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Abstract— In this paper, we introduced a new type of matrices, we called it S -orthogonal of type I matrix. Also we have 

extended some results of [1] in the context of S -orthogonal of type I matrices. 
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I.  INTRODUCTION  

Throught this paper we use this following notations. 

 

Notation 1.1 [1,2]. The secondary transpose (conjugate 

secondary transpose) of A is defined by 

( )s TA VA V A VA V   , where V is the fixed disjoint 

permutation matrix with in its secondary diagonal.  

 

Definition 1.2 [4]. An n n  non–singular  matrix A is said 

to S -orthogonal, if  S A  A
-1

, where 1( ) s
s A S A S   

and S  satisfies the condition 2 1S   . 

 

Notation 1.3. Let   be the set of real numbers, be the set 

of all natural numbers, and ( )nM  be the n n  matrices. 

Let  O
s

n
  be the set of all ,n n  S -orthogonal matrices and 

,1O
s

n
  be the set of all ,n n S -orthogonal of type I 

matrices.  

 

II. MAIN RESELTS  

Definition 2.1. A square matrix n nA  is called an S -

orthogonal of type I matrix if  #
K

KA A I , # 1 SA S A S , 

for some  K  . 

 

1 3

2 2

3 1

2 2

A

 
 
 
 
 
 

 is S -orthogonal of type I 

matrices. 

Definition 2.2.  Let ‘ A ’ be an S -orthogonal of type I 

matrix. The smallest positive integer‘ K ’with  #
K

KA A I  

is called the index of  ‘ A ’.  In such case, we say that ‘ A ’ is 

an S -orthogonal of type I of period ‘ K ’ or K -period  of 

S -orthogonal of type I matrix and we denote it by  ind A . 

Example 2.3 

1 3

2 2

3 1

2 2

A

 
 
 
 
 
 

 is an S -orthogonal of type I matrix. 

# 1 0

0 1
A

 
  
 

1 3

2 2

3 1

2 2

 
 
 
 
 
 

1 0

0 1

 
 
 

 

   #

1 3

2 2

3 1

2 2

A

 
 
 
 
 
 

     

K=1,     
1

1 #A A =
1 0

0 1

 
 
 

 

K=2,    
2

2 #A A =
1 0

0 1

 
 
 

 

K=3,    
3

3 #A A =
1 0

0 1

 
 
 

 

K=4,    
4

4 #A A =
1 0

0 1

 
 
 
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K=5,    
5

5 #A A =
1 0

0 1

 
 
 

 

K=6,    
6

6 #A A =
1 0

0 1

 
 
 

 

Theorem 2.4. If ‘ A ’ is an S -orthogonal of type I matrix 

of  index K , then  det 1KA   . 

Proof. Let A  be an S -orthogonal of type I matrix of  index 

K , then 

 #det
K

K
nA A I

 
  

 
 

   #det det
K

K
nA A I

 
  

 
 

 #det 1
K

KA A
 

  
 

 

   #det det 1
K

KA A   

   det det 1K KA A   

 
2

det 1KA 
 

Hence  det 1KA   .
 

Theorem 2.5. If ‘ A ’ is an S -orthogonal of type I matrix 

of  index K , then it is invertible with  1 1 #
K

KA A A  . 

Proof.  By Theorem 2.4, we have  det 0A  , then A  is 

invertible. 

 #
K

K
nA A I

 
 

 
 for some K  . This equivalent to, 

          
1

#
K

KA A


  

   1 #
K K

A A   

     
1

1 1 #
K K

A A A


    

Hence,  1 1 #
K

KA A A   

Theorem 2.6. Let M ( )nA  matrix, then the following 

statements are equivalent 

(1) A  is an S -orthogonal of type I matrix. 

(2) 1A  is an S -orthogonal of type I matrix. 

(3) TA  is an S -orthogonal of type I matrix. 

(4) A  is an S -orthogonal of type I matrix. 

(5) A  is an S -orthogonal of type I matrix. 

 

 

 

Proof. 

(1)  (2). Suppose that A  is an S -orthogonal of type I 

matrix. 

So  #
K

K
nA A I

 
 

 
 for some K   

 
1

# 1
K

K
nA A I


 

  
 

 

   
1

1
#

K
K

nA A I


  

  
 

 

   
#

1 1
K

K

nA A I  
  

 
 

Hence 1A  is an S -orthogonal of type I matrix. 

(2) (3). Suppose that 1A  is an S -orthogonal of type I 

matrix. So    
#

1 1
K

K

nA A I  
 

 
 for some K   

   
1

#
1 1 1

K
K

nA A I



  
  

      

 

   
1

1
#

1 1
K

K

nA A I




 
    

          

 

   
#

1 1
1 1

K
K

nA A I
 

 
    

          

 

 #
K

K
nA A I   

 

   
#

# #
K

K

nA A I
 

  
 

. 

Hence  TA  is an S -orthogonal of type I matrix. 

 

(3) (4). Suppose that TA  is an S -orthogonal of type I 

 matrix. So    #
K

T K
T

nA A I
 

 
 

 for some K   

 #
K

K
nA A I   

   #
KK

nA A I   

   
#

K
K

nA A I
 

  
 

 

Hence A  is an S -orthogonal of type I matrix. 

 

 

 
#

# #
K

K
nA A I

 
  

 
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(4)  (5). Suppose that A  is an S -orthogonal of type I 

matrix. So    
#

K
K

nA A I
 

 
 

 for some K   

   
#

T
K

K
T

nA A I
  

      

 

   
#

T
K

K

nA A I
  

      

 

   
#

K
T

K

nA A I
  

      

 

   
#

K
K

nA A I



  

      

 

Hence A  is an S -orthogonal of type I matrix. 

(5) (1). Suppose that A  is an S -orthogonal of type I 

matrix. So    
#

K
K

nA A I  
 

 
 for some K   

   
1

#
1 1 1

K
K

nA A I



  
  

      

 

   
#

K
K

nA A I




 
    

          

 

 
#

K

K
nA A I




  
      

 

 #
K

K
nA A I   

Hence ‘ A ’ is an S -orthogonal of type I matrix. 

Theorem 2.7. If n nA   and n nB   are commute S -

orthogonal of type I matrix, then AB is S -orthogonal of 

type I matrix. 

Proof. Let A  and B be S -orthogonal of type I matrices 

with the same index K .  

Then  #
K

K
nA A I

 
 

 
 

             #
K

K
nB B I

 
 

 
 

    #
K

K
AB AB  

   # #
K K

K KA B B A  

   # #
K K

T T
K KA B A B

   
    

   
 

   # #
K

T T
K KA B A B

 
  

 
 

 # #
K

T
K KA B B A

 
  

 
 

   # #
K K

T T
K KA B B A

   
    

   
 

nI  

Hence AB is S -orthogonal of type I matrix. If A  and B be 

S -orthogonal of type I matrices with the same indices 1K  

and 2K  respectively, then     #
K

K

nAB AB I , where 

K is the least common multiple of  1K  and 2K . 

Theorem 2.8. If A ,1O
s

n
   of index ‘ K ’if and only if mA  

is S -orthogonal of type I matrix of index ‘ K ’ for each 

 \ 1m  . 

Proof. Suppose that A  is an S -orthogonal of type I matrix. 

So  #
K

K
nA A I

 
 

 
 for some K   

   #
m

K mK
nA A I

 
  

   

 

   #
m

m K
K

nA A I
 

  
 

 

   
#

K
K

m m
nA A I

 
  

 
 

Hence mA  is an S -orthogonal of type I matrix. 

       , ,m

m times

ind A lcm ind A ind A ind A



 
 

  
  

 

         , ,

m times

lcm K K K



  
  

  

 

    K  

Now, suppose that mA  is an S -orthogonal of type I matrix 

for each  \ 1m ; especially, each of  2A  and 3A  if S -

orthogonal of type I matrix of index K . 

So,        
# #

3 3 2 2
K K

K K

nI A A A A
   

    
   

 

                                    #
KK

A A  

Hence A  is an S -orthogonal of type I matrix of index K . 
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Theorem 2.9. If A ,1O
s

n
   of index K , then each of 

TA , 

1A
, A  and A

 are orthogonal of type I of index K. 

Theorem 2.10. If  λ is an eigen value of an S -orthogonal 

of type I matrix  A with  index K ,  then λ is of  modulus 1. 
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