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Abstract- In this paper, we have introduced a weighted model of the Quasi Lindley Distribution (QLD) as a new generalization 

of QLD. Statistical properties of this new distribution are derived and the model parameters are estimated by Maximum 

Likelihood (ML) estimation technique. Finally, the model is examined with an application to real life data. 
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I. INTRODUCTION 

Shanker and Mishra (2013) introduced a two-parameter Quasi Lindley distribution (QLD), of which the Lindley 

distribution (LD) is a particular case. Its moments, failure rate function, mean residual life function and stochastic orderings 

have been discussed.  

Probability density function (pdf) of Quasi Lindley Distribution (QLD) is given by 
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The corresponding cdf of (1.1) is given by 
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The rth moment of (1.1) is given as 
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II. WEIGHTED QUASI LINDLEY DISTRIBUTION (WQLD) 

Weighted technique is one of the prominent techniques for generalizing the probability models using the weight 

functions. The concept of weighted distributions can be traced to the work of Fisher (1934), in connection with his studies, on 

how methods of ascertainment can influence the form of distribution of recorded observations. Later it was introduced and 

formulated in general terms by Rao (1965). Many researchers developed some important weighted probability models with 

their significant role in handling data sets from various practical fields. Gove (2003) studied some of the more recent results on 

weighted distributions pertaining to parameter estimation in forestry. Gupta and Tripathi (1996) studied the weighted version 

of the bivariate three parameter logarithmic series distribution which has applications in many fields such as ecology, social 

and behavioral sciences and species abundance studies. Warren (1975) was the first to apply the weighted distributions in 
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connection with sampling wood cells. Recently Para and jan (2018) introduced weighted Pareto type II distribution with 

applications in medical sciences. 

If X is a non negative random variable with probability density function (pdf)  .xf Let  xw  be the weight function 

which is a non negative function, then the probability density function of the weighted random variable wX is given by: 

  
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 where )(xw  be a non-negative weight function and         dxxfxwxwE .  

 In this paper, we have considered the weight function as   cxxw   to obtain the weighted Quasi Lindley distribution. 

The probability density function (pdf) of weighted Quasi Lindley distribution is given as: 
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The corresponding cumulative distribution function (cdf) of weighted Quasi Lindley Distribution (WQLD) is obtained as 
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, put tx  ,  dtdx  ,  

xtxxandtxas  ,0,0 , after simplification  
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(2.2)                                                                                                                         

where  and c are positive parameters and   


x
ts dtetxs

0

1, is a lower incomplete gamma function. 

The graphs of probability density function and cumulative distribution function are plotted for different values of parameters 

 and c given in Fig.1 and Fig. 2 respectively. Fig. 1 gives the description of some of the possible shapes of weighed Quasi 

Lindley distribution for different values of the parameters  and c . It illustrates that the density function of weighted Quasi 

Lindley distribution is positively skewed, for fixed  it becomes more and more flatter as the value of c is increased. Fig. 2 

shows the graph of distribution function which is an increasing function. 

 

III. SPECIAL CASES 

Case I: If we put 0c , then weighted Quasi Lindley distribution (2.1) reduces to Quasi Lindley distribution with probability 

density function as:  
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Case II: For 0 , then weighted Quasi Lindley distribution (2.1) reduces to two parameter gamma distribution with 

parameters  and 2c . 

 
IV. RELIABILITY ANALYSIS 

In this section, we have obtained the reliability, hazard rate, reverse hazard rate of the proposed weighted Quasi 

Lindley Distribution. 

 

4.1 Reliability function R(x) 

The reliability function is defined as the probability that a system survives beyond a specified time. It is also referred 

to as survival or survivor function of the distribution. It can be computed as complement of the cumulative distribution function 

of the model. The reliability function or the survival function of weighted Quasi Lindley distribution is calculated as: 
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 The graphical representation of the reliability function for the weighted Quasi Lindley distribution is shown in fig. 3. 

 

4.2 Hazard Function: 

  The hazard function is also known as hazard rate, instantaneous failure rate or force of mortality is given as: 
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Fig.1: pdf plot of Weighted Quasi Lindley Distribution
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4.3 Reverse Hazard Rate: 

The reverse hazard rate of the weighted quasi Lindley distribution are respectively given as:  
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V. STATISTICAL PROPERTIES 

In this section, the different structural properties of the proposed weighted quasi Lindley model have been evaluated. 

These include moments, mode, harmonic mean, moment generating function and characteristic function. 

5.1 Moments: Suppose X is a random variable following weighted Quasi Lindley distribution with parameter  , and then the 

rth moment for a given probability distribution is given by 
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Fig.2: CDF plot of Weighted Quasi Lindley Distribution
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Which is mean of the weighted quasi Lindley distribution 

Put r=2 in equation (5.1) we get 
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And variance of weighted quasi Lindley distribution is 
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Fig.3: Survival function plot of Weighted Quasi Lindley Distribution
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5.2 Harmonic mean 

The harmonic mean for the proposed model is computed as: 
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5.3 Moment Generating Function and Characteristic Function of Weighted Quasi Lindley  Distribution (WQLD) 

We will derive moment generating function and characteristic function of WQLD in this section. 
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And hence show that two parameter gamma distribution is a particular case of weighted quasi Lindley distribution. 

Proof: We begin with the well known definition of the moment generating function given by 
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For 0  in equation (5.3.1) we get 
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5.4 Quantile and Random Number Generation from WQLD 

Inverse CDF Method is one of the methods used for the generation of random numbers from a particular distribution. 

In this method the random numbers from a particular distribution are generated by solving the equation obtained on equating 

the CDF of a distribution to a number u. The number u is itself being generated from  1,0U . Thus following the same 

procedure for the generation of random numbers from the WQLD we will proceed as 
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 On solving the equation (5.4.1) for x , we will obtain the required random number from the WQLD. Main problem, which is 

being faced while using this method of generating the random numbers is to solve the equations which are usually complex and 

complicated. In order to overcome such hindrance, we use softwares like MATLAB, Mathematica or R for solving such a 

complex equation. 

VI. ORDER STATISTICS 
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Then, the pdf of first order  1X  weighted quasi Lindley distribution is given by: 
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VII. MAXIMUM LIKELIHOOD ESTIMATION OF WEIGHTED QUASI LINDLEY DISTRIBUTION 

  Let nxxx ,...,, 21  
be the random sample of size n drawn from weighted Quasi Lindley Distribution and let if   be the observed 

frequency in the sample corresponding to ),...,2,1( nixX i  ,  such that   nf i , where k  is the largest observed value 

having non-zero frequency then the likelihood function of Weighted Quasi Lindley  Distribution is given as: 
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The three equations (7.1), (7.2) and (7.3) don’t seem to be solved directly. However the Fisher’s scoring method can be applied 

to solve these equations. We have                     

 

 

 

 

222

2

)1(2)1()1(

log














c

n

c

n

c

n

c

L


 

;
)(

log
2

2

i

ii

x

xfL

 




 
   

;
log2



n

c

L






   
2

2

)1(

log








c

n

c

L


 

The following equations for ̂ , ̂  and ĉ can be solved as
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where 0 , 0  and 0c  are the initial values of  ,   and c respectively. These equations are solved iteratively till sufficiently 

close values of ̂ , ̂  and ĉ  are obtained. 

7.1 Simulation Study of ML estimators of WQLD 

In this section, we study the performance of ML estimators for different sample sizes (n=25,75,100,150,200,300). We have 

employed the inverse CDF technique for data simulation for WQLD using R software. The process was repeated 1000 times 

for calculation of bias, variance and MSE as given values in table 1.  For two parameter combinations of WQLD, decreasing 

trend is being observed in average bias, variance and MSE as we increase the sample size. Hence, the performance of ML 

estimators is quite well, consistent in case of WQLD. 

               Table 1: Simulation Study of ML estimators for weighted Quasi Lindley Distribution 

Parameter n 

 

                  
 

                  

Bias Variance MSE Bias Variance MSE 

  

25 

0.698985 0.111666 0.600246 0.794085 0.331057 0.961628 

  1.474035 0.111255 2.284034 1.2268 0.351011 1.856049 

  -0.03908 0.013196 0.014723 0.288817 0.010859 0.094274 

  

75 

0.453829 0.020782 0.226743 0.412148 0.026023 0.195889 

  1.125111 0.101674 1.367549 0.78452 0.573856 1.189328 

  -0.03658 0.012579 0.013917 0.207594 0.005101 0.048196 

  

100 

0.415148 0.0168 0.189148 0.33123 0.012468 0.122181 

  0.739167 0.094289 0.640657 0.602663 0.216566 0.579769 

  -0.05377 0.010805 0.013696 0.182033 0.004131 0.037267 

  

150 

0.400494 0.011392 0.171787 0.292492 0.007101 0.092653 

  0.69953 0.049215 0.538557 0.439972 0.128085 0.32166 

  -0.07008 0.00601 0.010921 0.151623 0.00527 0.02826 

  

200 

0.21848 0.009064 0.056798 0.21823 0.005912 0.053536 

  0.630678 0.015107 0.412862 0.225452 0.056483 0.107311 

  -0.07488 0.004829 0.010436 0.111407 0.003061 0.015472 

  

300 

0.165541 0.00728 0.034684 0.138878 0.003637 0.022924 

  0.513483 0.006986 0.270651 0.180969 0.053695 0.086445 

  -0.05221 0.000143 0.002869 0.102064 0.002081 0.012498 
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VIII. MODEL COMPARISON BASED ON SIMULATED DATA FROM WQLD 

 

       In order to compare the Weighted Model with the base model on the basis of simulated data. In this section, we proceed by 

simulating a data from WQLD using inverse CDF technique discussed in the section 5.4. Two sets of random parameter 

combinations with sample sizes (n=10, 25, 100,300,500) have been taken into consideration for data generation. It is evident 

from the table 2 and table 3, that weighted parameter plays a highly significant role for large samples. Log-likelihood ratio test 

reveals that the role of weighted parameter exhibits a highly significant role in case of large samples only. LR statistic for 

testing H0 versus H1 is ))ˆ()ˆ((2 0 LL , where ̂ and 0̂ are the MLEs under H1 and H0. The statistic   is 

asymptotically nas ( ) distributed as 
2

k , with k degrees of freedom which is equal to the difference in dimensionality 

of ̂  and 0̂ . H0 will be rejected if the LR-test p-value is <0.01 (or LR Statistic value >6.635) at 99% confidence level.  

Table 2: Model Comparison Based On Simulated Data from WQLD. 

 ̂        ̂        ̂      Parameter Estimates 
Likelihood 

Ratio 

Statistic 
Criterion WQLD QLD 

Sample 

Size (n) WQLD QED 

-logL 
33.14778 33.32745 

10 

 ̂  1.24 (0.97) 

 ̂  0.96 (0.87) 

  ̂  0.213 (0.06)  

 

 ̂  0.10 (1.25) 

  ̂  0.16 (0.89) 

0.359 
AIC 

72.29556 70.65489 

AICC 
76.29556 72.36918 

BIC 
73.20331 71.26006 

-logL 
85.35855 87.47477 

25 

 ̂  1.86 (1.78) 

    ̂  1.37 (0.847) 

  ̂  0.23 (0.06) 

 ̂  0.10 (0.98) 

       ̂  0.12 (0.012) 

4.232 
AIC 

176.7171 178.9495 

AICC 
177.86 179.495 

BIC 
180.3737 181.3873 

-logL 
345.7888 350.2193 

100 

 ̂  1.20 (0.57) 

 ̂  0.78 (0.65) 

  ̂  0.20 (0.03) 

  ̂  0.11 (1.52) 

  ̂  0.13 (0.07) 

8.861 
AIC 

697.5776 704.4386 

AICC 
697.8276 704.5623 

BIC 
705.3931 709.6489 

-logL 
994.6124 1012.538 

300 

 ̂  1.56 (0.60) 

    ̂       (    ) 

   ̂       (    ) 

 ̂       (    ) 

     ̂       (     ) 
35.851 

AIC 
1995.225 2029.076 

AICC 
1995.306 2029.116 

BIC 
2006.336 2036.483 

-logL 
1694.878 1719.592 

500 

  ̂  0.87 (0.23) 

  ̂  0.06 (0.13) 

  ̂  0.21 (0.01) 

 ̂  0.12 (0.46) 

     ̂  0.14 (0.0007) 

49.428 
AIC 

3395.757 3443.185 

AICC 
3395.805 3443.209 

BIC 
3408.4 3451.614 
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Table 3: Model Comparison Based On Simulated Data from WQLD. 

 ̂        ̂        ̂      Parameter Estimates 
Likelihood 

Ratio 

Statistic 
Criterion WQLD QLD 

Sample 

Size (n) WQLD QED 

-logL 
18.90418 18.96473 

10 

 ̂  0.549 (1.12) 

 ̂  0.821 (1.39) 

    ̂        (0.335) 

 ̂  0.10 (0.45) 

  ̂  0.70 (0.21) 

0.1210 
AIC 

43.80836 41.92945 

AICC 
47.80836 43.64374 

BIC 
44.71612 42.53462 

-logL 
44.00957 44.60075 

25 

  ̂  1.03 (1.02) 

  ̂  1.18 (1.01) 

  ̂  1.04 (0.28) 

 ̂  0.13 (0.69) 

  ̂  0.75 (0.05) 

1.1823 
AIC 

94.01913 93.2015 

AICC 
95.16199 93.74695 

BIC 
97.67576 95.63925 

-logL 
174.5136 180.4392 

100 

 ̂  1.49 (0.65) 

   ̂  1.21 (0.985) 

  ̂  1.18 (0.163) 

 ̂  0.11 (0.41) 

  ̂  0.72 (0.008) 

11.851 
AIC 

355.0273 364.8784 

AICC 
355.2773 365.0022 

BIC 
362.8428 370.0888 

-logL 
517.4113 535.7299 

300 

 ̂  1.46 (0.54) 

    ̂  0.904 (0.89) 

   ̂  1.21 (0.108) 

 ̂  0.10 (0.38) 

       ̂  0.73 (0.009) 

36.637 
AIC 

1040.823 1075.46 

AICC 
1040.904 1075.5 

BIC 
1051.934 1082.867 

-logL 
858.2261 892.628 

500 

 ̂  1.47 (0.31) 

 ̂  0.39 (0.48) 

  ̂  1.21 (0.08) 

 ̂  0.12 (0.13) 

     ̂  0.721 (0.001) 

68.803 
AIC 

1722.452 1789.256 

AICC 
1722.501 1789.28 

BIC 
1735.096 1797.685 

 

 
IX. APPLICATIONS OF WEIGHTED QUASI LINDLEY DISTRIBUTIONS 

 

Here we analyze the strength data, reported by Badar and Priest (1982), using the Weighted Quasi Lindley 

Distribution (WQLD) in comparison with Quasi Lindley Distribution (QLD). Estimates of the unknown parameters is carried 

out in R software along with calculation of model comparison criterion values like AIC, AICC and BIC values. It may be noted 

that Raqab et al. (2008) fitted the 3-parameter generalized exponential distribution to the same data set. Badar and Priest (1982) 

reported strength data measured in GPA for single carbon fibre and impregnated 1000 carbon fibre tows. Single fibres were 

tested at gauge lengths of 10, 20 and 50 mm. Impregnated tows of 1000 fibres were tested at gauge lengths of 20, 50, 150 and 

300 mm. The transformed data sets that were considered by Raqab and Kundu (2005) are used here. Table 4, data set 1 (of size 

69) and table 5, data set 2 (of size 63) correspond to single fibre with 20 mm and 10 mm of gauge length, respectively. 
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Table 4: Data set 1 

0.031 0.314 0.479 0.552 0.700 0.803 0.861 0.865 0.944 0.958 

0.966 0.977 1.006 1.021 1.027 1.055 1.063 1.098 1.140 1.179 

1.224 1.240 1.253 1.270 1.272 1.274 1.301 1.301 1.359 1.382 

1.382 1.426 1.434 1.435 1.478 1.490 1.511 1.514 1.535 1.554 

1.566 1.570 1.586 1.629 1.633 1.642 1.648 1.684 1.697 1.726 

1.770 1.773 1.800 1.809 1.818 1.821 1.848 1.880 1.954 2.012 

2.067 2.084 2.090 2.096 2.128 2.233 2.433 2.585 2.585   

 

Table 5: Data set 2 

0.101 0.332 0.403 0.428 0.457 0.55 0.561 0.596 0.597 0.645 

0.954 0.674 0.718 0.722 0.725 0.732 0.775 0.814 0.816 0.818 

0.824 0.859 0.875 0.938 0.94 1.056 1.117 1.128 1.137 1.137 

1.177 1.196 1.23 1.325 1.339 1.345 1.42 1.423 1.435 1.443 

1.464 1.472 1.494 1.532 1.546 1.577 1.608 1.635 1.693 1.701 

1.737 1.754 1.762 1.828 2.052 2.071 2.086 2.171 2.224 2.227 

2.425 2.595 3.22               

 

Fig. 4 and fig. 5, provides a graphical overview of the fitted distributions to a data given in table 4 and table 5. It is evident 

graphically, that WQLD is providing a better and close fit to the data sets. In order to compare the two models using the AIC 

(Akaike information criterion) given by Akaike (1976), AICC (corrected Akaike information criterion) and BIC (Bayesian 

information criterion) given by Schwarz (1987). The better distribution corresponds to lesser AIC, AICC and BIC values.  

        AIC = 2k-2logL         AICC = AIC+
1

)1(2





kn

kk
 and BIC = k logn-2logL 

where k is the number of parameters in the statistical model, n is the sample size and -logL is the maximized value of the log-

likelihood function under the considered model.  

 From table 6 and table 7, it is observed that Weighted Quasi Lindley distribution have the lesser AIC, AICC, -logL and BIC 

values as compared to Quasi Lindley distribution, which witness that WQLD fits better than QLD for data given in table 4 and 

table 5. In case of data set 1, Kolmogorov Smirnov p-value is greater than 0.05 for both WQLD and QLD but favors WQLD as 

it has greater p-value as compared to QLD. In case of data set 2, QLD has non-significant p-value, hence does not fit 

statistically to the data set II but WQLD has Kolmogorov Smirnov p-value greater than 0.05. Hence we can conclude that the 

weighted Quasi Lindley distribution leads to a better fit than the Quasi Lindley distribution.  

 

Table 6: ML estimates, -logL, AIC, AICC, BIC, KS-distance, KS p-values for fitted WQAD and QAD for data set 1. 

 

 

 

 

 

 

 

Distribution Weighted Quasi Lindley  Quasi Lindley 

-logL 56.37293 62.239 

AIC 118.74585 128.478 

AICC 119.15263 128.8848 

BIC 125.17526 132.7643 

KS-Distance 0.082484 0.13975 

P-value 0.7847 0.1706 

ML Estimates 
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Table 7: ML estimates, -logL, AIC, AICC, BIC, KS-distance, KS p-values for fitted WQAD and QAD for data set 2. 

 

 

 

 

 

 

 

 

 

Fig.4: Weighted Quasi Lindley Distribution Fitting in comparison with Quasi Lindley Distribution
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-logL 62.1195 75.0097 

AIC 130.2390 154.0195 

AICC 130.6083 154.3887 
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P-value 0.233 0.00018 
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X. CONCLUSION 

 

A new generalization of the Quasi Lindley distribution called the Weighted Quasi Lindley distribution has been 

introduced. The subject distribution is generated by using the weighting technique and taking the two parameter Quasi Lindley 

distribution as the base distribution. Some statistical properties along with reliability measures are discussed. Model is 

examined with two real life data sets for significance purpose. 
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