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Abstract- A class of super-efficient estimators of the variance of a normal population with known mean has been recently 

constructed by Sivasakthi, Durairajan, and William (2017) through the ‘Delta Method’. The preference for a super-efficient 

estimator over the asymptotically efficient estimator (say, maximum likelihood estimator) is for ‘large samples’. In this paper, 

we address the super-efficient estimation of the normal variance when the population mean is known. The issue that is taken up 

in this paper is on the sample size required for a super-efficient estimator to be preferred over the maximum likelihood 

estimator and is addressed through a numerical study. The answer is sought for a subset of the class of super-efficient 

estimators of the normal variance. 
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I.  INTRODUCTION 
 

The concept of ‘Super-Efficient Estimator’ was brought about in an unpublished work of Hodges (1951). This was followed up 

with theoretical developments by Basu (1952), Le Cam (1953, 1956, 1960, 1972) and Stein (1956). With such developments, a 

few interesting articles on super-efficiency were authored by Bahadur (1983), Sethuraman (2004) and Durairajan (2012). These 

investigations on super-efficiency have been quite interesting but have happened at a slow pace and, further, there has been no 

systematic approaches towards constructing super-efficient estimators. Recently, Sivasakthi, Durairajan, and William (2017) 

considered the construction of the same using the ‘Delta Method' of asymptotic inference theory and applied it to an estimation 

of the normal variance besides other examples. 

 

The property of super-efficiency is asymptotic and a super-efficient estimator (SEE) is expected to perform favorably over the 

asymptotically efficient estimator / maximum likelihood estimator for adequately large samples. In a practical situation, the 

question is on the sample size required to prefer an SEE over the asymptotic-efficient estimator / maximum likelihood 

estimator. This question has not been addressed until the recent past, but an interesting work on sample size required for 

preferring the SEEs over the MLE to estimate the normal mean has been carried out by Sivasakthi, Sakthivel, and William 

(2017). In the same spirit, the present work aims at addressing the same question for estimating the normal variance. Algebraic 

closed-form expressions are not available for the ‘Mean-Square Error’ or ‘Variance’ of super-efficient estimators and so, 

comparisons ought to be carried out numerically.  

 

In Sivasakthi, Durairajan, and William (2017), the super-efficient estimation of the variance of a normal population with zero 

mean, N(0, θ), was considered as one of the applications of the ‘Delta Method’ of deriving super-efficient estimators. For this 

situation, a class of super-efficient estimators was constructed, with super-efficiency at θ= 1. But, the question on the sample 

size required for the SEE to overtake the MLE remains unanswered.  

 

In the present paper, the answer to the question on sample size needed to prefer the SEE against the MLE is obtained through a 

numerical study. As SEE’s are only asymptotically unbiased, the comparison is through the mean-square errors instead of 

variances of the estimators. For larger sample sizes, the mean-square error is approximately equal to variance owing to 

asymptotic unbiasedness.  

 

http://www.isroset.org/
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This paper has five sections including the present introductory section. Section 2 reviews the class of super-efficient estimators 

under consideration. Section 3 provides the theoretical results concerning the mean-square error and bias of the SEE’s for small 

sample situation. In Section 4, the same results for large sample situation are derived. Section 5 presents the results of the 

numerical work carried out to compare the mean-square errors of the SEE's with the variance of the MLE. Finally, Section 6 

contains concluding remarks with recommendations on the sample sizes needed for the preferential use of the class of SEE’s 

over the MLE of the variance. 

 

II. A CLASS OF SUPER-EFFICIENT ESTIMATORS OF THE NORMAL VARIANCE 

 

In a recent work, Sivasakthi, Durairajan, and William (2017) applied the ‘Delta Method’ to obtain super-efficient estimators for 

the variance of a normal distribution whose mean is known, assumed to be zero without loss of generality, viz N(0, θ), 0 . 

The class of super-efficient estimators considered in that paper is  
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2 /  is the MLE of θ and d is any known number in the interval (0, 1).  

This class is obtained by choosing the function g(θ) =
d on the parameter space, where d is any known number with 0<d< 1. 

The estimators in this class are super-efficient at θ= 1. This class is interesting because when the estimator S
2
 is closer to 1, 

which occurs with higher likelihood when the true variance is unity or close to unity, the SEE ‘improves’ the estimate by 

moving closer to unity by raising it to a power between 0 and 1. Hence, there is a rationale in considering the class (2.1). The 

use of an SEE from the class rather than the MLE is logically appealing for ‘large’ samples. The question we address in the 

subsequent sections of this paper is: how large should the sample be to prefer an SEE from the class (2.1) over the MLE? The 

answer is got through numerical methods by deriving the required theoretical expressions in Sections 3 and 4.  

 

III. SOME THEORETICAL RESULTS 

In this section, we provide some theoretical results on the class of S.E.E.’s )(dn
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 to derive expressions for the Mean Square 
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3.2 Mean-Square Error of SEE’s 
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Using (3.6) and (3.7) in (3.5) we get  )(
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3.3  Gain in preferring the SEE’s over the MLE 
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Non-negative values of the Gain function indicate the higher performance of the SEE over the MLE and we seek to know the 

values of ‘n’ for which this occurs. 

 

IV.  RESULTS USING THE NORMAL APPROXIMATION TO GAMMA 
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V. NUMERICAL INVESTIGATION OF THE PERFORMANCE OF S.E.E. OVER M.L.E. 
 

As observed in Sections 3 and 4, there is no closed algebraic expression for  )(θ dGain n


and the solution to the question on 

the sample sizes required to prefer the SEE cannot be resolved mathematically but only numerically. Also, the class of SEEs in 

(2.1) is infinitely large and therefore, we consider a subset of the class by choosing d = 0.1 (0.1) 0.9 and carry out the 

numerical study. For the problem of estimating the normal mean with known variance, Sivasakthi, Sakthivel, and William 

(2017) carried out a similar numerical investigation for comparing the performance of a class SEE’s with that of the MLE and 

we refer the reader to that paper for further details.   

As stated earlier, the comparison of the SEE’s )(dn


with the (asymptotic) efficient estimator [namely, the MLE, S
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 = 


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2 /  ] is through the ‘Gain Function’ given in (3.9) for the small sample case and (4.8) for a large sample case. We wish 

to know the values of ‘n' for which this Gain Function is non-negative. In addition to the gain function, the Bias in )(dn


is of 

interest as the SEE’s are not exactly unbiased but only asymptotically. Hence, in this section, we present the Mean Square 

Error, Bias and the Gain in )(dn


. 

We compute the Mean Square Error, Bias and Gain for a wide choice of sample sizes and a wide range of θ values but for the 

economy of space, we report the results for θ = 0.1, 0.5, 0.9, 1.0,1.5, 2.0, 3.0, 5.0,10.0 corresponding to d = 0.5 only. The 

sample sizes ‘n’ for which the  SEE is gainful over the MLE are indicated with shaded cells in the Tables 5.1 to 5.9. We then 

give an abridged Table 5.10 for the d = 0.1 (0.1) 0.9, indicating the sample sizes for which the SEE’s are preferable over the 

MLE corresponding to the range of θ values considered. We round off the results to five decimal places. 

θ = 0.1 Table 5.1 d = 0.5 
 

θ = 0.5 Table 5.2 d = 0.5 
 

θ = 0.9 Table 5.1 d = 0.5 

n MSE Bias Gain 
 

n MSE Bias Gain 
 

n MSE Bias Gain 

2 0.03720 0.04934 -0.02720 
 

2 0.21927 0.09764 0.03073 
 

2 0.70400 0.05368 0.10600 

3 0.01726 0.01596 -0.01059 
 

3 0.15727 0.09501 0.00939 
 

3 0.45340 0.04540 0.08660 

4 0.00846 0.00470 -0.00346 
 

4 0.12807 0.09381 -0.00307 
 

4 0.32973 0.04114 0.07527 

5 0.00500 0.00127 -0.00100 
 

5 0.11112 0.09258 -0.01112 
 

5 0.25656 0.03856 0.06744 

6 0.00360 0.00032 -0.00027 
 

6 0.09987 0.09109 -0.01653 
 

6 0.20845 0.03688 0.06155 

7 0.00292 0.00008 -0.00007 
 

7 0.09168 0.08932 -0.02025 
 

7 0.17456 0.03572 0.05686 

8 0.00252 0.00002 -0.00002 
 

8 0.08531 0.08733 -0.02281 
 

8 0.14949 0.03492 0.05301 

9 0.00223 0 0 
 

9 0.08011 0.08517 -0.02456 
 

9 0.13024 0.03435 0.04976 

10 0.00200 0 0 
 

10 0.07571 0.08289 -0.02571 
 

10 0.11505 0.03395 0.04695 

20 0.00100 0 0 
 

20 0.04935 0.05913 -0.02435 
 

20 0.05021 0.03357 0.03079 

30 0.00067 0 0 
 

30 0.03456 0.03960 -0.01790 
 

30 0.03095 0.03482 0.02305 

40 0.00050 0 0 
 

40 0.02469 0.02555 -0.01219 
 

40 0.02219 0.03615 0.01831 

50 0.00040 0 0 
 

50 0.01795 0.01602 -0.00795 
 

50 0.01734 0.03733 0.01506 

60 0.00033 0 0 
 

60 0.01334 0.00980 -0.00501 
 

60 0.01432 0.03834 0.01268 

70 0.00029 0 0 
 

70 0.01022 0.00587 -0.00308 
 

70 0.01228 0.03920 0.01086 

80 0.00025 0 0 
 

80 0.00810 0.00345 -0.00185 
 

80 0.01082 0.03993 0.00943 

90 0.00022 0 0 
 

90 0.00664 0.00199 -0.00109 
 

90 0.00974 0.04055 0.00826 

100 0.00020 0 0 
 

100 0.00563 0.00113 -0.00063 
 

100 0.00889 0.04109 0.00731 

200 0.00010 0 0 
 

200 0.00250 0 0 
 

200 0.00543 0.04397 0.00267 
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300 0.00007 0 0 
 

300 0.00167 0 0 
 

300 -0.08339 0.04441 0.08879 

400 0.00005 0 0 
 

400 0.00125 0 0 
 

400 -0.08405 0.04509 0.08810 

500 0.00004 0 0 
 

500 0.00100 0 0 
 

500 -0.08441 0.04548 0.08765 

600 0.00003 0 0 
 

600 0.00083 0 0 
 

600 -0.08462 0.04572 0.08732 

700 0.00003 0 0 
 

700 0.00071 0 0 
 

700 -0.08475 0.04586 0.08706 

800 0.00003 0 0 
 

800 0.00063 0 0 
 

800 -0.08481 0.04595 0.08683 

900 0.00002 0 0 
 

900 0.00056 0 0 
 

900 -0.08483 0.04600 0.08663 

1000 0.00002 0 0 
 

1000 0.00050 0 0 
 

1000 -0.08482 0.04602 0.08644 

2000 0.00001 0 0 
 

2000 0.00025 0 0 
 

2000 -0.08384 0.04542 0.08465 

3000 0.00001 0 0 
 

3000 0.00017 0 0 
 

3000 -0.08180 0.04404 0.08234 

4000 0.00001 0 0 
 

4000 0.00013 0 0 
 

4000 -0.07880 0.04208 0.07921 

5000 0 0 0 
 

5000 0.00010 0 0 
 

5000 -0.07481 0.03956 0.07513 

6000 0 0 0 
 

6000 0.00008 0 0 
 

6000 -0.06986 0.03655 0.07013 

7000 0 0 0 
 

7000 0.00007 0 0 
 

7000 -0.06408 0.03315 0.06431 

8000 0 0 0 
 

8000 0.00006 0 0 
 

8000 -0.05767 0.02947 0.05787 

9000 0 0 0 
 

9000 0.00006 0 0 
 

9000 -0.05087 0.02569 0.05105 

10000 0 0 0 
 

10000 0.00005 0 0 
 

10000 -0.04396 0.02193 0.04412 

20000 0 0 0 
 

20000 0.00003 0 0 
 

20000 -0.00334 0.00152 0.00343 

30000 0 0 0 
 

30000 0.00002 0 0 
 

30000 0.00001 0.00002 0.00005 

40000 0 0 0 
 

40000 0.00001 0 0 
 

40000 0.00004 0 0 

50000 0 0 0 
 

50000 0.00001 0 0 
 

50000 0.00003 0 0 

60000 0 0 0 
 

60000 0.00001 0 0 
 

60000 0.00003 0 0 

70000 0 0 0 
 

70000 0.00001 0 0 
 

70000 0.00002 0 0 

80000 0 0 0 
 

80000 0.00001 0 0 
 

80000 0.00002 0 0 

90000 0 0 0 
 

90000 0.00001 0 0 
 

90000 0.00002 0 0 

100000 0 0 0 
 

100000 0.00001 0 0 
 

100000 0.00002 0 0 

 
 
 

θ = 1 Table 5.4 d = 0.5 
 

θ = 1.5 Table 5.5 d = 0.5 
 

θ = 2 Table 5.6 d = 0.5 

n MSE Bias Gain 
 

n MSE Bias Gain 
 

n MSE Bias Gain 

2 0.88658 0.04587 0.11342 
 

2 2.13125 0.02112 0.11875 
 

2 3.89642 0.00952 0.10358 

3 0.57396 0.03567 0.09271 
 

3 1.41632 0.00613 0.08368 
 

3 2.61321 -0.00546 0.05345 

4 0.41925 0.02976 0.08075 
 

4 1.06249 -0.00356 0.06251 
 

4 1.97581 -0.01433 0.02419 

5 0.32743 0.02572 0.07257 
 

5 0.85227 -0.01063 0.04773 
 

5 1.59500 -0.02007 0.00500 

6 0.26687 0.02273 0.06646 
 

6 0.71337 -0.01610 0.03663 
 

6 1.34158 -0.02389 -0.00825 

7 0.22406 0.02039 0.06165 
 

7 0.61494 -0.02047 0.02791 
 

7 1.16050 -0.02644 -0.01764 

8 0.19228 0.01849 0.05772 
 

8 0.54163 -0.02405 0.02087 
 

8 1.02437 -0.02809 -0.02437 

9 0.16780 0.01691 0.05442 
 

9 0.48495 -0.02703 0.01505 
 

9 0.91808 -0.02908 -0.02919 

10 0.14840 0.01557 0.05160 
 

10 0.43983 -0.02954 0.01017 
 

10 0.83259 -0.02960 -0.03259 

20 0.06438 0.00833 0.03562 
 

20 0.23870 -0.04103 -0.01370 
 

20 0.43482 -0.02425 -0.03482 

30 0.03858 0.00525 0.02809 
 

30 0.17056 -0.04250 -0.02056 
 

30 0.29104 -0.01611 -0.02437 

40 0.02654 0.00353 0.02346 
 

40 0.13474 -0.04077 -0.02224 
 

40 0.21561 -0.01010 -0.01561 

50 0.01975 0.00245 0.02025 
 

50 0.11189 -0.03783 -0.02189 
 

50 0.16965 -0.00617 -0.00965 
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60 0.01546 0.00172 0.01787 
 

60 0.09566 -0.03450 -0.02066 
 

60 0.13918 -0.00371 -0.00585 

70 0.01256 0.00120 0.01602 
 

70 0.08336 -0.03112 -0.01907 
 

70 0.11778 -0.00220 -0.00350 

80 0.01047 0.00082 0.01453 
 

80 0.07362 -0.02787 -0.01737 
 

80 0.10207 -0.00130 -0.00207 

90 0.00892 0.00053 0.01330 
 

90 0.06567 -0.02482 -0.01567 
 

90 0.09011 -0.00076 -0.00122 

100 0.00773 0.00031 0.01227 
 

100 0.05904 -0.02202 -0.01404 
 

100 0.08071 -0.00044 -0.00071 

200 0.00308 -0.00044 0.00692 
 

200 0.02645 -0.00587 -0.00395 
 

200 0.04000 0 0 

300 0.00185 -0.00081 0.00482 
 

300 0.02637 -0.00174 -0.01137 
 

300 0.02667 0 0 

400 0.00133 -0.00062 0.00367 
 

400 0.01430 -0.00046 -0.00305 
 

400 0.02000 0 0 

500 0.00104 -0.00050 0.00296 
 

500 0.00978 -0.00011 -0.00078 
 

500 0.01600 0 0 

600 0.00085 -0.00042 0.00248 
 

600 0.00769 -0.00003 -0.00019 
 

600 0.01333 0 0 

700 0.00073 -0.00036 0.00213 
 

700 0.00647 -0.00001 -0.00005 
 

700 0.01143 0 0 

800 0.00063 -0.00031 0.00187 
 

800 0.00564 0 -0.00001 
 

800 0.01000 0 0 

900 0.00056 -0.00028 0.00166 
 

900 0.00500 0 0 
 

900 0.00889 0 0 

1000 0.00050 -0.00025 0.00150 
 

1000 0.00450 0 0 
 

1000 0.00800 0 0 

2000 0.00025 -0.00013 0.00075 
 

2000 0.00225 0 0 
 

2000 0.00400 0 0 

3000 0.00017 -0.00008 0.00050 
 

3000 0.00150 0 0 
 

3000 0.00267 0 0 

4000 0.00013 -0.00006 0.00037 
 

4000 0.00113 0 0 
 

4000 0.00200 0 0 

5000 0.00010 -0.00005 0.00030 
 

5000 0.00090 0 0 
 

5000 0.00160 0 0 

6000 0.00008 -0.00004 0.00025 
 

6000 0.00075 0 0 
 

6000 0.00133 0 0 

7000 0.00007 -0.00004 0.00021 
 

7000 0.00064 0 0 
 

7000 0.00114 0 0 

8000 0.00006 -0.00003 0.00019 
 

8000 0.00056 0 0 
 

8000 0.00100 0 0 

9000 0.00006 -0.00003 0.00017 
 

9000 0.00050 0 0 
 

9000 0.00089 0 0 

10000 0.00005 -0.00003 0.00015 
 

10000 0.00045 0 0 
 

10000 0.00080 0 0 

20000 0.00003 -0.00001 0.00007 
 

20000 0.00023 0 0 
 

20000 0.00040 0 0 

30000 0.00002 -0.00001 0.00005 
 

30000 0.00015 0 0 
 

30000 0.00027 0 0 

40000 0.00001 -0.00001 0.00004 
 

40000 0.00011 0 0 
 

40000 0.00020 0 0 

50000 0.00001 -0.00001 0.00003 
 

50000 0.00009 0 0 
 

50000 0.00016 0 0 

60000 0.00001 0 0.00002 
 

60000 0.00008 0 0 
 

60000 0.00013 0 0 

70000 0.00001 0 0.00002 
 

70000 0.00006 0 0 
 

70000 0.00011 0 0 

80000 0.00001 0 0.00002 
 

80000 0.00006 0 0 
 

80000 0.00010 0 0 

90000 0.00001 0 0.00002 
 

90000 0.00005 0 0 
 

90000 0.00009 0 0 

100000 0.00001 0 0.00001 
 

100000 0.00005 0 0 
 

100000 0.00008 0 0 

 

θ = 3 Table 5.7 d = 0.5 
 

θ = 5 Table 5.8 d = 0.5 
 

θ = 10 Table 5.9 d = 0.5 

n MSE Bias Gain 
 

n MSE Bias Gain 
 

n MSE Bias Gain 

2 8.93284 0.00034 0.06716 
 

2 24.98450 -0.00369 0.01550 
 

2 100.04123 -0.00368 -0.04123 

3 5.99949 -0.01130 0.00051 
 

3 16.71931 -0.00991 -0.05264 
 

3 66.74876 -0.00519 -0.08209 

4 4.53097 -0.01635 -0.03097 
 

4 12.56819 -0.01067 -0.06819 
 

4 50.06622 -0.00399 -0.06622 

5 3.64610 -0.01829 -0.04610 
 

5 10.06528 -0.00961 -0.06528 
 

5 40.04476 -0.00265 -0.04476 

6 3.05250 -0.01859 -0.05250 
 

6 8.38955 -0.00803 -0.05622 
 

6 33.36146 -0.00165 -0.02812 

7 2.62542 -0.01799 -0.05400 
 

7 7.18882 -0.00645 -0.04597 
 

7 28.58843 -0.00099 -0.01700 

8 2.30270 -0.01691 -0.05270 
 

8 6.28647 -0.00506 -0.03647 
 

8 25.01005 -0.00058 -0.01005 
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9 2.04986 -0.01560 -0.04986 
 

9 5.58394 -0.00391 -0.02838 
 

9 22.22807 -0.00034 -0.00585 

10 1.84623 -0.01421 -0.04623 
 

10 5.02180 -0.00298 -0.02180 
 

10 20.00337 -0.00019 -0.00337 

20 0.91441 -0.00417 -0.01441 
 

20 2.50117 -0.00016 -0.00117 
 

20 10.00001 0 -0.00001 

30 0.60363 -0.00104 -0.00363 
 

30 1.66672 -0.00001 -0.00005 
 

30 6.66667 0 0 

40 0.45086 -0.00024 -0.00086 
 

40 1.25000 0 0 
 

40 5.00000 0 0 

50 0.36020 -0.00006 -0.00020 
 

50 1.00000 0 0 
 

50 4.00000 0 0 

60 0.30004 -0.00001 -0.00004 
 

60 0.83333 0 0 
 

60 3.33333 0 0 

70 0.25715 0 -0.00001 
 

70 0.71429 0 0 
 

70 2.85714 0 0 

80 0.22500 0 0 
 

80 0.62500 0 0 
 

80 2.50000 0 0 

90 0.20000 0 0 
 

90 0.55556 0 0 
 

90 2.22222 0 0 

100 0.18000 0 0 
 

100 0.50000 0 0 
 

100 2.00000 0 0 

200 0.09000 0 0 
 

200 0.25000 0 0 
 

200 1.00000 0 0 

300 0.06000 0 0 
 

300 0.16667 0 0 
 

300 0.66667 0 0 

400 0.04500 0 0 
 

400 0.12500 0 0 
 

400 0.50000 0 0 

500 0.03600 0 0 
 

500 0.10000 0 0 
 

500 0.40000 0 0 

600 0.03000 0 0 
 

600 0.08333 0 0 
 

600 0.33333 0 0 

700 0.02571 0 0 
 

700 0.07143 0 0 
 

700 0.28571 0 0 

800 0.02250 0 0 
 

800 0.06250 0 0 
 

800 0.25000 0 0 

900 0.02000 0 0 
 

900 0.05556 0 0 
 

900 0.22222 0 0 

1000 0.01800 0 0 
 

1000 0.05000 0 0 
 

1000 0.20000 0 0 

2000 0.00900 0 0 
 

2000 0.02500 0 0 
 

2000 0.10000 0 0 

3000 0.00600 0 0 
 

3000 0.01667 0 0 
 

3000 0.06667 0 0 

4000 0.00450 0 0 
 

4000 0.01250 0 0 
 

4000 0.05000 0 0 

5000 0.00360 0 0 
 

5000 0.01000 0 0 
 

5000 0.04000 0 0 

6000 0.00300 0 0 
 

6000 0.00833 0 0 
 

6000 0.03333 0 0 

7000 0.00257 0 0 
 

7000 0.00714 0 0 
 

7000 0.02857 0 0 

8000 0.00225 0 0 
 

8000 0.00625 0 0 
 

8000 0.02500 0 0 

9000 0.00200 0 0 
 

9000 0.00556 0 0 
 

9000 0.02222 0 0 

10000 0.00180 0 0 
 

10000 0.00500 0 0 
 

10000 0.02000 0 0 

20000 0.00090 0 0 
 

20000 0.00250 0 0 
 

20000 0.01000 0 0 

30000 0.00060 0 0 
 

30000 0.00167 0 0 
 

30000 0.00667 0 0 

40000 0.00045 0 0 
 

40000 0.00125 0 0 
 

40000 0.00500 0 0 

50000 0.00036 0 0 
 

50000 0.00100 0 0 
 

50000 0.00400 0 0 

60000 0.00030 0 0 
 

60000 0.00083 0 0 
 

60000 0.00333 0 0 

70000 0.00026 0 0 
 

70000 0.00071 0 0 
 

70000 0.00286 0 0 

80000 0.00023 0 0 
 

80000 0.00063 0 0 
 

80000 0.00250 0 0 

90000 0.00020 0 0 
 

90000 0.00056 0 0 
 

90000 0.00222 0 0 

100000 0.00018 0 0 
 

100000 0.00050 0 0 
 

100000 0.00200 0 0 

It is interesting to observe the performance of )(dn


over the MLE for small sizes also, especially for θ near 1 and away from 

1, since the class )(dn


itself is constructed with super-efficiency at θ = 1. 
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Table 5.10 

   

Suitable Range of Sample Sizes (n) to 

prefer )(dn


 

   
θ d = 0.9 d = 0.8 d = 0.7 d = 0.6 d = 0.5 d = 0.4 d = 0.3 d = 0.2 d = 0.1 

0.1 ≥ 7 ≥ 8 ≥ 8 ≥ 8 ≥ 8 ≥ 8 ≥ 8 ≥ 8 ≥ 8 

0.2 ≥ 20 ≥ 20 ≥ 20 ≥ 20 ≥ 20 ≥ 20 ≥ 20 ≥ 20 ≥ 20 

0.5 ≤ 6, ≥ 100 ≤ 6, ≥ 100 ≤ 4, ≥ 200 ≤ 4, ≥ 200 ≤ 3, ≥ 200 ≤ 3, ≥ 200 ≤ 2, ≥ 200 ≤ 2, ≥ 200 ≥ 200 

0.7 ≤ 30, ≥ 300 ≤ 30, ≥ 300 ≤ 20, ≥ 300 ≤ 20, ≥ 300 ≤ 10, ≥ 400 ≤ 10, ≥ 400 ≤ 10, ≥ 400 ≤ 10, ≥ 500 ≤ 8, ≥ 500 

0.9 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≤200, ≥400 ≤200, ≥400 

1 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 

1.1 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≤200, ≥400 ≤200, ≥400 

1.5 ≤ 10, ≥ 300 ≤ 10, ≥ 400 ≤ 10, ≥ 400 ≤ 10, ≥ 400 ≤ 10, ≥ 400 ≤ 10, ≥ 400 ≤ 10, ≥ 400 ≤ 10, ≥ 400 ≤ 10, ≥ 400 

2 ≤ 5, ≥ 100 ≤ 5, ≥ 200 ≤ 5, ≥ 200 ≤ 5, ≥ 200 ≤ 5, ≥ 200 ≤ 5, ≥ 200 ≤ 5, ≥ 200 ≤ 5, ≥ 200 ≤ 5, ≥ 200 

3 ≤ 2, ≥ 50 ≤ 2, ≥ 50 ≤ 2, ≥ 60 ≤ 2, ≥ 60 ≤ 2, ≥ 60 ≤ 2, ≥ 70 ≤ 3, ≥ 70 ≤ 3, ≥ 70 ≤ 3, ≥ 70 

5 ≥ 30 ≥ 30 ≥ 30 ≥ 30 ≥ 40 ≥ 40 ≥ 40 ≥ 40 ≥ 40 

8 ≥ 20 ≥ 30 ≥ 30 ≥ 30 ≥ 30 ≥ 30 ≥ 30 ≥ 30 ≥ 30 

10 ≥ 20 ≥ 20 ≥ 20 ≥ 20 ≥ 20 ≥ 20 ≥ 20 ≥ 20 ≥ 20 
 

VI. CONCLUDING REMARKS 

 

It is observed from the results given in Section 4 that, for values of θ not close to the point of super-efficiency, namely θ = 1, 

)(dn


performs well compared to the MLE, even for moderate sample sizes like 50 and above. This is true for d = 0.1 to 0.9 

taken at intervals of 0.1 difference. Actually, the performance of )(dn


and the MLE are very similar when the true θ shifts 

away from unity, because under such ‘large' shifts, the SEE and MLE would most likely be almost equal in value. This is 

behavior is natural because of the way in which the SEE's )(dn


 have been defined in (2.1).  

For values of θ closer to the point of super-efficiency (θ = 1) which are within 10% deviation from 1, we find that the SEE’s 

)(dn


perform quite well for any sample of size not less than two for ‘d’ ranging from 0.3 to 0.9. Even the other two choices 

namely d = 0.1 and 0.2, the SEE’s overtake the MLE for all sample sizes except possibly over the range 200 to 400. Even for 

other θ values, the sample size required to prefer the SEE's is not very huge as evident in Table 4.10. This is an encouraging 

phenomenon as an investigator does not need a very large sample even when the value of θ is ‘far away’ from the point of 

super-efficiency namely 1. The use of )(dn


instead of the MLE is thus found to be rewarding even for moderately large 

samples of size about 500. 

As a prospective application of using SEE’s, consider a manufacturing process with a normally distributed quality 

characteristic. Even when the process mean is in control, if the process dispersion is not in control, especially when there is an 

upward shift in the process dispersion parameter, it presents a case of inability to meet quality specifications.  A 10% to 50% 

upward deviation in the process variance from an existing long-term variance needs a sample of size exceeding 300 or 400 

depending on the choice of‘d'.  This is not too prohibitive a requirement.  

A study of the ‘bias' columns in Tables 4.1 to 4.9, shows that generally, the bias in )(dn


approaches zero as ‘n’ increases. 

We also note that, for smaller sample sizes for which the gain function is positive, the bias in the SEE’s are non-zero. That is, 

for smaller sample sizes, we get biased super-efficient estimators but with a lower mean-square error compared to that of the 

MLE.  

A closer examination of Table 4.10 brings out that the SEE )5.0(n


is preferable over the other SEE's considered in terms of 

the range of sample sizes wherein it overtakes the MLE and in its moderate ‘tuning' of the estimate of θ unlike other choices 

of‘d'. For instance, when the MLE turns out to be close to the super-efficiency point ‘1', which is where the SEE comes into 

play, the choice of d = 0.1 induces a ‘big' difference in the estimate and moves it too close to 1 while, d = 0.9 does not make 
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‘much' difference with the MLE and effectively presents a scenario where the MLE itself can be taken instead of the SEE. 

Thus, )5.0(n


 is recommended as the SEE preferable over the MLE and other SEE’s considered. 
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