International Journal of Scientific Research in

Zero-divisor graphs of finite direct products of finite Semirings

A. Britto ${ }^{\mathbf{*}^{*}}$, R. Murugeson ${ }^{2}$, A. Subramanian ${ }^{3}$
${ }^{1}$ Dept. of Mathematics, The M.D.T Hindu College, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, Tamilnadu, India.
${ }^{2}$ Dept. Of Mathematics, Thiruvalluvar College, Papanasam.
${ }^{3}$ Dept. Of Mathematics, The M.D.T Hindu College, Tirunelveli.
*Corresponding Author: britto_27@yahoo.co.in,Tel: +91 9444066737

Available online at: www.isroset.org

Received: 21/Jan/2019, Accepted: 11/Feb/2019, Online: 28/Feb/2019

Abstract

In this paper we establish a connection between graph theory and Semiring theory. To relate the graph theory and ring theory, we define the zero divisor graph of Semiring. The main objective of this paper is to determine a formula to find the number of edges of the zero-divisor graph of a direct product of Semirings. Then by using the formula we prove some results.

Key words - Zero-divisor, Graph, Semiring, Direct product, Card (n).

I. INTRODUCTION

A Semiring is a set S with binary operations + and \cdot such that $(S,+)$ is monoid with identity element 0 and (S, \cdot) is a monoid with identity element 1 . In addition, operations + and \cdot are connected by distributivity and 0 annihilates S. A Semiring is commutative if $a b=b a$ for all $a, b \in S$. The Semiring S is additively cancellative if $a+c=b+c$ implies that $a=b$ for all $a, b, c \in S$.

For any Semiring S, we denote by $\mathrm{Z}^{*}(S)$ the set of non-zero zero-divisors, $\mathrm{Z}^{*}(S)=\{x \in S$; there exists $0 \neq y \in$ S such that $x y=0$ or $y x=0\}$. The zero-divisor graph of S denoted by $\Gamma(S)$, is a undirected graph whose vertices are labeled by the elements of $\mathrm{Z}^{*}(S)$. Let $x, y \in \Gamma(S)$, there is an edge from x to y if and only if $x y=0$. Here we say that x and y are adjacent to each other. By the definition of graph theory the vertex set $\mathrm{V}(\Gamma(S))$ of $\Gamma(S)$ is the set of elements in $\mathrm{Z}^{*}(S)$ and an unordered pair of vertices $x, y \in$ $\mathrm{V}(\Gamma(S)), \mathrm{x} \neq y$ and is an edge $x-y$ in $\Gamma(S)$ if $x y=0$ or $y x$ $=0$. For general background of graph theory, we can see Chartrand, Lesniak, and Chang [1].

The zero-divisor graphs of commutative rings have been first introduced by Beck in [2] in the study of graph coloring. Anderson and Naseer [3] continued working with Beck's definition. David F. Anderson and Philip S. Livingston [4] proposed different method associating to commutative ring and later studied by various authors. The graph of Semiring have been first introduced by Y.F. Lin and J.S. Ratti [5]. Dolzan et.al has studied zero-divisor graphs of Semirings as well as those of rings [6].

In this paper, we determine a formula for the number of edges of the zero-divisor graph of a direct product of Semirings $S_{1} \times \ldots \times S_{t}$, given the zero-divisor graphs of each S_{i}. This problem was solved for finite commutative rings without nonzero nilpotent elements by Lagrange [7]. Redmond uses a technique to count the same [8]. L M. Birch et.al [9] found the zero divisor graphs of finite direct product of finite rings. Ryan L. Miller and others [10] proved the same for non-commutative rings and semigroups in zero divisor graphs of finite direct products of finite non-commutative rings and semigroups. We apply the formula in this paper to describe completely the zero-divisor graph of any direct product of Z_{m} 's.

The results of above paper are holding true for Semirings. Here every element in a Semiring is either a zero-divisor or not. For any set X , let $|X|$ denote the cardinality of X . Let U denote the set of non zero-divisors of S and Z^{*} denote the set of non zero zero-divisors of S. Then $|S|-1=|U|+|Z *|$. We will use this fact without explicit mention when needed.

The paper has three sections. In section 2 we describe the zero-divisor graph for an arbitrary direct product of Semirings. In section 3 we describe completely the zero-divisor graph for Z_{p}^{k}, where p is a prime number. We indicate how the formulas in section 2 and 3 can be used to describe completely the zero-divisor graph of any finite direct product of Z_{m} 's.

II. THE ZERO-DIVISOR GRAPH OF A DIRECT PRODUCT OF SEMIRINGS

In this section, we determine a formula for the number of edges in the zero-divisor graph of a direct
product $S_{1} \times \ldots \times S_{t}$ of Semirings, given complete information about each $\Gamma\left(S_{i}\right)$ and each S_{i}. We develop a recursive formula for an arbitrary direct product and then we derive a non-recursive version of this formula. To develop a formula we prove the following lemma.

Lemma 2.1. Let S be a Semiring and let x be the number of nilpotent elements of index 2 in S. Then the number of neighbor in $\Gamma(S)$ is $2|E|-x$.

Proof: A vertex r in the zero-divisor graph S has a loop if and only if $r^{2}=0$. Hence, if we want to count each loop once and each non-loop twice, we obtain the result $2|E|-x$.

Lemma 2.2. Let $S=S_{1} \times \ldots \times S_{t}$ be a Semiring, let x_{i} be the number of non-zero nilpotent elements of index 2 in each S_{i}, and let $x_{1,2, \ldots, t}$ denote the number of non-zero nilpotent elements of index 2 in S. Then $x_{1,2, \ldots, t}=-1+$ $\prod_{i=1}^{t}\left(x_{i}+1\right)$.

Proof: An element $r=r_{1}, r_{2}, \ldots, r_{i} \in S$ is nilpotent index less than or equal to 2 if and only if each r_{i} is nilpotent of index less than or equal to 2 . If we count 0 , then there are $x_{i}+1$ possible entries for each position in r. We subtract 1 to avoid counting the zero element of S.

Corollary 2.3. Let $S=S_{1} \times \ldots \times S_{t}$ then the number of neighbors in $\Gamma(S)$ is $n_{1,2, \ldots, t}=2|E|-x_{1,2, \ldots, t}$.

Let $S=S_{1} \times S_{2}$. Let E be the set of edges of $\Gamma(S)$. For $i=1,2$, let $Z_{i}{ }^{*}$ be the set of non-zero zero-divisors of S_{i}, let E_{i} denote the set of edges in $\Gamma\left(S_{i}\right)$, and let U_{i} be the set of non zero-divisors of S_{i} except 0 .

In order to count the number of edges in $\Gamma\left(S_{1} \times\right.$ $\left.\ldots \times S_{t}\right)$, we first count the number of edges in $\Gamma\left(S_{1} \times S_{2}\right)$, and then we extend this result to $\Gamma\left(S_{1} \times \ldots \times S_{t}\right)$ by induction. Since any Semiring consists of non zerodivisors and zero-divisors, the set of non-zero elements of $S_{1} \times S_{2}$ is $U\left(A_{1}, A_{2}\right)$, where $A_{i}=Z_{i}^{*}$ or $A_{i}=U_{i}$ or $A_{i}=$ $\{0\}$ for $i=1,2$ and either $A_{1}=\{0\}$ or $A_{2}=\{0\}$. To count the number of edges in $\Gamma\left(S_{1} \times S_{2}\right)$. We construct the graph in figure 1 .

The numbers on the edges are labels. The vertices of this graph are the sets. Let $\quad A_{1}=\left\{Z_{1}^{*}, U_{1},\{0\}\right\}$ and $A_{2}=\left\{Z_{2}^{*}, U_{2},\{0\}\right\}$, then the vertices are the $\operatorname{set}\left(A_{1}, A_{2}\right)=$
$\left\{\begin{array}{c}\left(Z_{1}^{*}, Z_{2}^{*}\right),\left(Z_{1}^{*}, U_{2}\right),\left(Z_{1}^{*}, 0\right),\left(U_{1}, Z_{1}^{*}\right),\left(U_{1}, 0\right), \\ \left(0, Z_{2}^{*}\right),\left(0, U_{2}\right)\end{array}\right\}$. Since A_{1} and A_{2} not contain zero and $\left(U_{1}, U_{2}\right)$ cannot be a zero divisor. Therefore there is no edge between these two elements. Hence $(0,0),\left(U_{1}, U_{2}\right) \notin\left(A_{1}, A_{2}\right) \subseteq S_{1} \times S_{2}$. We draw an edge from $\left(A_{1}, A_{2}\right)$ to $\left(A_{1}^{\prime}, A^{\prime}{ }_{2}\right) \subseteq S_{1} \times S_{2}$ precisely when there are elements $(0,0) \neq\left(a_{1}, a_{2}\right) \in\left(A_{1}, A_{2}\right)$ and
$(0,0) \neq\left(a_{1}^{\prime}, a_{2}^{\prime}\right) \in\left(A_{1}^{\prime}, A^{\prime}{ }_{2}\right)$ such that $\left(a_{1}, a_{2}\right)\left(a_{1}^{\prime}, a_{2}^{\prime}\right)=(0,0)$ which means each edge in Figure 1 between $\left(A_{1}, A_{2}\right)$ and $\left(A_{1}^{\prime}, A^{\prime}{ }_{2}\right)$ represents the set of all edges in $\Gamma\left(S_{1} \times S_{2}\right)$ between elements of $\left(A_{1}, A_{2}\right)$ and $\left(A_{1}^{\prime}, A^{\prime}{ }_{2}\right)$.

If S_{1} is a domain, then $Z_{1}^{*}=\varnothing$ and hence the vertices $\left(Z_{1}^{*}, Z_{2}^{*}\right),\left(Z_{1}^{*}, 0\right),\left(Z_{1}^{*}, U_{2}\right)$ do not appear in the graph. Likewise, if S_{2} is a domain, then $Z_{2}^{*}=\varnothing$ and hence the vertices $\left(Z_{1}^{*}, Z_{2}^{*}\right),\left(U_{1}, Z_{2}^{*}\right),\left(0, Z_{2}^{*}\right)$ do not appear in the graph.

Figure 1. Sets of zero-divisors in $S_{1} \times S_{2}$.
Lemma 2.4. For each edge labeled by $\mathrm{n}, 1 \leq n \leq 11$, in Figure 1, let Card (n) denote the number of edges in $\Gamma\left(S_{1} \times S_{2}\right)$ represented by this edge. Then the values of Card (n) are given as follows:

n	1	2	3
$\operatorname{Card}(\mathrm{n})$	$\left\|E_{2}\right\|$	$\left\|E_{1}\right\|$	$\left(\left\|E_{1}\right\|-x_{1}\right)\left(\left\|E_{2}\right\|-x_{2}\right)$ $+\left\|E_{1}\right\|\left\|E_{2}\right\|$

n	4	5	6	7
$\operatorname{Card}(\mathrm{n})$	$n_{2}\left\|Z_{1}^{*}\right\|$	$n_{1}\left\|Z_{2}^{*}\right\|$	$\left\|Z_{1}^{*}\right\|\left\|Z_{2}^{*}\right\|$	$n_{2}\left\|U_{1}\right\|$

n	8	9	10	11
$\operatorname{Card}(\mathrm{n})$	$n_{1}\left\|U_{2}\right\|$	$\left\|U_{1}\right\|\left\|Z_{2}^{*}\right\|$	$\left\|Z_{1}^{*}\right\|\left\|U_{2}\right\|$	$\left\|U_{1}\right\|\left\|U_{2}\right\|$

Proof:

Card (1): It is a cardinality of edge (1). It is a loop ($0, Z_{2}^{*}$) $\leftrightarrow\left(0, Z_{2}^{*}\right)$ and it is the number of edges in $\Gamma\left(S_{2}\right)=\left|E_{2}\right|$.

Card (2): It is a cardinality of edge (2). It is a loop ($\left.Z_{1}^{*}, 0\right)$ $\leftrightarrow\left(Z_{1}^{*}, 0\right)$ and it is the number of edges in $\Gamma\left(S_{1}\right)=\left|E_{1}\right|$.

Card (3), It is a cardinality of edge (3). It is a loop $\left(Z_{1}^{*}, Z_{2}^{*}\right) \rightarrow\left(Z_{1}^{*}, Z_{2}^{*}\right)$, let $z_{i}, z_{i}^{\prime} \in Z_{i}^{*}$ for $i=1,2$, where $z_{i} z_{i}^{\prime}=0$. These elements give rise to the edge $\left(z_{1}, z_{2}\right) \leftrightarrow$ $\left(z_{1}^{\prime}, z_{2}^{\prime}\right)$.

The number of such edges is $\left(\left|E_{1}\right|-x_{1}\right)\left(\left|E_{2}\right|-x_{2}\right)+$ $\left|E_{1}\right|\left|E_{2}\right|$, where x_{1}, x_{2} be the number of nilpotent elements of index 2 in S.

Card (4): It is a cardinality of edge (4). It is an edge between the two vertices $\left(0, Z_{2}^{*}\right) \rightarrow\left(Z_{1}^{*}, Z_{2}^{*}\right)$. Let $Z_{1} \in$ Z_{1}^{*} and $\operatorname{let} z_{2}, z_{2}^{\prime} \in Z_{2}^{*}$, where $z_{2} z_{2}^{\prime}=0$. Then, there are distinct edges $\left(0, z_{2}^{\prime}\right) \leftrightarrow\left(z_{1}, z_{2}\right)$ and $\left(0, z_{2}\right) \leftrightarrow\left(z_{1}, z_{2}^{\prime}\right)$. Therefore, Card (4) $=n_{2}\left|Z_{1}^{*}\right|$.

Card (5): It is a cardinality of edge (5). It is an edge between the two vertices $\left(Z_{1}^{*}, Z_{2}^{*}\right) \rightarrow\left(Z_{1}^{*}, 0\right)$. Let $Z_{2} \in$ Z_{2}^{*} and let $z_{1}, z_{1}^{\prime} \in Z_{1}^{*}$, where $z_{1} z_{1}^{\prime}=0$. Then, there are distinct edges $\left(z_{1}, z_{2}\right) \leftrightarrow\left(z_{1}^{\prime}, 0\right)$ and $\left(z_{1}^{\prime}, z_{2}\right) \leftrightarrow\left(z_{1}, 0\right)$. Therefore, $\operatorname{Card}(5)=n_{1}\left|Z_{2}^{*}\right|$.

Card (6): It is a cardinality of edge (6). It is an edge between the two $\operatorname{vertices}\left(0, Z_{2}^{*}\right) \rightarrow\left(Z_{1}^{*}, 0\right)$. Let $z_{1} \in$ Z_{1}^{*} and let $z_{2} \in Z_{2}^{*}$, then there are edges $\left(0, z_{2}\right) \leftrightarrow\left(z_{1}\right.$, $0)$. Therefore Card (6) $=\left|Z_{1}^{*}\right|\left|Z_{2}^{*}\right|$.

Card (7): It's a cardinality of edge (7). It is an edge between the two vertices $\left(0, Z_{2}^{*}\right) \rightarrow\left(U_{1}, Z_{2}^{*}\right)$. let $u_{1} \in U_{1}$, $z_{2}, z_{2}^{\prime} \in Z_{2}^{*}$, where $z_{2} z_{2}^{\prime}=0$. These elements give rise to the edges $\left(u_{1}, z_{2}\right) \leftrightarrow\left(0, z_{2}^{\prime}\right)$ and $\left(0, z_{2}\right) \rightarrow\left(u_{1}, z_{2}^{\prime}\right)$. The number of such edges is $n_{2}\left|U_{1}\right|$ where n_{2} the number of neighbours in zero divisor graph of S 2 is.

Card (8): It is a cardinality of edge (8). It is an edge between the two vertices $\left(Z_{1}^{*}, 0\right) \rightarrow\left(Z_{1}^{*}, U_{2}\right)$. let $z_{1}, z_{1}^{\prime} \in Z_{1}^{*}$, $u_{2} \in U_{2}$, where $z_{1} z_{1}^{\prime}=0$. These elements give rise to the edges $\left(\mathrm{z}_{1}, 0\right) \leftrightarrow\left(z_{1}^{\prime}, u_{2}\right)$ and $\left(\mathrm{z}_{1}, u_{2}\right) \leftrightarrow\left(z_{1}^{\prime}, 0\right)$. The number of such edges is $n_{1}\left|U_{2}\right|$. Where n_{1} is the number of neighbours in zero divisor graph of S_{l}.

Card (9): It's a cardinality of edge (9). It is an edge between the two vertices $\left(U_{1}, 0\right) \rightarrow\left(0, Z_{2}^{*}\right)$. let $u_{1} \in U_{1}$, $z_{2} \in Z_{2}^{*}$. These elements give rise to the edges $\left(u_{1}, 0\right) \rightarrow$ $\left(0, z_{2}\right)$. The number of such edges is $\left|U_{1} \| Z_{2}^{*}\right|$.

Card (10): It is a cardinality of edge (10). It is an edge between the two vertices $\left(0, U_{2}\right) \rightarrow\left(Z_{1}^{*}, 0\right)$. let $u_{2} \in U_{2}$, $z_{1} \in Z_{1}^{*}$. These elements give rise to the edges $\left(0, u_{2}\right) \rightarrow$ $\left(z_{1}, 0\right)$. The number of such edges is $\left|Z_{1}^{*}\right|\left|U_{2}\right|$.

Card (11): It is a cardinality of edge (11). It is an edge between the two vertices $\left(U_{1}, 0\right) \rightarrow\left(0, U_{2}\right)$. let $u_{1} \in$ $U_{1}, u_{2} \in U_{2}$. These elements give rise to the
edges $\left(u_{1}, 0\right) \rightarrow\left(0, u_{2}\right)$. The number of such edges is $\left|U_{1}\right|\left|U_{2}\right|$.

Proposition 2.5. The number of edges in $\Gamma\left(S_{1} \times S_{2}\right)$ is

$$
\begin{aligned}
& |E|=\left(2\left|S_{1}\right|+\left|E_{1}\right|-1\right)\left|E_{2}\right|+ \\
& \left(2\left|S_{2}\right|-1\right)\left|E_{1}\right|+2\left(\left|S_{1}\right|-1\right)\left(\left|S_{2}\right|-1\right) \ldots .(1)
\end{aligned}
$$

Proof: From lemma 2.4,
Add Card (1) + Card (2) + Card (3) we get

$$
\begin{gathered}
\left|E_{1}\right|+\left|E_{2}\right|+\left(\left|E_{1}\right|-x_{1}\right) \\
\left(\left|E_{2}\right|-x_{2}\right)+\left|E_{1}\right|\left|E_{2}\right| \\
=\left|E_{1}\right|+\left|E_{2}\right|-x_{2}\left|E_{1}\right|+\left|E_{1}\right|\left|E_{2}\right| \\
-x_{1}\left|E_{2}\right|+x_{1} x_{2}+\left|E_{1}\right|\left|E_{2}\right| \\
=\left|E_{2}\right|-x_{1}\left|E_{2}\right|+\left|E_{1}\right|-x_{2}\left|E_{1}\right| \\
+2\left|E_{1}\right|\left|E_{2}\right|+x_{1} x_{2} \\
=\left|E_{2}\right|\left(1-x_{1}\right)+\left|E_{1}\right|\left(1-x_{2}+2\left|E_{2}\right|\right) \\
+x_{1} x_{2}
\end{gathered}
$$

Now add Card (5) + Card (8)

$$
\begin{aligned}
n_{1}\left|Z_{2}^{*}\right|+n_{1} \mid & U_{2} \mid=n_{1}\left(\left|Z_{2}^{*}\right|+\left|U_{2}\right|\right) \\
& =n_{1}\left(\left|S_{2}\right|-1\right) \\
& =\left(\left|E_{1}\right|-x_{1}\right)\left(\left|S_{2}\right|-1\right) \\
& =\left|E_{1}\right|\left|S_{2}\right|-2\left|E_{1}\right|-x_{1}\left|S_{2}\right|+x_{1} \\
& =\left|E_{1}\right|\left(\left|S_{2}\right|-2\right)-x_{1}\left(\left|S_{2}\right|-1\right)
\end{aligned}
$$

Add Card (4) + Card (7) + Card (6) + Card (9) + Card (10) + Card (11), we get

$$
\begin{aligned}
& 2\left|Z_{1}^{*}\right|\left|E_{2}\right|+\left|E_{1}\right|\left|E_{2}\right|+2\left|U_{1}\right|\left|E_{2}\right| \\
& =\left|E_{2}\right|+2\left|E_{2}\right|\left(\left|Z_{1}^{*}\right|+\left|U_{1}\right|\right) \\
& +\left|E_{1}\right|\left|E_{2}\right| \\
& =\left|E_{2}\right|+2\left(\left|S_{1}\right|-1\right)\left|E_{2}\right|+\left|E_{1}\right|\left|E_{2}\right| \\
& \quad=\left(2\left|S_{1}\right|+\left|E_{1}\right|-1\right)\left|E_{2}\right|
\end{aligned}
$$

In a similar manner, from Lemma 2.4, add Card (4) + Card (5) + Card (7) to obtain $\left(2\left|S_{2}\right|-1\right)\left|E_{1}\right|$. Finally, add the remaining terms in Lemma 2.4 to obtain $\left(2\left|S_{1}\right|-1\right)\left(\left|S_{2}\right|-\right.$ 1).

Example. The zero divisor graph of $Z_{9} \times Z_{6}$ is $\Gamma\left(Z_{9} \times Z_{6}\right)$
Let $A_{1}=\left\{Z_{1}^{*}, U_{1},\{0\}\right\}$ and $A_{2}=\left\{Z_{2}^{*}, U_{2},\{0\}\right\}$ and $Z_{1}=Z_{9}, Z_{2}=Z_{6}$

Here $Z_{1}^{*}=\{3,6\}, Z_{2}^{*}=\{2,3,4\}$,
$U_{1}=\{1,2,4,5,7,8\}, U_{2}=\{1,5\}$
$x_{1}=2$ and $x_{2}=0$,
$n_{1}=$ The number of neighbors in $\Gamma\left(Z_{9}\right)$
$n_{2}=$ The number of neighbors in $\Gamma\left(Z_{6}\right)$

$$
\begin{aligned}
& Z_{9} \times Z_{6}=\{(0,0),(0,1),(0,2),(0,3),(0,4),(0,5), \\
&(1,0),(1,1),(1,2),(1,3),(1,4),(1,5), \\
&(2,0),(2,1),(2,2),(2,3),(2,4),(2,5), \\
&(3,0),(3,1),(3,2),(3,3),(3,4),(3,5) \\
&(4,0),(4,1),(4,2),(4,3),(4,4),(4,5), \\
&(5,0),(5,1),(5,2),(5,3),(5,4),(5,5) \\
&(6,0),(6,1),(6,2),(6,3),(6,4),(6,5), \\
&(7,0),(7,1),(7,2),(7,3),(7,4),(7,5) \\
&(8,0),(8,1),(8,2),(8,3),(8,4),(8,5)\}
\end{aligned}
$$

$$
\text { The graph of } \Gamma\left(Z_{9} \times Z_{6}\right)
$$

We now describe the general case. Let $S_{1,2, \ldots, t}=S_{1} \times S_{2} \times$ $\ldots \ldots \times S_{t}$ for some t and let $S=S_{1} \times S_{2} \times \ldots \ldots \times S_{t} \times$ S_{t+1}. Let $E_{1,2, \ldots, t}$ denote the edges of $\Gamma\left(S_{1,2, \ldots, t}\right)$ and let E denote the edges of $\Gamma\left(S_{1,2, \ldots, t+1}\right)$. Suppose that we know $\left|E_{1,2, \ldots, t}\right|,\left|E_{t+1}\right|$ and $\left|S_{i}\right|$ for each1 $\leq i \leq t+1$.

Proposition 2.6. The number of edges in $\Gamma(S)$ is

$$
\begin{align*}
|E|=\left(2\left|S_{1, \ldots, t}\right|\right. & \left.+\left|E_{1, \ldots, t}\right|-1\right)\left|E_{t+1}\right| \\
& +\left(2\left|S_{t+1}\right|-1\right)\left|E_{1, \ldots, t, t}\right| \\
& +2\left(\left|S_{1, \ldots, t}\right|-1\right)\left(\left|S_{t+1}\right|-1\right) . \tag{2}
\end{align*}
$$

Proof: In the Equation (1) replace E_{1} and S_{1} by $E_{1, \ldots, t}$
And $S_{1, \ldots, t}$ respectively and replace E_{2} and S_{2} by E_{t+1} and S_{t+1} respectively.

We now present a non-recursive version of proposition 2.6.

Theorem 2.7. Let $c_{i}=2\left|S_{t+1}\right|+\left|E_{t+1}\right|-1$, and let $b_{i}=2\left|S_{1, \ldots, t}\right|\left(\left|S_{t+1}\right|+\left|E_{t+1}\right|-1\right)-2\left|S_{t+1}\right|-\left|E_{t+1}\right|+2$.
Then the Equation of Proposition 2.6 becomes

$$
\begin{equation*}
\left|E_{1,2, \ldots, t+1}\right|=\left[\prod_{i=1}^{t} c_{i}\right] E_{1}+b_{t}+\sum_{i=1}^{t-1}\left(b_{i} \prod_{j=i+1}^{t} c_{j}\right) \tag{3}
\end{equation*}
$$

Proof: We know the equation (2)

$$
\begin{aligned}
|E|=\left(2\left|S_{1, \ldots, t}\right|\right. & \left.+\left|E_{1, \ldots, t}\right|-1\right)\left|E_{t+1}\right| \\
& +\left(2\left|S_{t+1}\right|-1\right)\left|E_{1, \ldots, t}\right| \\
& +2\left(\left|S_{1, \ldots, t}\right|-1\right)\left(\left|S_{t+1}\right|-1\right) .
\end{aligned}
$$

Write the above equation as $a_{i+1}=c_{i} a_{i}+b_{i}$, where $a_{i+1}=\left|E_{1, \ldots, t+1}\right|, a_{i}=\left|E_{1, \ldots, t}\right|$ and are given above.

III. CONCLUSION

We determine a formula for counting the number of edges of the zero-divisor graph of the direct product of finite Semirings.

REFERENCES

[1] Chartrand. G, Lesniak. L, Chang. P, " Graphs and Digraphs", 5th edition, Boca Raton, FL: ARC Press, 2011
[2] I. Beck, "Coloring of commutative rings", J. Algebra 116, pp. 208-226, 1988.
[3] D. D. Anderson and M. Naseer, "Beck's coloring of a commutative ring", J. Algebra 159, pp. 500-514, 1993
[4] D. F. Anderson, P. S. Livingston, " The zero-divisor graph of a commutative ring", J. Algebra 217, Vol. 17, pp. 434-447, 1999.
[5] Y.F. Lin and J.S. Ratti, "The Graphs of Semirings", Journal of Algebra 14, pp. 73-82, 1970.
[6] D. Dolzan and P. Oblak, "The zero-divisor graphs of rings and Semirings", Internet Algebra Comput. 22(4), pp. 20, 2012.
[7] J. D. Lagrange, "On realizing zero-divisor graphs", Comm. Algebra 36, pp. 4509-4520, 2008.
[8] S. Redmond, "Recovering rings from zero-divisor graphs", J. Algebra Appl. 12(8), 2013.
[9] L. Birch, J. Thibodeaux, R. P. Tucci ,’Zero divisor graphs of finite direct products of finite rings", Comm. Alg. 42, pp.1-9, 2014.
[10] R.L. Miller, Jeremy J. Thibodeoux and R.P. Tucci, "Zero-divisor graphs of finite direct product of finite non-commutative rings and Semigroups", J. Algebra, Number Theory: Advances and Applications, Volume 14, No. 1, pp.1-9, 2015

