Ɵ
 (A

ϯ
) 

Now             A A
Ɵ
 = A

Ɵ
A 

         (AA
Ɵ
)

ϯ  
= (A

Ɵ
A)

ϯ
 

     
 
(A

Ɵ
)

ϯ
 A

ϯ
  = A

ϯ 
(A

Ɵ
)

ϯ
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       (A
ϯ
)

Ɵ
 A

ϯ
 = A

ϯ 
(A

ϯ
)

Ɵ
 

       A
ϯ 
(A

ϯ
)

Ɵ 
 = (A

ϯ
)

Ɵ
 A

ϯ
 

    Therefore A
ϯ
 is s-normal circulant matrix. 

Let as assume that, A
ϯ
 is s-normal circulant matrix. 

To prove A is s-normal circulant matrix. We will show that 

A A
Ɵ
 = A A

Ɵ
 

Now        A
ϯ 
(A

ϯ
)

Ɵ
  = (A

ϯ
)

Ɵ
 A

ϯ
 

           (A
ϯ 
(A

ϯ
)

Ɵ
 )

ϯ
  = ((A

ϯ
)

Ɵ
 A

ϯ
)

ϯ
 

  A
Ɵ
 (A

ϯ
)

ϯ
   = (A

ϯ
)

ϯ
 A

Ɵ
 

          A
Ɵ
A  = A A

Ɵ
   

                      A A
Ɵ
 = A

Ɵ
A 

  Therefore A is s-normal circulant matrix. 

III. CONJUGATE s-NORMAL CIRCULANT 

MATRICES 

 

DEFINITION: 3.1 

A  Circulant matrix  A Є C
nx n

  is said to be con k-normal 

Circulant matrix if  AA
Ɵ
 =  A

S
   

EXAMPLE: 3.2 

 A = [
       

       
       

]     

      A A
Ɵ
  = [

     
    
      

]   A
S
   

THEOREM: 3.3 

Let A, B Є C
nx n

 are con s-normal circulant matrices then 

A±B are also con s-normal circulant matrices. 

 

Proof: 

Let A , B  are con s-normal circulant matrices then AA
Ɵ
=  

A
S
   and BB

Ɵ
=  B

S
   

To prove A±B are con s-normal circulant matrices.  

We will show that (A ± B) (A ± B)
Ɵ 

= (A ± B)
S
       . 

Now (A ± B) (A ± B)
Ɵ
= (A ± B) (A

Ɵ
 ± B

Ɵ
) 

            = (A ± B) (A
Ɵ
 ± B

Ɵ
) 

            = AA
Ɵ
 ± AB

Ɵ
 ± BA

Ɵ
 ± BB

Ɵ
 

            = A
S   ± B

S   ± A
S  ± B

S
   

             =  A
S
 [   ] ±  B

S
 [   ] 

              =  [ A
S 

± B
S
 ] [   ] 

              =  [A ± B]
S
 [   ]   Where [A ± 

B]
S 

= [ A
S 

± B
S
 ], [   ]=      

THEOREM: 3.4   
Let A, B Є C

nx n
 are con s-normal circulant matrices and 

AB=BA then AB is also con s-normal circulant matrix 

Proof: 

 Let A, B are con s-normal circulant matrices then 

AA
Ɵ
 = A

S
   and BB

Ɵ
 = B

S
   

To prove AB is con s-normal circulant matrix. We will show 

that (AB) (AB)
Ɵ
=(AB)

S
       

Now (AB) (AB)
Ɵ
   = A B B

Ɵ
 A

Ɵ
  

       = (AB
Ɵ
) B A

Ɵ
 

                               = (AB
Ɵ
)  A

S
   

       = (AB
Ɵ
) A

S
   

          = B
S
   AS

    

                         =  B
S
 A

S
      

THEOREM: 3.5  

Let A Є C
nx n

 be con s-normal circulant matrix then 

(i) iA is con s-normal circulant matrix 

(ii) –iA is con s-normal circulant matrix 

Proof: 

 Let A is con s-normal circulant matrix then AA
Ɵ
 =  

A
S
   

To prove (i) iA is con s-normal circulant matrix. We will 

show that (iA) (iA)
Ɵ 

= (iA)
S
      

Now AA
Ɵ
=  A

S
    

     i
2
 AA

Ɵ
  = (i

2
)A

S   

(iA) (iA
Ɵ
)  =  (i)

 
A

S 
(i

  ) 

 

(iA) (-i)
Ɵ
A

Ɵ 
= (i

S
) A

S 
 (-     ) 

 -(iA) (iA)
Ɵ
 =  - (iA)

S
(    

 (iA)(iA)
Ɵ
 =    (iA)

S
(    
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Therefore iA is con s–normal circulant matrix. 

(ii) - iA is con s-normal circulant matrix. We will show that 

(-iA) (-iA)
Ɵ
 =  (-iA)

S
 (-    

 Now AA
Ɵ
 =  A

S
    

  -i
2
 AA

Ɵ
 = (-i)

2
 A

S   

 (-iA) (iA
Ɵ
)  =  (-i

 
A

S
)(i

  ) 

  

 (-iA) (-i
Ɵ
A

Ɵ
)=(-i

S
A

S  
)(-    ) 

 (-iA) (-iA)
Ɵ
 = (-iA)

S
(-    

  Therefore -iA is con s-normal circulant matrix. 

THEOREM: 3.6 

Let A Є C
nx n

 be con s-normal circulant matrix then 

        (i)    is con s-normal circulant matrix 

        (ii)  A
S
 is con s-normal circulant matrix 

        (iii) A
Ɵ
 is con s-normal circulant matrix 

         (iv) λA is con s-normal circulant matrix (Where λ is a 

non zero real no)  

Proof:  

 Let A be a con s-normal circulant matrix then AA
Ɵ
 

=  A
S
   

Proof of (i) AA
Ɵ
 = A

S
   

       AA = AAS  

       A A   = AA   

                     
AAA A

AAAA

S

T









  

Therefore   is con s-normal circulant matrix. 

 Proof of (ii) AA
Ɵ
 = A

S
   

     (AA
Ɵ
)

S
 = (A

S
  )

S
 

            (A
Ɵ
)

S
 A

S
 = ( )

S
 (A)  

      ( ) A
S
 = A

Ɵ
A  

        A
S
   = AA

Ɵ
 

        AA
Ɵ
 = A

S
   

      Therefore A
S
 is con s-normal circulant matrix. 

Proof of (iii) AA
Ɵ
 =  A

S
   

 (AA
Ɵ
)

Ɵ
= (A

S
  )

Ɵ
 

 (A
Ɵ
)

Ɵ
A

Ɵ
 = (  Ɵ

(A
S
)

Ɵ
 

 AA
Ɵ
 = A

S  S 

 AA
Ɵ
 = A

S
   

    Therefore A
Ɵ
 is con s-normal circulant matrix 

Proof of (iv)   AA
Ɵ
 = A

S
   

     λ
2
 AA

Ɵ
   = λ

2
  A

S
   

          (λ A) (λ A)
Ɵ
  =  (λ A

S
) (λ  )  where λ = λ 

Ɵ
 

    Therefore λA is con s-normal circulant matrix 

THEOREM: 3.7 

Let A Є C
nx n

 and A
-1

 be an inverse of A then A is con s-

normal circulant matrix iff A
-1

 is               con s-normal 

circulant matrix. 

Proof: 

 Let A be a con s-normal circulant matrix then AA
Ɵ
 

= A
S
   

To prove A
-1

 is con s-normal circulant matrix. We will show 

that (A
-1

) (A
-1

)
Ɵ
=  (A

-1
)

S
 ( -1

) 

Now          A A
Ɵ
 = A

S
   

      (AA
Ɵ
)

-1 
= (A

S
  )

-1 

 (A
Ɵ
)

-1
 A

-1
 = (   )

-1
 (A

S
)

-1
  

 (A
-1

)
Ɵ
(A

-1
) =  1A  (A

-1
)

S 
 

 A
-1 

(A
-1

)
Ɵ
  =  (A

-1
)

S
  1A  

    Therefore A
-1

 is con s-normal circulant matrix. 

Let as assume that, A
-1

 is con s-normal circulant matrix. 

To prove A is con s-normal circulant matrix. We will show 

that A A
Ɵ
  =  A

S
   

Now        A
-1 

(A
-1

)
Ɵ
  =  (A

-1
)

S
  1A  

           [A
-1 

(A
-1

)
Ɵ
 ]

-1
 = [ (A

-1
)

S  1A
 
]  
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  A
Ɵ
 (A

-1
)

-1
 =   A

S
  

           A
Ɵ
A =   A

S
  

                      A A
Ɵ
 = A

S    

  Therefore A is con s-normal circulant matrix. 

THEOREM: 3.8 

Let A Є C
nx n

  and A
ϯ
 be the Moore Penrose  inverse of A 

then A is con s-normal circulant matrix iff A
ϯ
 is con s-

normal circulant matrix 

 

Proof: 

Let A be a con s-normal circulant matrix then AA
Ɵ
 =  A

S   

To prove A
ϯ
 is con s-normal circulant matrix. We will show 

that (A
ϯ
) (A

ϯ
)

Ɵ
 =  (A

ϯ
)

S
 ( ϯ

) 

Now          A A
Ɵ
 =  A

S   

       (AA
Ɵ
)

ϯ 
= ( A

S  )
ϯ
 

     (A
Ɵ
)

ϯ
 A

ϯ
 =     ϯ 

(A
S
)

ϯ
  

    (A
ϯ
)

Ɵ
 A

ϯ
 = ( ϯ

) (A
ϯ
)

S
  

       A
ϯ 
(A

ϯ
)

Ɵ
  =  (A

ϯ
)

S
 ( ϯ

) 

    herefore A
ϯ
 is con s-normal circulant matrix. 

Let as assume that, A
ϯ
 is con s-normal circulant matrix. 

To prove A is con s-normal circulant matrix. We will show 

that AA
Ɵ
 =  A

S   

Now        A
ϯ 
(A

ϯ
)

Ɵ
  =  (A

ϯ
)

S
 ( ϯ

) 

 [A
ϯ 
(A

ϯ
)

Ɵ
 ]

ϯ
 = [ (A

ϯ
)

S
 ( ϯ

)]
 ϯ
 

  A
Ɵ
 (A

ϯ
)

ϯ
 = ( ϯ

) A
S 

  

            A
Ɵ
A =   A

S
  

                      A A
Ɵ
  =  A

S    

 Therefore A is con s-normal circulant matrix. 

 

  IV.CONCLUSION 

 

The s-normal circulant and con-s-normal circulant matrices 

defined and proof of structure theorem is shown by example. 

We can find the determinant, inverse and some properties of 

the s-normal circulant matrices through the result.In future 

the various circulant matrices similar to unitary circulant, 

polynomial circulant matrices may be consider this study 
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