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Abstract - In this paper we establish a connection between graph theory and Semiring theory. To relate the graph theory and 

ring theory, we define the zero divisor graph of Semiring. The main objective of this paper is to determine a formula to find the 

number of edges of the zero-divisor graph of a direct product of Semirings. Then by using the formula we prove some results.  
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I. INTRODUCTION 

 A Semiring is a set S with binary operations + and   
such that (S, +) is monoid with identity element 0 and    ) 
is a monoid with identity element 1. In addition, operations 

+ and   are connected by distributivity and 0 annihilates S.  

A Semiring is commutative if ab = ba for all a, b ∈ S. The 

Semiring S is additively cancellative if a + c = b + c 

implies that a = b for all a, b, c ∈ S.  

 For any Semiring S, we denote by Z
*
(S) the set of 

non-zero zero–divisors, Z
*
(S) = {x ∈ S; there exists 0 ≠ y ∈ 

S such that xy = 0 or yx = 0}. The zero-divisor graph of S 

denoted by Γ(S), is a undirected graph whose vertices are 

labeled by the elements of Z
*
(S). Let x, y ∈ Γ(S), there is 

an edge from x to y if and only if xy = 0. Here we say that 

x and y are adjacent to each other. By the definition of 

graph theory the vertex set V (Γ(S)) of Γ(S) is the set of 

elements in Z
*
(S) and an unordered pair of vertices x, y ∈ 

V (Γ(S)), x ≠ y and is an edge x − y in Γ(S) if xy = 0 or yx 

= 0. For general background of graph theory, we can see 

Chartrand, Lesniak, and Chang [1]. 

 The zero–divisor graphs of commutative rings have 

been first introduced by Beck in [2] in the study of graph 

coloring. Anderson and Naseer [3] continued working with 

Beck’s definition. David F. Anderson and Philip S. 

Livingston [4] proposed different method associating to 

commutative ring and later studied by various authors. The 

graph of Semiring have been first introduced by Y.F. Lin 

and J.S. Ratti [5]. Dolzan et.al has studied zero-divisor 

graphs of Semirings as well as those of rings [6]. 

 In this paper, we determine a formula for the 

number of edges of the zero-divisor graph of a direct 

product of Semirings S1 × …. × St, given the zero-divisor 

graphs of each Si. This problem was solved for finite 

commutative rings without nonzero nilpotent elements by 

Lagrange [7]. Redmond uses a technique to count the same 

[8]. L M. Birch et.al [9] found the zero divisor graphs of 

finite direct product of finite rings. Ryan L. Miller and 

others [10] proved the same for non-commutative rings 

and semigroups in zero divisor graphs of finite direct 

products of finite non-commutative rings and semigroups. 

We apply the formula in this paper to describe completely 

the zero-divisor graph of any direct product of Zm’s. 

 The results of above paper are holding true for 

Semirings. Here every element in a Semiring is either a 

zero-divisor or not. For any set X, let |X| denote the 

cardinality of X. Let U denote the set of non zero-divisors 

of S and Z* denote the set of non zero zero-divisors of S. 

Then | S | - 1 = |U| + | Z*|. We will use this fact without 

explicit mention when needed. 

 The paper has three sections. In section 2 we 

describe the zero-divisor graph for an arbitrary direct 

product of Semirings. In section 3 we describe completely 

the zero-divisor graph for Zp
k
, where p is a prime number. 

We indicate how the formulas in section 2 and 3 can be 

used to describe completely the zero-divisor graph of any 

finite direct product of Zm’s. 

II. THE ZERO-DIVISOR GRAPH OF A DIRECT 

PRODUCT OF SEMIRINGS 

 In this section, we determine a formula for the 

number of edges in the zero-divisor graph of a direct 

http://www.isroset.org/
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product S1 × …. × St of Semirings, given complete 

information about each Γ(Si) and each Si. We develop a 

recursive formula for an arbitrary direct product and then 

we derive a non-recursive version of this formula. To 

develop a formula we prove the following lemma. 

Lemma 2.1. Let S be a Semiring and let x be the number of 

nilpotent elements of index 2 in S. Then the number of 

neighbor in Γ(S) is 2|E| - x.  

Proof: A vertex r in the zero-divisor graph S has a loop if 

and only if r
2
 = 0. Hence, if we want to count each loop 

once and each non-loop twice, we obtain the result 2|E| - x. 

Lemma 2.2. Let S = S1 × …. × St be a Semiring, let xi be 

the number of non-zero nilpotent elements of index 2 in 

each Si, and let            denote the number of non-zero 

nilpotent elements of index 2 in S. Then             
∏        

   .  

Proof: An element                  is nilpotent index 

less than or equal to 2 if and only if each ri is nilpotent of 

index less than or equal to 2. If we count 0, then there are 

     possible entries for each position in r. We subtract 1 

to avoid counting the zero element of S. 

Corollary 2.3. Let S = S1 × …. × St then the number of 

neighbors in Γ(S) is            | |           . 

 Let S = S1 × S2. Let E be the set of edges of Γ(S). 

For i = 1, 2, let Zi* be the set of non-zero zero-divisors of 

Si, let Ei denote the set of edges in Γ(Si), and let Ui  be the 

set of non zero-divisors of Si  except 0.  

 In order to count the number of edges in      
        we first count the number of edges in           
and then we extend this result to             by 

induction. Since any Semiring consists of non zero-

divisors and zero-divisors, the set of non-zero elements of 

S1 × S2 is         , where      
  or       or    

{ } for i = 1, 2 and either    { } or    { }. To count 

the number of edges in         . We construct the graph 

in figure 1. 

 The numbers on the edges are labels. The vertices 

of this graph are the sets. Let                     {  
     { } } 

and   {  
     { } }, then the vertices are the 

set        

{
   

    
      

         
           

          

     
         

}. Since    and 

   not contain zero and         cannot be a zero divisor.  

Therefore there is no edge between these two elements. 

Hence                            . We draw an 

edge from         to                 precisely when 

there are elements              ∈         and 

               ∈           such that 

                       which means each edge in 

Figure 1 between         and           represents the set 

of all edges in          between elements of         

and          . 

 If    is a domain, then   
    and hence the 

vertices    
    

      
          

      do not appear in the 

graph. Likewise, if    is a domain, then   
     and hence 

the vertices    
    

         
        

   do not appear in the 

graph. 

 

 

 

 

 

 

 

. 

 

 

Figure 1. Sets of zero-divisors in      . 

Lemma 2.4. For each edge labeled by n, 1 ≤ n ≤ 11, in 

Figure 1, let Card (n) denote the number of edges in 

         represented by this edge. Then the values of 

Card (n) are given as follows: 

n 1 2 3 

Card (n) |  | |  | 
   |  |       |  |      

 

 |  ||  | 
 

n 4 5 6 7 

Card(n)   |  
 |   |  

 | |  
 ||  

 |   |  | 

 

n 8 9 10 11 

Card(n)   |  | |  ||  
 | |  

 ||  | |  ||  | 

 

Proof:  

Card (1): It is a cardinality of edge (1). It is a loop      
   

↔      
   and it is the number of edges in       =  |  |. 
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Card (2): It is a cardinality of edge (2). It is a loop    
     

↔    
     and it is the number of edges in        =|  |. 

Card (3), It is a cardinality of edge (3). It is a loop 

   
    

    →    
    

     let      
 ∈   

  for i = 1, 2, where  

    
   . These elements give rise to the edge         

   
    

  .  

The number of such edges is  |  |      |  |      
|  ||  |, where       be the number of nilpotent elements 

of index 2 in S. 

Card (4): It is a cardinality of edge (4). It is an edge 

between the two vertices      
    →    

    
  . Let   ∈

  
  and let     

 ∈   
 , where     

   . Then, there are 

distinct edges      
            and (0            

  . 
Therefore, Card (4)    |  

 |. 

Card (5): It is a cardinality of edge (5). It is an edge 

between the two vertices   
    

      
     . Let   ∈

  
  and let      

 ∈   
 , where     

   . Then, there are 

distinct edges             
     and   

             . 
Therefore, Card (5)    |  

 |. 

Card (6): It is a cardinality of edge (6). It is an edge 

between the two vertices     
      

     . Let   ∈
  

  and let   ∈   
 , then there are edges              

  . Therefore Card (6) =|  
 ||  

 |. 

Card (7): It’s a cardinality of edge (7). It is an edge 

between the two vertices     
         

  . let   ∈    
     

 ∈   
 , where      

   . These elements give rise to 

the edges               
   and (0            

  . The 

number of such edges is   |  | where    the number of 

neighbours in zero divisor graph of S2 is. 

Card (8): It is a cardinality of edge (8). It is an edge 

between the two vertices   
        

     . let      
 ∈   

  
  ∈        where      

   . These elements give rise to 

the edges           
      and           

    . The 

number of such edges is   |  |. Where    is the number 

of neighbours in zero divisor graph of S1. 

 Card (9): It’s a cardinality of edge (9). It is an edge 

between the two vertices            
  . let   ∈    

  ∈   
 . These elements give rise to the edges       

        . The number of such edges is|  ||  
 |.   

Card (10): It is a cardinality of edge (10). It is an edge 

between the two vertices          
    . let   ∈    

  ∈   
 . These elements give rise to the edges       

       . The number of such edges is |  
 ||  |.   

Card (11): It is a cardinality of edge (11). It is an edge 

between the two vertices             . let   ∈
     ∈   . These elements give rise to the 

edges              . The number of such edges is 

|  ||  |.   

Proposition 2.5. The number of edges in          is 

 | |    |  |  |  |    |  |   

  |  |   |  |    |  |     |  |     …. (1) 

Proof:  From lemma 2.4,  

Add Card (1) + Card (2) + Card (3) we get 

|  |  |  |   |  |      

 |  |      |  ||  |  

        = |  |  |  |    |  |  |  ||  | 

   |  |       |  ||  | 

        =  |  |    |  |  |  |    |  | 

             |  ||  |        

        = |  |       |  |       |  |  

      

Now add Card (5) + Card (8) 

  |  
 |    |  | =    |  

 |  |  |   

 =    |  |      

 =  |  |       |  |     

 = |  ||  |   |  |    |  |      

 = |  | |  |        |  |     

Add Card (4) + Card (7) + Card (6) + Card (9) + Card (10) 

+ Card (11), we get 

 |  
 ||  |  |  ||  |   |  ||  | 

   |  |   |  | |  
 | |  |  

                            |  ||  |                                              

    |  |    |  |   |  |  |  ||  | 

   |  |  |  |    |  | 

In a similar manner, from Lemma 2.4, add Card (4) + Card 

(5) + Card (7) to obtain  |  |    |  |. Finally, add the 

remaining terms in Lemma 2.4 to obtain  |  |     |  |  
  . 
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Example. The zero divisor graph of       is           

Let    {  
     { } } and    {  

     { } } and 

     ,       

Here   
  {   },   

  {     },  

   {           },    {   } 

      and     ,  

    The number of neighbors in          

    The number of neighbors in           

      {                                     

                                     

                                     

                                    

                                     

                                    

                                     

                                    

                                   } 

    
 

 

  

 

 

 

 

The graph of          

We now describe the general case. Let                
      for some t and let               
    . Let          denote the edges of             and let E 

denote the edges of              . Suppose that we 

know|        |, |    | and |  | for each       . 

Proposition 2.6. The number of edges in      is 

| |  ( |      |  |       |   )|    |

   |    |   |       | 

                               |       |     |    |    .  

      (2) 

Proof: In the Equation (1) replace    and     by         

And        respectively and replace    and    by      and 

     respectively. 

We now present a non-recursive version of proposition 

2.6. 

Theorem 2.7. Let    |    |  |    |   , and let 

    |      | |    |  |    |     |    |  |    |   . 

Then the Equation of Proposition 2.6 becomes  

|          |  [∏  

 

   

]       ∑(  ∏   

 

     

)

   

   

 

        

             (3)  

Proof:  We know the equation (2)  

| |  ( |      |  |       |   )|    |

   |    |   |       | 

                               |       |     |    |    . 

Write the above equation as             , where 

     |         |,    |       | and  are given above.  

III. CONCLUSION 

We determine a formula for counting the number of edges 

of the zero-divisor graph of the direct product of finite 

Semirings.  
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