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Abstract- Singh et al. (2017) have developed calibration estimators of population mean in two-stage stratified random
sampling by calibrating integrated sampling design weight when the auxiliary information is available at element (second stage
unit) level for the entire population. Obviously, if the auxiliary information is available at the element level for entire
population, then population mean/total of the auxiliary variable is also known. In the present paper, double (two-steps)
calibration estimators of the population mean have been developed by calibrating integrated sampling design weight at first
step and calibrating stratum weight at the second step using known population total/mean of the auxiliary variable. A limited
simulation study with real data has been conducted to examine the relative performance of the calibration estimators over the
usual estimator of the population mean without using auxiliary information in two-stage stratified random sampling. It
has been found from the results of simulation study that double (two-steps) calibration estimator has brought considerable
improvement in the precision of the estimate of population mean.
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I. INTRODUCTION

Deville and Séarndal (1992) made use of known population totals of auxiliary variables related to the study variate to calibrate
sampling design weight for improving Horvitz-Thompson estimator of population total of the variable of interest. Several
research workers have made significant contribution in this area. Sarndal (2007) and Kim and Park (2010) have presented a
comprehensive review of the work in calibration estimation in sample surveys. Calibration approach based estimation of
population total has been extended to stratified random sampling by Singh et al. (1998), Tracy et al. (2003), Kim et al. (2007),
Singh and Arnab (2011), Sinha et al. (2016) etc. Aditya et al. (2016) have developed calibration approach based regression
type estimator of population total in two-stage sampling when the auxiliary information related to the study variate is available
at primary stage unit (psu) level. Mourya et al. (2016) have also developed calibration estimator in two-stage sampling when
the auxiliary information is available at second stage unit (ssu) level for selected psu(s). Recently, Singh et al. (2017) have
developed calibration estimators of population mean in two-stage stratified random sampling by calibrating integrated
sampling design weight when the auxiliary information is available at element (ssu) level for the entire population. Obviously,
if the auxiliary information is available at the element level for entire population, then population mean/total of the auxiliary
variable is also known. In the present paper, double (two-steps) calibration estimators of the population mean have been
developed by (i) Calibrating integrated sampling design weight at first step, and (ii) calibrating stratum weight at the second
step using known population total/mean of the auxiliary variable in section-4., their variances are derived and properties are
discussed. Rest of the paper is organized as follows; the usual estimator of population mean in two-stage stratified sampling
without using the auxiliary information is described in section-2. Development of one-step calibration estimator in two-stage
stratified random sampling is described in section-3. A simulation study with real data has been conducted to examine the
relative performance of the estimators in section-5. A concluding remark has been presented in section-6.

Il. THE USUAL ESTIMATOR OF POPULATION MEAN IN TWO-STAGE STRATIFIED RANDOM SAMPLING
WITHOUT USING AUXILIARY INFORMATION
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Let the population of elements U = (1,2,3.....K,.....N) is partitioned into U,,U,,U,,.....U; ..Uy psu’s. The
population of psu’s is denoted by U, = (U,,U,....... U;..Uy, ) . The size of U, is denoted by N, . So, we have

Nl
U= U U, and N = Z N; . Let the population of psu’s U, is stratified into G strata, i.e 1,2,3,......0,....... G. The size of
i1

G
the gth stratum is denoted as Ng ,i.e gth stratum consists of Ng psu’s such that Z Ng =N,. Let N gi IS the number of
g=1
NQ

ssu of i™ psuin g™ straum (i =1,2,3........... N,). such that N, = ZNgi,the total number of elements in g™
i=1

stratum . Let the population of N psu’s in the g" stratum is denoted by U s =Ug Uy U U ).
We further define

go
9
tygik =value of y corresponding to k™ element of i" psu in gth stratum.
Ngl
tyi = D Ly - total of yin i psuof 9" stratum.
k=1
Ngi
N Z yoik » Mean per ssu in i" psu of gth stratum.
gi k=1
Ng Ngl
tgi  totalof 'y in gth stratum.
i=1 k=1
Fo_ e 1 Ngo . I
t, = -~ = — _—'[ygl ,the population mean per ssuin g stratum.
NgNgo Ng i=1 Ngo
- 1
t, = N_ t,,; ,the average total of 'y per psu.
g i=1

At-first stage, a random sample Sq of Ny psu’s from Ng psu’s in gth stratum is drawn according to sampling
design P, (.) with the inclusion probabilities 7z ;; and 7 ; at psu level.

At-second stage, we draw a random sample S; of size N, elements from the selected i psu in g " stratum

(i=123..... n, ) according to design P, () with inclusion probabilities 77y, ; and 7g; -
We also define
o~ AL
Agy =gy =iy With Ay =9 7T gi o
A
gkl,
i (21)

Agk% :ﬂgk% —ﬂg%ﬂg%, with Agk% :K

The objective to estimate is the population mean

_ 1 G Ng Ngi G Ngo— G _
ty :_zzztygik = Ly :ZQgtyg (2.2)
N g=1 i=1l k= g=1 N g=1
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N, G
where Qg =—g,stratum weight, such that ZQQ =
N o

The usual Horvitz-Thompson estimator of (HT) fyg is given by
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t}’Q( Zzaglktyglk (2.3)
g go S S
1 1
where @ = agag i, &g =, Qg :ﬂ_—
gi gk/i
The above estimator can be alternatively expressed as
. t
€7y = 200 (2.4)
yg(HT)
NgNg
A 2 1 . . -
where tyg HT) Zag, gilygi(t)» and Tygiim) =—Zagk/itygik is the HT estimator of T,;.
gi Si
The variance of tyg(HT) can be written as sum of two components as per Sarndal et al. (1992)
R V.., +V
yg(HT) 28 2
N g Ngo
With
i Lo vV, t
ygi "ygj ygil
=2 DAy Vg :Z_a”d Vi = ZZA
Ug Tgi 7gj Uy 7gi / /
The first component V is unbiasedly estimated by
111 A
ZZA ygl ygj _Z_ = -1V 2.6)
Tgi Tgi s, Tgil Tgi
where V yg'k i
The second component V., is unblasedly estimated by
. V,
_N Vi 2.7)
=X
Therefore, V('[yg (Hr)) i given by
" A V +V
Vtygem) = W
- | Z TR | e
9

Now, the estimator of ty in stratified random samplmg is given by

© 2018, IJISRMSS All Rights Reserved

198



Int. J. Sci. Res. in Mathematical and Statistical Sciences Vol. 5(6), Dec 2018, ISSN: 2348-4519

A

Q. t

g-yg(HT) (2.9)

Me

t, =
g

Bt N

The variance of is given by

v (t_y ): Z;QEV (t_yg(HT)) , Where V(fyg(HT)) is given in (2.5). (2.10)
g=
The estimator of variance of '[:y is given by
AT o ln
V(ty )= Z;ng (tyg(ur))  where V(tyg(HT)) is given in (2.8). (2.11)
g:

If the sampling design is simple random sampling without replacement (SRSWOR) denoted as S, the estimator fyg(SI) under
SRSWOR is given by

A

= —Z ~f, . where T, = Ztyglk (2.12)

gll go |kl

The variance of tyg(5|) is given by

2
N,-n 1 NN, ) IN,—n
=S+ Z{ N, } ( y I)S;Zgi (2.13)
ngN, n,N, (N, ) Ny
2
1 Ng N . ~ ~ Ngi
where SZ,, = L and S2. =
byg Ng _1;(,\]90 ygi  vyg ygi 1k 1( ygik — ygl)
The unbiased variance estimator is given by ( )
A N, —n
£ _ g g
V(ty9(5|))_ n.N byg Z ygl (2.14)
9’79 = MmN gi
where
1 Ny N A n 2 1 (N .. 2 13, N
2 2 ] gi Iy = gi
S = t t andS e _—t : _t : ,t i = _—t i
byg _1|1 Ng vg ygi n, _1; Ngo ygik — “ygi yg n & N ygik -
The estimator fy in SRSWOR can be expressed as
A G Py o)
ty(5|) = ZQgtyg(S,) , Where tyg(3|) is given in above equation (2.12). (2.15)
g=1
The variance of '[: o(s1) is given by
V(t: S ) ZQ V( ol 5|)) where V(tyg(S,)) is given in (2.13). (2.16)
The unblased variance estimator is given by
Afr G Afr A [~
V(ty(5|))= ZQ;V (tyg(5|)), where V(fyg(3|)) is given in (2.14). (2.17)
g=1

I11. CALIBRATION ESTIMATOR OF POPULATION MEAN IN TWO-STAGE STRATIFIED RANDOM
SAMPLING WHEN AUXILIARY INFORMATION IS AVAILABLE AT SSU LEVEL
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We follow the notations and definitions as described section-2. Consider that the auxiliary information t, ; related to the study

variate tygik is available at ssu level corresponding to k™ elements of i" psu in gth stratum. The psu total of X is therefore

Ngi Ng NQI
automatically obtained, i.e t,; = thgik for i" psu. Let t, = zztxgik be the total of X for gth stratum.
k=1 i1 k=1

The usual Horvitz-Thompson estimator of f without using auxiliary information given in (2.3) reproduced here is

t:yg(HT) Zzaglkt ygik @.1)

g go Sg Si

where @, = agag,;, which is an integrated weight. We want to calibrated a;, .Let W, be the

gik
integrated calibrated weight and therefore, the calibrated estimator of fyg is given by

t:ycg N zzwglktyglk (32)

g go Sg i
by minimizing the chi-square distance measure

Wy 2

We find out the W,

D)

Si qglka‘glk
subject to the constralnts
Zzwglktxglk =l (3.3)
NgNgo 5%
Therefore , the following function will be minimized with respect to W,

( glk glk )2

( glk’ ) ZZ q ka " Zzwglktxglk N Ngotxg (3-4)
Si gik~gi Si
0Py, 2) =0, yields
(’3Wgik
Agik@giktygix
=8t N ol ZzaltXI (3.5)
o ;;qgikagiktfgik ’ g ’ ol

Putting the value of Wi in above equation (3.2), we get

quglkaglktxglk ygik
S, S _
Zzaglktyglk + QZZ qgikagiktfgik xg ZZ aglktxglk

90 Sg S 90 Sg Si

= t_yg(HT) + Bg (t_xg _fxg(HT)) (3:6)
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1 -
ZZag,kth,k TN N ZZagiktyQik are the Horvitz-Thompson estimators of t,
9' 790 Sg i

where €, )
NgNgo %5

quglkaglktxglk ygik

and t, ,and B
” qugikagiktxgik

Sg  Si

9
Now, the calibration estimator of fy in two-stage stratified random sampling is given by

~ G ~
Fc rc
ty - ZQgtyg

_ZQ [yg HT +ég(txg -

~—t>

xg(m)] 3.7)

Under SRSWOR (say, SlI) and for OQgix = — » We shall show that estimator t:yC given in (3.7) reduces to separate ratio
xgik

estimator in two-stage stratified random sampling. From (3.7), we can write t—; under SRSWOR as

G A
tyis) =§;Qgty°g<sn
9=
& 1 N i2 3 = i
:ZQQ _Zﬁ_gygi"'Bg ( __Z g j

g=1 Ng s go Ng Sq
72 f
A go
72 f
9
G f _ A 1 Ngi A A g,
z = xg , Where tyg = n_zﬁ_ ygi t = —Z (38)
=N g S '“go S

Following the procedure given by Sukhatme et al. (1984), the approximate variance of fyC(S|) has been derived as
~ G ~
rc _ 2 £c
V(ty<SI>)— 2V (tyg(s.))
g=1
N

2
& 1 1 . 1 1
2 12 i 12 2 2
:ZQQ [__ N J( byg -2R beyg +R beg) n N Zugi(n__N_J Dy
g=1 g g g i=l i i
(3.9)
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£ N’ 1 ¥ °
2 _ 2 2¢q2 o 2 _ gi 12 _ _
where Dy =S -2R S, +R;S; . R, = t_yg and Ug = 2 Styg = N 1 ( tygie g..) :
Xgee go i=1
1 ’ 2 1 N 2 Ngi 2
S2 = t ot ) sZ=—t S -t , - .
ygi Ngl _1;( ygik yg|') bxg Ng _1;( gl=xgle Xg.o) Xg| 1;( Xglk Xgl )
1 Ng 1 Ngi
St’nyg N _1Z<ugitxgio _thoo Xugitygi- _tygn)sxygi = N _1Z(txgik _txgi- Xtygik _tygio)'
¢} 1= gi i=1
The approximate variance of f;(Sl) can alternatively be written as
2
G 1 & 1 & .1 1
e L M L e L
9 gi \J gie g Xgie gi gi
g=1 ng g i= ngNg i—1 n, Ngi
(3.10)
The approximate estimator of variance of '[_yc(S,) is given by
(tCSI ) ZQ V(yg Sl )
S 1 1 1 < 1 1 i
=N 2| ———|si2 —2Rs. . +R&SZ J+ ———HuZ| =———| d? (3.11)
gz;; g [ng Ng]( byg g1%bxyg g1 bg) ngNg = g n, Ngi g

N R

Z”gifygi/ng

where d;i =Sy —2Ry1Si + R2 o R = 'n:gl%
Zugifxgi/”g

, 1 1& :
Soxyg = —_12 Ly _[ Zugl ygl} gilsgi _(n_zllugitxgiJ ’
g i=

g i=1 g i=1

1 & 2 1 & 2 1& 2
Styg = —Z Lygi — Zugltygl Slliig - —Z Ugilgi — _Zugitxgi ’
ng _1 i=1 ng i=1

byg
n, —143 Ny ia

1 & A ~ 1 & ~ 2 1 &
—Z<txgik _txgiXtygik _tygi)’ Sygi = n -1 (tygik _tygi) ¢ Sygi T n_—_12(txgik _txgi)

S .=
! n, —-1io n, —1\= i k=1
The approximate estimator of variance of f;(3|) can alternatively be written as
S 1 1] 1 g 1 (1 1)
_ 2 2 (o s R 2 2
_ZQQ TN _ Z:ugi(ysi _Rglxsi) + Zugi e — dgi (3.12)
=] ng Ny n,-143 ngN, = o Ny

IV. DEVELOPMENT OF DOUBLE (TWO-STEPS) CALIBRATION ESTIMATOR OF POPULATION MEAN IN
TWO-STAGE STRATIFIED RANDOM SAMPLING WHEN BOTH STRATUM WEIGHTS AND DESIGN
WEIGHTS AT PSU LEVEL ARE CALIBRATED

The calibrated estimator of fy is given by
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~

ja) G ~ N n t f
t; :ngtycg , where Q. =ﬁ:stratum weight and t.; :ﬁ. (4.1)
g=1

g ' go
Now, we want to calibrate stratum Weigthg . Let Q'g be the calibrate weight ong . Therefore, two-steps calibration

estimator is proposed as

~ G A
FCcCo_ 'Fc
t°=>0Qft; 4.2)
g=1
' 2
o . . &, -0,)
We minimize the chi-square distance measure function Z g g 9.0
g:l g g

subject to the calibration constraints
G R ~ G G
DQ.t, =f and D Q =>Q (43)
g=1 g=1 g=1

The following function is minimized with respect to Q'g .

¢(Q§,ﬂt)=i<gg -Q,) 1.0 +2A{ig‘gfxg —fXJ+222(ng —iQ’QJ (4.4)

g=1

where A,and A, are Lagrange multiplier. Differentiation equation (4.4) with respect to Q'g and equating it to zero, i.e the

oglQ. A
solution of ¢( g )=O , yields
ang )
G 2
R ZquQQ Xg
A =
qQQQ txg TG
2.9, .
' g= — 2~
Q, =0, + - [tx —ZQthgj (4.5)
G A g=1
G quQgtxg]

Putting the value of Q'g in equation (4.2), then the estimator of T.° reduces as

fa A Al - G A
t° =ty +bl£tx —ZQgtxg] (4.6)
g=1
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ZQ qgtyg ZQ thXg

ZQ qg yg by —
) >,
where b, = = 5
G jal
G [Zlggqgtng
g:
Z;;ngg(xg) N G
2,944,
g=1
The calibration estimator for ¢, = 1, reduces as
A A n G A
£ CC fc ¥ £
=t +b|t, - D Q. 4.7
g=1
A G
£C
. ZQgtng;Q f
£c g=
ZQgtygtxg G
>0,
where b = = >
G o
(o]
>af,f -
A G
g 2.9,
g=1

The conditional approximate variance of '[:yCC for given Q’g is given by

V(f§°)=§;Q;2V(f§g) (4.9

Following the Sarndal et al. (1992) and Aditya et al. (2016), the variance of '[:C can be written as

A Ng Ng Ng 1 Ngl Ngl K |
V(tyg) N2 {ZZA LD 2 2 A e ygl}

i1 j-1 i i1 Mg k=1 11 7 ak/i 7T gi/i

Ng

Ng zagl Xgi

where U ; =t —Bt,; and B=

o

i=1

The conditional approximate estimate of variance of ty for given Qg is given by
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s\ Sl
V(t;c):Z;Q’gzv(tyg) (4.9)
g:

where V (t:;g )is given by

2
~ (2 ng noon - t i t i
V(t;g) N N2 ZZ( Agu Xwg| gi — WU gj)z -1-1 i (_Agkl/i {ﬂ_&J

2
i1 j-l 293 i k=1 1=1 TTaksi gy

i-1

Under SRSWOR (say, Sl), then calibration estimator for dy = 1, reduces as

A

N (R
) =t + {{tX—ZQgtxg] (4.10)
g=1
Q

g=1 (@)
9
where b/ = = 5
G .,
oy
ZQQ xg) G
Sa,
g=1

The conditional approximate variance of '[:yCC for given Q’g is given by

Vi )= > ovlie) (4.11)
g-1
b [N ) el ) N e (N o) e
Wherev(yg(SI))_ Ngzlquo |:ng N, _1);;( UgiUgj) n, ;n. A k_llzlltygiktygil
N
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The conditional approximate estimate of variance of t:yCC for given Q)7 is given by

ViEz)-> i) (4.12)
=1
where g
S 1 1(N —n )ng L N2n |( |_ni)ni il
V(yg(s|)) N N E Nging _gl)iz_l:jz_;(wgiugi — WU gJ) — Zl: g (n _1) L (tygik _tygi|)2
R > # (55 3N
Ugl :tygi - B(Sl)txgi and B(SI) =—

V. SIMULATION STUDY

A limited simulation study has been carried out with real data. The population MU284 given in Appendix-C of Sérndal et al.
(1992) have been used. There are 50 psu’s of varying size. The variable under study (y) is population of 1985 and an auxiliary

variable (X) is the population of 1975. The 50 psu’s are stratified into 4 strata considering the value of X in ascending order.

The stratum I consists of 13 psu’s, stratum II consists of 14 psu’s, stratum III consists of 12 psu’s, stratum IV consists of 11
psu’s respectively. The samples of size 4 psu’s were drawn by SRSWOR independently from strata 1 to 4, respectively. This
process has been repeated 300 times independently. That means, we obtained 300 samples of size 4 psu’s from each stratum.
Sub samples of size 3 ssu’s are drawn by SRSWOR from each sample of psu’s in each stratum. The values of Y and X in sub

A

samples were used to compute the population mean. In this process, we get 300 estimates of tyg( s1) tyg(S,) from 300 sub
samples in each stratum. We compute the values of Ti based on usual estimator fy(s|) without using auxiliary information and

calibration estimators, fyc(S,), fyc(cs|) from 1200 samples. The true populations mean of Yy has also been computed i.e 29.363.

The following two criteria were used for assessing the relative performance of these estimators:
(i) The percent absolute relative bias (%RB) defined as,

%RB(‘f)zé ST
i=1

(ii) The percent relative root mean square error (%RRMSE) defined as,

x100

i=1

A 2
~ S .
%RRMSE (6) = %Z[TT—T] %100

Where S is the number of simulation.

The percent relative bias (%RB) and the percent relative root mean square error (%RRMSE) has been computed for each T .

I
Their values are presented in the table-5.1.
Table-5.1: Percent relative bias (%RB) and percent relative root mean square error (%0RRMSE) of the estimators.

Estimators %RB %RRMSE
2 * 7.013
ty(Sl)

t:c 0.189 0.362
y(s1)

© 2018, IJISRMSS All Rights Reserved 206




Int. J. Sci. Res. in Mathematical and Statistical Sciences Vol. 5(6), Dec 2018, ISSN: 2348-4519

t:cc 0.146 0.281

" Unbiased estimator

It can be observed from the results of the Table-5.1 that calibration approach for estimation of the population mean of y has
drastically decreased the percent relative root mean square error (%RRMSE) to about 0.3 percent from 7.0 percent when usual
estimator without using auxiliary information was applied. Among the calibration estimators, two-steps calibration estimator

(t:yc(CS,)) was found to be the best as it has lowest %RRMSE of 0.281 percent. The percent relative bias has been found to be

within the range of below one percent for all the calibrated estimators. The result shows that the two-steps calibration approach
of estimating population mean in two-stage stratified random sampling has brought considerable improvement in the precision
of the estimates.

VI. CONCLUDING REMARKS

If the auxiliary information is available at element (second stage unit) level for the entire population, then the calibration
approach based calibration estimator have brought significant improvement in the precision of the estimate of population mean

in two-stage stratified random sampling. It may be mentioned that the two-steps calibration estimator tcyc(CS,) has been found

better performance than the other one-step calibration estimator.
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