International Journal of Scientific Research in
Research Paper
Mathematical and Statistical Sciences
Vol.6, Issue.2, pp.140-143, April (2019)
E-ISSN: 2348-4519

On χ_{s}-Orthogonal of Type I Matrices

K. Jaikumar ${ }^{1}$, S. Aarthy ${ }^{1,{ }^{\text {, }}}$
${ }^{1,2}$ Dept of Mathematics, A.V.C.College (Autonomous), Mannampandal, Mayiladuthurai, Tamil Nadu, India
*Corresponding Author: aarthiru26@gmail.com

Available online at: www.isroset.org
Received: 31/Mar/2019, Accepted: 15/Apr/2019, Online: 30/Apr/2019
Abstract - In this paper, we introduced a new type of matrices, we called it χ_{S}-orthogonal of type I matrix. Also we have extended some results of [1] in the context of χ_{S}-orthogonal of type I matrices.

Keywords-Secondary transpose, χ_{S}-orthogonal matrices, χ_{S}-orthogonal of type I matrices.

I. INTRODUCTION

Throught this paper we use this following notations.

Notation 1.1 [1,2]. The secondary transpose (conjugate secondary transpose) of A is defined by $A^{s}=V A^{T} V\left(A^{\theta}=V A^{*} V\right)$, where V is the fixed disjoint permutation matrix with in its secondary diagonal.

Definition 1.2 [4]. An $n \times n$ non-singular matrix A is said to χ_{S}-orthogonal, if $\chi_{S}(A)=\mathrm{A}^{-1}$, where $\chi_{S}(A)=S^{-1} A^{s} S$ and S satisfies the condition $S^{2}= \pm 1$.

Notation 1.3. Let \square be the set of real numbers, \square be the set of all natural numbers, and $M_{n}(\square)$ be the $n \times n$ matrices. Let $\mathrm{O}_{\chi_{s}}^{n}$ be the set of all $n \times n, \chi_{S}$-orthogonal matrices and $\mathrm{O}_{\chi_{s}, 1}^{n}$ be the set of all $n \times n, \chi_{S}$-orthogonal of type I matrices.

II. Main Reselts

Definition 2.1. A square matrix $A_{n \times n}$ is called an χ_{S} orthogonal of type I matrix if $A^{K}\left(A^{\#}\right)^{K}=I, A^{\#}=S^{-1} A^{S} S$, for some $K \in \square$.

$$
A=\left(\begin{array}{ll}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{-1}{2}
\end{array}\right) \text { is } \chi_{S} \text {-orthogonal of type I }
$$

matrices.

Definition 2.2. Let ' A ' be an χ_{S}-orthogonal of type I matrix. The smallest positive integer' K 'with $A^{K}\left(A^{\#}\right)^{K}=I$ is called the index of ' A '. In such case, we say that ' A ' is an χ_{S}-orthogonal of type I of period ' K ' or K-period of χ_{S}-orthogonal of type I matrix and we denote it by ind (A).

Example 2.3

$A=\left(\begin{array}{ll}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2}\end{array}\right)$ is an χ_{S}-orthogonal of type I matrix.
$A^{\#}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2}\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

$$
A^{\#}=\left(\begin{array}{ll}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{-1}{2}
\end{array}\right)
$$

$\mathrm{K}=1, \quad A^{1}\left(A^{\#}\right)^{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\mathrm{K}=2, \quad A^{2}\left(A^{\#}\right)^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\mathrm{K}=3, \quad A^{3}\left(A^{\#}\right)^{3}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\mathrm{K}=4, \quad A^{4}\left(A^{\#}\right)^{4}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\mathrm{K}=5, \quad A^{5}\left(A^{\#}\right)^{5}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\mathrm{K}=6, \quad A^{6}\left(A^{\#}\right)^{6}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
Theorem 2.4. If ' A ' is an χ_{S}-orthogonal of type I matrix of index K, then $\operatorname{det}\left(A^{K}\right)= \pm 1$.
Proof. Let A be an χ_{S}-orthogonal of type I matrix of index K, then
$\Rightarrow \operatorname{det}\left(A^{K}\left(A^{\#}\right)^{K}\right)=I_{n}$
$\Rightarrow \operatorname{det}\left(A^{K}\left(A^{\#}\right)^{K}\right)=\operatorname{det}\left(I_{n}\right)$
$\Rightarrow \operatorname{det}\left(A^{K}\left(A^{\#}\right)^{K}\right)=1$
$\Rightarrow \operatorname{det}\left(A^{K}\right) \operatorname{det}\left(A^{\#}\right)^{K}=1$
$\Rightarrow \operatorname{det}\left(A^{K}\right) \operatorname{det}\left(A^{K}\right)=1$
$\Rightarrow\left(\operatorname{det} A^{K}\right)^{2}=1$
Hence $\operatorname{det}\left(A^{K}\right)= \pm 1$.
Theorem 2.5. If ' A ' is an χ_{S}-orthogonal of type I matrix of index K, then it is invertible with $A^{-1}=A^{K-1}\left(A^{\#}\right)^{K}$.
Proof. By Theorem 2.4, we have $\operatorname{det}(A) \neq 0$, then A is invertible.
$\left(A^{K}\left(A^{\#}\right)^{K}\right)=I_{n}$ for some $K \in \square$. This equivalent to,

$$
\begin{aligned}
& \left(A^{K}\right)^{-1}=\left(A^{\#}\right)^{K} \\
\Rightarrow & \left(A^{-1}\right)^{K}=\left(A^{\#}\right)^{K} \\
\Rightarrow & \left(A^{-1}\right)^{K-1}\left(A^{-1}\right)=\left(A^{\#}\right)^{K}
\end{aligned}
$$

Hence, $A^{-1}=A^{K-1}\left(A^{\#}\right)^{K}$
Theorem 2.6. Let $A \in \mathrm{M}_{n}(\square)$ matrix, then the following statements are equivalent
(1) A is an χ_{S}-orthogonal of type I matrix.
(2) A^{-1} is an χ_{S}-orthogonal of type I matrix.
(3) A^{T} is an χ_{S}-orthogonal of type I matrix.
(4) \bar{A} is an χ_{S}-orthogonal of type I matrix.
(5) A^{*} is an χ_{S}-orthogonal of type I matrix.

Proof.

$(1) \Rightarrow(2)$. Suppose that A is an χ_{S}-orthogonal of type I matrix.
So $\left(A^{K}\left(A^{\#}\right)^{K}\right)=I_{n}$ for some $K \in \square$
$\Rightarrow\left(A^{K}\left(A^{\#}\right)^{K}\right)^{-1}=I_{n}{ }^{-1}$
$\Rightarrow\left(A^{K}\right)^{-1}\left(\left(A^{\#}\right)^{K}\right)^{-1}=I_{n}$
$\Rightarrow\left(A^{-1}\right)^{K}\left(\left(A^{-1}\right)^{\#}\right)^{K}=I_{n}$
Hence A^{-1} is an χ_{S}-orthogonal of type I matrix.
$(2) \Rightarrow(3)$. Suppose that A^{-1} is an χ_{S}-orthogonal of type I matrix. So $\left(A^{-1}\right)^{K}\left(\left(A^{-1}\right)^{\#}\right)^{K}=I_{n}$ for some $K \in \square$
$\Rightarrow\left(\left(A^{-1}\right)^{K}\left(\left(A^{-1}\right)^{\#}\right)^{K}\right)^{-1}=I_{n}^{-1}$
$\Rightarrow\left(\left(\left(A^{-1}\right)^{\#}\right)^{K}\right)^{-1}\left(\left(A^{-1}\right)^{K}\right)^{-1}=I_{n}$
$\Rightarrow\left(\left(\left(A^{-1}\right)^{-1}\right)^{\#}\right)^{K}\left(\left(A^{-1}\right)^{-1}\right)^{K}=I_{n}$
$\Rightarrow\left(A^{\#}\right)^{K} A^{K}=I_{n}$
$\Rightarrow\left(\left(A^{\#}\right)^{K} A^{K}\right)^{\#}=I_{n}{ }^{\#}$
$\Rightarrow\left(A^{\#}\right)^{K}\left(\left(A^{\#}\right)^{\#}\right)^{K}=I_{n}$.
Hence A^{T} is an χ_{S}-orthogonal of type I matrix.
$(3) \Rightarrow(4)$. Suppose that A^{T} is an χ_{S}-orthogonal of type I matrix. So $\left(\left(A^{T}\right)^{T}\right)^{K}\left(A^{\#}\right)^{K}=I_{n}$ for some $K \in \square$
$\Rightarrow \overline{A^{K}\left(A^{\#}\right)^{K}}=\overline{I_{n}}$
$\Rightarrow(\bar{A})^{K}\left(\overline{A^{\#}}\right)^{K}=I_{n}$
$\Rightarrow(\bar{A})^{K}\left((\bar{A})^{\#}\right)^{K}=I_{n}$
Hence \bar{A} is an χ_{S}-orthogonal of type I matrix.
(4) \Rightarrow (5). Suppose that \bar{A} is an χ_{S}-orthogonal of type I matrix. So $(\bar{A})^{K}\left((\bar{A})^{\#}\right)^{K}=I_{n}$ for some $K \in \square$
$\Rightarrow\left((\bar{A})^{K}\left((\bar{A})^{\#}\right)^{K}\right)^{T}=I_{n}{ }^{T}$
$\Rightarrow\left(\left((\bar{A})^{\#}\right)^{K}\right)^{T}\left(A^{*}\right)^{K}=I_{n}$
$\Rightarrow\left(\left((\bar{A})^{\#}\right)^{T}\right)^{K}\left(A^{*}\right)^{K}=I_{n}$
$\Rightarrow\left(\left((\bar{A})^{*}\right)^{\#}\right)^{K}\left(A^{*}\right)^{K}=I_{n}$
Hence A^{*} is an χ_{S}-orthogonal of type I matrix.
$(5) \Rightarrow(1)$. Suppose that A^{*} is an χ_{S}-orthogonal of type I
matrix. So $\left(A^{*}\right)^{K}\left(\left(A^{*}\right)^{\#}\right)^{K}=I_{n}$ for some $K \in \square$
$\Rightarrow\left(\left(A^{-1}\right)^{K}\left(\left(A^{-1}\right)^{\#}\right)^{K}\right)^{-1}=I_{n}^{-1}$
$\Rightarrow\left(\left(\left(A^{*}\right)^{\#}\right)^{K}\right)^{*}\left(\left(A^{*}\right)^{K}\right)^{*}=I_{n}$
$\Rightarrow\left(\left(\left(A^{*}\right)^{*}\right)^{\#}\right)^{K} A^{K}=I_{n}$
$\Rightarrow\left(A^{\#}\right)^{K} A^{K}=I_{n}$
Hence ' A ' is an χ_{S}-orthogonal of type I matrix.
Theorem 2.7. If $A_{n \times n}$ and $B_{n \times n}$ are commute χ_{S} orthogonal of type I matrix, then $A B$ is χ_{S}-orthogonal of type I matrix.
Proof. Let A and B be χ_{S}-orthogonal of type I matrices with the same index K.
Then $\left(A^{K}\left(A^{\#}\right)^{K}\right)=I_{n}$

$$
\begin{aligned}
& \left(B^{K}\left(B^{\#}\right)^{K}\right)=I_{n} \\
\Rightarrow & (A B)^{K}\left((A B)^{\#}\right)^{K} \\
= & A^{K} B^{K}\left(B^{\#}\right)^{K}\left(A^{\#}\right)^{K} \\
= & A^{K} B^{K}\left(\left(A^{\#}\right)^{T}\right)^{K}\left(\left(B^{\#}\right)^{T}\right)^{K}
\end{aligned}
$$

$=A^{K} B^{K}\left(\left(A^{\#}\right)^{T}\left(B^{\#}\right)^{T}\right)^{K}$
$=A^{K} B^{K}\left(\left(B^{\#} A^{\#}\right)^{T}\right)^{K}$
$=A^{K} B^{K}\left(\left(B^{\#}\right)^{T}\right)^{K}\left(\left(A^{\#}\right)^{T}\right)^{K}$
$=I_{n}$
Hence $A B$ is χ_{S}-orthogonal of type I matrix. If A and B be χ_{S}-orthogonal of type I matrices with the same indices K_{1} and K_{2} respectively, then $(A B)^{K}\left((A B)^{\#}\right)^{K}=I_{n}$, where K is the least common multiple of K_{1} and K_{2}.
Theorem 2.8. If $A \in \mathrm{O}_{\chi_{s}, 1}^{n}$ of index ' K 'if and only if A^{m} is χ_{S}-orthogonal of type I matrix of index ' K ' for each $m \in \square \backslash\{1\}$.
Proof. Suppose that A is an χ_{S}-orthogonal of type I matrix.
So $\left(A^{K}\left(A^{\#}\right)^{K}\right)=I_{n}$ for some $K \in \square$
$\Rightarrow\left(A^{K}\left(A^{\#}\right)^{K}\right)^{m}=\left(I_{n}\right)^{m}$
$\Rightarrow\left(A^{K}\right)^{m}\left(\left(A^{\#}\right)^{K}\right)^{m}=I_{n}$
$\Rightarrow\left(A^{m}\right)^{K}\left(\left(A^{m}\right)^{\#}\right)^{K}=I_{n}$
Hence A^{m} is an χ_{S}-orthogonal of type I matrix.

$$
\begin{aligned}
\operatorname{ind}\left(A^{m}\right) & =\operatorname{lcm}\{\underbrace{\operatorname{ind}(A), \operatorname{ind}(A), \cdots \operatorname{ind}(A)}_{m \text {-times }}\} \\
& =\operatorname{lcm}\{\underbrace{K, K, \cdots K}_{m \text {-times }}\} \\
& =K
\end{aligned}
$$

Now, suppose that A^{m} is an χ_{S}-orthogonal of type I matrix for each $m \in \square \backslash\{1\}$; especially, each of A^{2} and A^{3} if χ_{S} orthogonal of type I matrix of index K.
So, $I_{n}=\left(A^{3}\right)^{K}\left(\left(A^{3}\right)^{\#}\right)^{K}=\left(A^{2}\right)^{K}\left(\left(A^{2}\right)^{\#}\right)^{K}$

$$
=(A)^{K}\left(A^{\#}\right)^{K}
$$

Hence A is an χ_{S}-orthogonal of type I matrix of index K.

Theorem 2.9. If $A \in \mathrm{O}_{\chi_{s}, 1}^{n}$ of index K, then each of A^{T}, A^{-1}, \bar{A} and A^{*} are orthogonal of type I of index K.

Theorem 2.10. If λ is an eigen value of an χ_{S}-orthogonal of type I matrix A with index K, then λ is of modulus 1 .

References

[1]. Abedal-Hamza Mahdi Hamza and Baneen Khalid Imran, Orthogonal of type I Matrices with Application, Applied Mathematical Sciences, Vol. 11, Issue 40, pp. 1983-1994, 2017.
[2]. Anna Lee, Secondary symmetric, skew symmetric and orthogonal matrices, Periodica Mathematica Hungarica, Vol. 7, Issue 1, pp. 6370, 1976.
[3]. Anna Lee, On s-symmetric, s-skew symmetric and s-orthogonal matrices, Periodica Mathematica Hungarica, Vol. 7, Issue 1, pp. 6176, 1976.
[4]. K. Jaikumar, S. Aarthy and K. Sindhu On χ_{S}-orthogonal matrices, Mathematical Journal of Interdisciplinary Sciences, Vol. 6, Issue 1, pp. 49-53, 2017.

AUTHORS PROFILE

Dr. K. Jaikumar is an Assistant Professor of Mathematics at the A.V.C.College (Autonomous), Mannampandal, Mayiladuthurai affiliated to the Bharathidasan University, Trichirappalli. He has a teaching experience of more than 10 years and his research areas are Linear Algebra and Matrix Theory. He has published more than 15 Research Article in both International and National Level Journal.

Mrs. S. Aarthy is working as an Assistant Professor in Mathematics at A.V.C.College (Autonomous), Mannampandal, Mayiladuthurai affiliated to the Bharathidasan University, Trichirappalli. Her area of research is Linear Algebra and Matrix Theory and she is currently pursuing his Ph.D under the guidance of Dr. K. Jaikumar from Bharathidasan University, Trichirappalli. She has published 4 Research articles in International Level Journals.

