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Abstract— In this paper, we presented the idea of matrix exponential of secondary type matrices. In particular secondary
unitary matrices (s-unitary matrices).
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. INTRODUCTION AND PRELIMINARIES

The investigation of Secondary symmetric and Secondary Orthogonal Matrices was started by Anna Lee [1] and [2]. In this

paper, we presented the idea of matrix exponential of secondary type matrices. In particular s-unitary matrices. We signify the

space of nxn Complex matrices by C__ . The Secondary transpose of A is characterized by A° =VA'V and A° =VAV ,

where 'V' is the settled disjoint stage matrix with units in its optional askew. In Mathematics, the framework exponential is a

capacity on square networks undifferentiated from the conventional exponential capacity. Uniquely, the grid exponential gives

the association between framework Lie polynomial math and the relating Lie gathering. Let X is nxn real or complex matrix.
) K

The matrix exponential of X signified by e* or exp(x) is the nxn matrix given by the power arrangemente* = Z% The
K=0 -

above arrangement dependably focalizes, so the exponential of X is all around characterized. In the event that X is 1x1 a grid
the lattice exponential of X compared with the normal exponential of X thought of as a number.

Definition 1.1 [4]. Let AeC,,

(a). The matrix A is called s-hermitian if A’ = A.

(b). The matrix A is called s-skew-hermitian if A’ =—A.
(c). The matrix A is called s-orthogonal if A’ =A™,

(d). The matrix A is called s-unitary if A’ = A™.

Definition 1.2 [3]. The geometric mean and spectral means of positive definite matrices A and B are defined by
A#B — Al/2 (A—1/2 BA—1/2)1/2 Al/2 , A. B — (A—l#B)IIZ A(A—l#B)lIZ )

1.1 Properties of matrix exponential [4]

Let X and Y be nxn complex matrices and let a and b be an arbitrary number. We denote the n x n identity matrix by |
and the zero matrix by 9. The matrix exponential satisfies the following properties

a. e’=1

b eaX+b>( - e(a+b)x

c. eXe* =1

d. IfYisinvertible then €™ = YeXY™

e. det(e*)=¢""
f. exp(XT)=(e*) andexp (X°)=(e*)°
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g. exp(X")=(e*) andexp (X®)=(e")°
Il.  MAIN RESELTS

Theorem 2.1. For s-hermitian n by n matrices X and Y, there exist s-unitary matrices U and V such that
e*/%e"e*/? =" ™" or equivalently &X' =U (e*/%e"e*2)U°.
Theorem 2.2. Let X and Y be a s-hermitian matrices and there exist a s-unitary matrices U, and V, such that

) c] [°) o -
e” #e¥ ="M and e?* ee?’ =g" X2 ™™Y: In particular for p >0,
TreX V" =Tr (e’)X #e™ )le <Tre*™" <Tr (e'“x oc® ) =Tre*™"™"

for some s-unitary matrices U and V , dependingonpand X, Y.

Proof. We consider the matrix exponential equation of the geometric and spectral geometric means
e?* #e” =e”and e’ ee” =¢". By Riccati lemma,
eZe—ZXeZ — eZY

Now eX/%e"eX/2 = V"W 'there exist s-unitary matrices U and V such that

eZe—ZXeZ — e22/2e72X eZZ/Z

_ e2u><u ©_2vyv®

Since the exponential map on the space of s-hermitian matrices is bijective onto the convex cone of positive definite matrices,
we have

2UZU® —2vZV® =2Y = UzZU® —-VZV® =Y and hence UZU® =VZV°® +Y or
Z=U°(VXV®+Y)U
Z =U°(VXv®)U +U°YU
Z=(UV)Xx(veu)+u®vu
z=(Uv)x (V) +u°yu
Z =WXW° +U°YU
where W =U®V . For the spectral geometric mean, " =e?* ee? . We apply
AeB=U(A”BA")"U°
eW — eZX .eZY
—U (eleze2Y 2X /2 )1’2 ue
=U (e*e”e” )1/2 U for some s-unitary
:U(eX/2eYeX/2)U®
—Ue% XV +V, YV ue
_ eulxuf+uzvu2@
for some s-unitary, and W =U,XU,” +U,YU?
e2X #e? — eulxul‘9+uvu®
Tr (eulxuf)+uvu‘"’ ) —Tr (ezx #e?! )
Tre“W" =Tr (e'°X #e’ )yp
By known theorem, Tr (e™ #e® )le <TreX*

STr(er/zepYer/z)ﬂp
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Since e™ee”™ is similar to (e™%™e™?)Y2 | (e™ ee™)¥" is similar to (e”™’%e™e™?)P. Therefore
Tr(e™/?e™e™2)"P =Tr(e™ ee" )" forevery p>0

[} 2/p <}
Tre* V" =Tr(e™ #e™ )" <Tre*™" <Tr(e™ e )=Tre* "

Proposition 2.3. Let A and B be positive definite matrices. Then (MAM®)#MBM®)=M (A#B)M® and
(UAU®) e (UBU®)=U(AeB)U® forany invertible matrix M and U €U (n).

Proof. (MAM®)#(MBM®) =M (A#B)M®. Now A#B = A"?(A™?BA™?)"?2 AY? 'where A= MAM®,B = MBM®
(MAM ©)#(MBM ©) = (MAM ®)"[(MAM ©) ™2 (MBM ©)(MAM ©)™?1Y2(MAM ©)V?
— M1/2A1/2(M ®)]JZ{[M —1/2A—]J2 (M G))—]JZ]MBM ®[M —1/2A—]JZ (M G))—]JZ]}IIZ M]JZAI/Z(M 6)1/2
— M 1/2A1/2(M ®)1/2[M —1/4A—1/4(M @)—1/4 Ml/Z Bl/2 (M ®)1/2 M —1/4A—1/4(M ®)—1/4]M1/2A1/2(M @)1/2
— M @ 2e2-12)/a Al/Z[A—1/4 BY2 A71/4]A1/2(M 9)(271+271+2)/4
— MAl/Z[A7]J2 BA*]JZ]JUZ Al/Z M [©]
(MAM®)#(MBM®) = M (A#B)M® . Now
AeB = (A #B)"2 A(A #B)"?, where A=UAU®, B =UBU®
(UAU®) e (UBU®) =[(UAU ©)™ #(UBU °)J'* (UAU °)[(UAU ©)* #(UBU °)J"2
(UAU®) * #UBU®) = [(UAU®) *F*{[(UAU°) '] **(UBU*)[(UAU®) '] "*}(UAU®) T
— [(U @)—1 A—IU —1]1/2{[(U @)—1 A—1U —l)—1/2 (UBU @)[(U @)—l A—IU —1)—1/2}1/2[(U @)—l A—1U —1]1/2
— (U @)—1/2 A—l/ZU —1/2[(U @)1/2 Al/Z(U 1/2U ) B(U (€] (U @)1/2)A1/2U 1/2]1/2(U (-))—1/2A—1/2LJ -1/2
— (U @)71/2 A71/2U 71/2[(U ('))1/2 A1/2U 3/2 B(U @)3/2 A1/2U 1/2]1/2 (U @)71/2 Afl/ZU -1/2
— (U @)—1/2 A—l/ZU -1/2 (U @)1/4U 3/4[Al/2 BAI/Z]]./Z (U ®)3/4U 1/4 (U @)—1/2 A—l/ZU -1/2
— (U @)71/4 A71/2U ]J4[A1/2 BA1/2]]J2 (U ('3)71/4 Afl/ZU 1/4
— Afl/Z[A1/2 BAl/Z]l/Z A71/2
— (A—1)1/2[(A—1)—1/2 B(A—l)l/Z]lIZ(A—l)IIZ
=(A*#B)"
(UAU®) e (UBU®) = (A" #B)"*(UAU®) (A #B)"?
—U[(A#B)"2 A(A #B)"*]U°
(UAU®) e (UBU®) =U (Ae B)U®

Theorem 2.4. Let A and B be positive definite matrices. Then Ae B =U (A"’ BA"?)"?U° .

Proof. X®X and XX© are s-unitarily similar for any invertible matrix X. Setting X = AY?(A™*#B)"? there exists a s-unitary
matrix U such that
AeB=X°X
=UXX°U®
— UA1/2 (A—l # B)l/Z (A—l # B)1/2 A1/2U [©]
— UAl/Z{(A—l)IIZ [(A—l)—]JZ B(A—1)1/2]]JZ (A—1)1/2}]JZ{(A—1)1/2[(A—l)—IIZ B(A—I)IIZ]IIZ(A—l)l/Z}]JZ A]JZU [©]
— UAl/Z{Afl/Z[AHZ BAl/Z]l/Z Afl/2}1/2{A71/2[A1/2 BA]JZ]l/Z A71/2}l/2 A1/2U (€]
— UAl/Z{A—1/4[A1/4 Bl/Z A1/4]1/2 A—l/4}{A—l/4[A1/4 Bl/Z A1/4]1/2 A—1/4}A1/2U )
— UAl/Z{[(A—lM A]JS)B]J4 (A1/8A—1/4)] [(A—1/4A1/8)Bll4 (A1/8 A—1/4 )]}AIIZU [C)
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— UAl/Z{[A—l/S Bl/AA—lla][A—lls BUAA—1/8]}A1/2U (]

— U{[Alle—lls Bl/4A—1/8][A—l/8 Bl/4A—l/8A1/2]}U (C]

— U{[A3/8 Bl/4 A—l/S][A—lls Bl/4A3/8]}U (C]

— U{[A3/8A—l/8 Bl/4][Bll4A—l/8A3/8]}U (]

— U{A]J4 (Bll4 Bl/4)Al/4}U (C]

— U{A]J4 B]JZ A1/4}U (C]
AeB=U(A"BA"?)"?U°
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