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Abstract-  In this paper, we study the oscillatory behavior of second order non-linear impulsive neutral differential 

equations.  By using the generalized Ricatti transformation and the integral averaging technique, we obtained some new 

oscillation criteria. Examples are given to show how impulse perturbations greatly affect the oscillation behavior of the 

solutions. 
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I. Introduction 

 

We are concerned with the oscillation of second order nonlinear impulsive neutral differential equation of the form 

,
( ( ),  ( )- )   ( ) .   ( ( ))/                                                              
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    (  ) .    ( (  ))/      ,    )     

       ( ) 

where  ( )   ( )   ( ) ( ( ))  and  , ( )-|     (  )   (  ) in which  

 (  )          ( )   For convenience we define  ( )   (  )  

 

Throughout this paper we assume the following conditions to hold: 
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(  )     is a quotient of odd positive integers; 

(  ) *  + is a fixed strictly increasing unbounded sequence of positive real numbers and *  + is  a sequence of positive real 

numbers; 

(  )    (,    )     )   ( )                                                              

                   
 ( )

                         

 By a solution of equation (1) we mean a function  ( ) which is defined on ,    ) with       such that           
   (    ) and  ( ) satisfies the equation (1), where    (    ) denotes the set of all real-valued function  ( ) defined on 

   ,    ) such that  ( ) is continuous for all     except possibly at        where  (  
 ) exist and  (  )   (  

 )  
 

Oscillation theory is one of the directions which initiated the investigation of the qualitative properties of differential equations.  

This theory started with the classical works of Sturm and Kneser, and still attracts the attention of many mathematicians as 

much for the interesting results obtained as for their various applications. 

 

The attractiveness of the oscillation theory links rather strongly the occurrence of new objects to be investigated.  Such fast 

development can be observed in studying, the oscillatory properties of the impulsive differential equations.  The paper of K. 

Gopalsamy and B.  G. Zhang [4] is the first investigation on oscillatory properties of impulsive differential equations.  For 

further applications and questions concerning existence and uniqueness of solutions of impulsive differential equation, see for 

example [8] and the references cited there in. 
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Compared to equations without impulses, little has been known about the oscillation problem for impulsive differential 

equations due to difficulties caused by impulsive perturbation, see for example [1-3, 6, 7 ,13, 17-19] and the references cited 

therein. 

 

When  ( )         ( )         ( )    equation (1) reduces to the following second order nonlinear impulsive differential 

equation 

{
( ( ),  ( )- )   .   ( ( ))/                                                                  

 ( ( ),  ( )- )|    
    (    (  ))      ,    )        

 

 

which received a lot of attention in the literature.  The main objective of this paper is to establish oscillation for the second 

order nonlinear impulsive neutral differential equation (1).  By introducing the auxiliary function     ,    ) and a function 

  (   ) defined below, we establish some new oscillation criteria for equation (1) which complement the oscillation theory of 

impulsive differential equations.  Examples are provided to illustrate the main results. 

 

This paper is organized as follows. In Section 2 we prove our main Theorems. To illustrate our results, examples are provided 

in Section 3. 

II. MAIN RESULTS 

 

In this section, we obtain the oscillation criteria for the solutions of equation (1). 

Lemma 1 (16).  Let  ( )       
   

   where     and B are constants, α  is a quotient of odd positive integers.  Then g 

attains its maximum value on  , at 

   
    

  (   ) 
 

and 

   ( )  
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Theorem 1. Assume that the conditions (  )    (  ) hold.  If there exists a differentiable function  ( ) such that   ( )  
    ( )        and  
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+

                                                                       ( ) 
then the impulsive differential  equation (1) is oscillatory. 

 

Proof.  Suppose to the contrary that equation (1) has a non-oscillatory solution  ( )   Without loss of generality we may 

assume that  ( ) is positive, then there exist       sufficiently large such that  ( ( ))    and  ( ( ))     
In view of equation (1), we obtain 

( ( ),  ( )- )     ( )  ( ( ))               

which implies that ( ( ),  ( )- )  is non increasing on each interval (       )   If       then 

 (  
 ),  (  

 )-   (  
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 )-        (  ) 
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which means that   ( ),  ( )- |    
     Thus  ( ),  ( )-  is non increasing on ,    )   We may claim that   ( ) is 

eventually non negative.  In fact, if   (  )    for some        then 

 ( ),  ( )-   (  ),  (  )-                 
Integrating from    to t, we have 

 ( )   (  )  , (  )-
 

    (  )∫ , ( )-
  

 

 

  
                                                                           ( ) 

Taking limit as t→ ∞ and using the hypothesis (  ) in (3) we see that  ( ) must be eventually negative, a contradiction.  

Therefore, our claim is true. 

From (1) and using (  )   we have 

( ( ),  ( )- )     ( )  ( ( ))                                                                   ( ) 

since  ( )   ( )   ( ) ( ( ))  we have 

 ( )   ( )   ( ) ( ( ))   ( )                                                                              ( ) 
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From (4) and (5), we have 
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   By using, Lemma 2.2, we have 
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if we integrating (10) from    to t, then 
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Taking            we obtain  ( )     which contradicts with  ( ) is positive, then equation (1) is oscillatory. 

 Next, let us introduce the class of functions P defined as in [14, 15] which will be extensively used in the sequel. 

Let   *(   )      +   The function     (    ) is said to belong to the class P denoted  by      if  
( )    (   )                      
(  )  (   )                                    
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            (   )     

 

Theorem 2.  Assume conditions    to    hold.  If there exists a positive differentiable function  ( ) and a function     

such that 
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then the impulsive differential equation (1) is oscillatory. 
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Proof.  Let  ( ) be a non oscillatory solution of equation (1).  Proceeding as in the proof of Theorem 1, we have the following 
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Multiplying (14) by  (   )  we obtain 
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Integrating the last inequality from    to t, using the equation (12) and inequality (15), we obtain 
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From inequality (17) and the equation (18), we have 
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This limsup in (20), we obtain a contradiction with (13).  This completes the proof. 
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III. EXAMPLE 

 

Example 1   Consider the following second order impulsive type neutral differential equation 

{
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Since all conditions of Theorem 1 are satisfied, equation (21) is oscillatory. 

Example 2    Consider the following second order impulsive type neutral differential equation 

{
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So, by Theorem 1, every solution of equation (22) is oscillatory. 

The above example shows that the impulses play a very important role in the oscillatory behavior of equation under perturbing 

impulses. 
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