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Abstract— In this paper, we presented the idea of matrix exponential of secondary type matrices. In particular secondary 

unitary matrices (s-unitary matrices). 
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I.  INTRODUCTION AND PRELIMINARIES 

The investigation of Secondary symmetric and Secondary Orthogonal Matrices was started by Anna Lee [1] and [2]. In this 

paper, we presented the idea of matrix exponential of secondary type matrices. In particular s-unitary matrices. We signify the 

space of n n  Complex matrices by
n nC . The Secondary transpose of A is characterized by S TA VA V  and *A VA V  , 

where 'V' is the settled disjoint stage matrix with units in its optional askew.  In Mathematics, the framework exponential is a 

capacity on square networks undifferentiated from the conventional exponential capacity. Uniquely, the grid exponential gives 

the association between framework Lie polynomial math and the relating Lie gathering.  Let X is n n  real or complex matrix. 

The matrix exponential of X signified by Xe  or exp(x) is the n n  matrix given by the power arrangement
0 !

K
X

K

X
e

K





 . The 

above arrangement dependably focalizes, so the exponential of X is all around characterized. In the event that X is 1 1  a grid 

the lattice exponential of X compared with the normal exponential of X thought of as a number. 

 

Definition 1.1 [4]. Let 
n nA C  

(a). The matrix A is called s-hermitian if A A  . 

(b). The matrix A is called s-skew-hermitian if A A   .  

(c). The matrix A is called s-orthogonal if 1SA A . 

(d). The matrix A is called s-unitary if 1A A  . 
 

Definition 1.2 [3]. The geometric mean and spectral means of positive definite matrices A and B are defined by 
1/2 1/2 1/2 1/2 1/2# ( )A B A A BA A  ,  1 1/2 1 1/2( # ) ( # )A B A B A A B   . 

 

1.1 Properties of matrix exponential [4] 

 

Let X and Y be n n  complex matrices and let a and b be an arbitrary number. We denote the n x n identity matrix by I 

and the zero matrix by  . The matrix exponential satisfies the following properties 

a. 0e = I 

b. aX bXe   = 
 a b X

e


 

c. X Xe e  = I 

d. If Y is invertible then  
1YXYe


 = 1XYe Y   

e. det ( Xe ) =
 tr X

e  

f. exp ( TX ) = ( )X Te  and exp ( sX ) = ( )X se  

http://www.isroset.org/
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g. exp ( *X ) = ( *)Xe  and exp ( X  ) = ( )Xe   

II. MAIN RESELTS  

 

Theorem 2.1. For s-hermitian n by n matrices X and Y, there exist s-unitary matrices U and V such that 
/2 /2X Y X UXU VYVe e e e

   or equivalently /2 /2( ) .X VYV X Y Xe U e e e U
   

Theorem 2.2. Let X and Y be a s-hermitian matrices and there exist a s-unitary matrices 
iU and 

iV  such that 

1 1 1 12 2#
U XU V YVX Ye e e

 
 and 2 2 2 22 2 U XU V YVX Ye e e

 
  . In particular for 0p  ,  

   
2/

#
p

X UYU pX pY X Y pX pY X VYVTr e Tr e e Tr e Tr e e Tr e
         

for some s-unitary matrices  U  and V , depending on p and X, Y. 

 
Proof.  We consider the matrix exponential equation of the geometric and spectral geometric means 

2 2#X Y Ze e e and 2 2 .X Y We e e   By Riccati lemma, 

                                            
2 2Z X Z Ye e e e   

Now /2 /2X Y X UXU VYVe e e e
  , there exist s-unitary matrices U and V such that  

                                            
2 2 /2 2 2 /2Z X Z Z X Ze e e e e e   

                                                           2 2UXU VYVe
   

Since the exponential map on the space of s-hermitian matrices is bijective onto the convex cone of positive definite matrices, 

we have 

2 2 2UZU VZV Y   UZU VZV Y    and hence UZU VZV Y    or 

 Z U VXV Y U    

 Z U VXV U U YU     

   Z U V X V U U YU     

   Z U V X U V U YU


     

Z WXW U YU    
where W U V .  For the spectral geometric mean, 2 2W X Ye e e  .  We apply 

 
1/2

1/2 1/2A B U A BA U   

 
2 2W X Ye e e   

     
1/2

2 /2 2 2 /2X Y XU e e e U  

     
1/2

2X Y XU e e e U for some s-unitary 

    /2 /2( )X Y XU e e e U  

    1 1 2 2V XV V YV
Ue U

    

    1 1 2 2U XU U YU
e

 
  

for some s-unitary,  and 
1 1 2 2W U XU U YU    

 
1 12 2#

U XU UYUX Ye e e
 

  

 
   1 1 2 2#

U XU UYU X YTr e Tr e e
 

  

 
2/

#
p

X UYU pX pYTr e Tr e e
   

By known theorem,  
2/

#
p

pX pY X YTr e e Tre   

                                                           
/2 /2 1/( )pX pY pX pTr e e e  
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Since pX pYe e  is similar to /2 /2 1/2( )pX pY pXe e e , 2/( )pX pY pe e  is similar to /2 /2 1/( ) .pX pY pX pe e e Therefore 

/2 /2 1/ 2/( ) ( )pX pY pX p pX pY pTr e e e Tr e e   for every 0p   

                                
   

2/

#
p

X UYU pX pY X Y pX pY X VYVTre Tr e e Tre Tr e e Tre
       

 
 

Proposition 2.3. Let A and B be positive definite matrices. Then ( )#( ) ( # )MAM MBM M A B M   and 

( ) ( ) ( )UAU UBU U A B U      for any invertible matrix M and ( ).U U n  

 

Proof. ( )#( ) ( # )MAM MBM M A B M   . Now 1/2 1/2 1/2 1/2 1/2# ( )A B A A BA A  , where ,A MAM B MBM    

1/2 1/2 1/2 1/2 1/2( )#( ) ( ) [( ) ( )( ) ] ( )MAM MBM MAM MAM MBM MAM MAM          

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2( ) {[ ( ) ] [ ( ) ]} ( )M A M M A M MBM M A M M A M          

1/2 1/2 1/2 1/4 1/4 1/4 1/2 1/2 1/2 1/4 1/4 1/4 1/2 1/2 1/2( ) [ ( ) ( ) ( ) ] ( )M A M M A M M B M M A M M A M          

(2 1 2 1 2)/4 1/2 1/4 1/2 1/4 1/2 (2 1 2 1 2)/4[ ] ( )M A A B A A M            

1/2 1/2 1/2 1/2 1/2[ ]MA A BA A M    

( )#( ) ( # )MAM MBM M A B M   . Now 

1 1/2 1 1/2( # ) ( # ) ,A B A B A A B   where ,A UAU B UBU    

1 1/2 1 1/2( ) ( ) [( ) #( )] ( )[( ) #( )]UAU UBU UAU UBU UAU UAU UBU         

1 1 1/2 1 1/2 1 1/2 1 1/2( ) #( ) [( ) ] {[( ) ] ( )[( ) ] }[( ) ]UAU UBU UAU UAU UBU UAU UAU                              

1 1 1 1/2 1 1 1 1/2 1 1 1 1/2 1/2 1 1 1 1/2[( ) ] {[( ) ) ( )[( ) ) } [( ) ]U A U U A U UBU U A U U A U                  

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2( ) [( ) ( ) ( ( ) ) ] ( )U A U U A U U B U U A U U A U            

1/2 1/2 1/2 1/2 1/2 3/2 3/2 1/2 1/2 1/2 1/2 1/2 1/2( ) [( ) ( ) ] ( )U A U U A U B U A U U A U           

1/2 1/2 1/2 1/4 3/4 1/2 1/2 1/2 3/4 1/4 1/2 1/2 1/2( ) ( ) [ ] ( ) ( )U A U U U A BA U U U A U           

1/4 1/2 1/4 1/2 1/2 1/2 1/4 1/2 1/4( ) [ ] ( )U A U A BA U A U       

1/2 1/2 1/2 1/2 1/2[ ]A A BA A   

1 1/2 1 1/2 1 1/2 1/2 1 1/2( ) [( ) ( ) ] ( )A A B A A      

1 1/2( # )A B  

1 1/2 1 1/2( ) ( ) ( # ) ( )( # )UAU UBU A B UAU A B       

                 1 1/2 1 1/2[( # ) ( # ) ]U A B A A B U    

  ( ) ( ) ( )UAU UBU U A B U      

Theorem 2.4. Let A and B be positive definite matrices. Then 1/2 1/2 1/2( )A B U A BA U  . 

 

Proof. X X and XX   are s-unitarily similar for any invertible matrix X. Setting 1/2 1 1/2( # )X A A B there exists a s-unitary 

matrix U such that 

     A B X X   

         UXX U   
1/2 1 1/2 1 1/2 1/2( # ) ( # )UA A B A B A U    

          1/2 1 1/2 1 1/2 1 1/2 1/2 1 1/2 1/2 1 1/2 1 1/2 1 1/2 1/2 1 1/2 1/2 1/2{( ) [( ) ( ) ] ( ) } {( ) [( ) ( ) ] ( ) }UA A A B A A A A B A A A U             

          1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2{ [ ] } { [ ] }UA A A BA A A A BA A A U      

1/2 1/4 1/4 1/2 1/4 1/2 1/4 1/4 1/4 1/2 1/4 1/2 1/4 1/2{ [ ] }{ [ ] }UA A A B A A A A B A A A U      

1/2 1/4 1/8 1/4 1/8 1/4 1/4 1/8 1/4 1/8 1/4 1/2{[( ) ( )][( ) ( )]}UA A A B A A A A B A A A U      
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1/2 1/8 1/4 1/8 1/8 1/4 1/8 1/2{[ ][ ]}UA A B A A B A A U      

1/2 1/8 1/4 1/8 1/8 1/4 1/8 1/2{[ ][ ]}U A A B A A B A A U      

3/8 1/4 1/8 1/8 1/4 3/8{[ ][ ]}U A B A A B A U    

3/8 1/8 1/4 1/4 1/8 3/8{[ ][ ]}U A A B B A A U    

1/4 1/4 1/4 1/4{ ( ) }U A B B A U  

1/4 1/2 1/4{ }U A B A U  

1/2 1/2 1/2( )A B U A BA U   
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