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Abstract— Let   be a subset of a Banach space   and   is normal and regular cone on  , we prove the existence of the fixed 

point for multi valued maps and φ–ψ- contractive mappings  in cone metric spaces via cone C class functions.  
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I.  INTRODUCTION  

In recent years, several authors (see [1-5]) have studied the strong convergence to a fixed point with contractive constant in 

cone metric spaces. Seong Hoon Cho and Mi sun Kim [5] have proved certain fixed point theorems by using Multivalued 

mapping in the setting of contractive constant in metric spaces. Note on     -cotractive type mappings and related fixed 

point are proved by Arslan Hojat Ansari [8]. Fixed point theorems of Multivalued mappings in Cone metric spaces proved by 

Dr.M.Marudai and Dr.R.Krishnakumar [1].  

 

II. PRELIMINARIES 

Definition 1.1: Let   be a Banach space and a subset,   of   is said to be a cone if it satisfies the following conditions 

(i)    and   is closed; 

(ii)                 and     are non-negative real numbers 

(iii)   (  )    

Given a cone    ,we define a  partial ordering   with respect to the cone   by     if and only if       .  If     
             , then it is denoted by    . The cone   is said to be Normal if a number     such that for all      , 

      implies ‖ ‖   ‖ ‖. The cone   is called regular if every increasing sequence which is bounded above is 

convergent and every decreasing sequence which is bounded below convergent. 

 

Definition 1.2 : Let   be a non-empty set, and suppose the mapping         is said to be a cone metric space if it 

satisfies 

(i)    (   )        and  (   )    if and only if     

(ii)  (   )   (   ) for all       

(iii)  (   )   (   )   (   ) for all         

Example 1.3: Let        {(   )         }     and         defined by 

 (   )  (|   |  |   |) 

Where     is a constant. Then (   ) is a cone metric space. 

Definition 1.4: Let (   ) be cone metric space,     and {  } a sequence in  . Then 

(i)  {  } converges to   whenever for every     with     there is a natural number   such that  (    )    for all 
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(ii)  {  } is a Cauchy sequence whenever for every     with     there is a natural number   such that  (     )    

for all      . 

 

Definition 1.5. Let (   ) is said to be a complete cone metric space, if every Cauchy sequence is convergent in   

 

Definition1.6: Let (   ) be a metric space. We denote   ( ) the family of nonempty closed bounded subset of  . Let  (   ) 

be the Hausdorff distance on   ( )  
That is, for       ( ) 

  (   )      {       (   )        (   )} 
Where  (   )      { (   )    } is the distance from the point   to the subset  . An element    is said to be a fixed 

point of a multi-valued mapping        if    ( ) 

 

Definition 1.7: A function       is called an altering distance function if the following properties are satisfied: 

(i)   is non-decreasing and continuous 

(ii)  ( )    if and only if     

 

Definition 1.8. : An ultra altering distance function is a continuous, non decreasing mapping       such that  ( )     

    and  ( )    

We denote this set with    

 

Definition 1.9.: A mapping         is called cone   class function if it is continuous and satisfies following axioms: 

(1)  (   )     

(2)  (   )    implies that either     or    ; for all       

We denote cone   class functions as   

Example 2.9 : The following functions        are elements of  , for all         ): 

(i)   (   )      

(ii)   (   )    , where      , 

(iii)   (   )    ( )   where       )      ), 

(iv)   (   )   ( ), where        ( )     ( )    for all     with     and  ( )    for all     

(v)   (   )     ( ), where       )      ) is a continuous function such that  ( )       ; 

(vi)   (   )     (   ), where        )      )      ) is a continuous function such that  (   )           for all 

      

(vii)   (   )   ( )  (   )       , here       )      ) is a upper semi continuous function such that  ( )    

and  ( )    for     

 

Lemma 1.10: Let   and   are altering distance and ultra altering distance functions respectively,     and {  } a decreasing 

sequence in   such that 

 (    )   ( (  )  (  ) ) 

For all    . Then    
   

     

III. MAIN RESULTS 

Theorem 2.1: Let (   ) be a complete cone metric space and the mapping       ( ) be multivalued map satisfying for 

each       

  ( (     ))   ( [   (    )   (    )]     (    )   (    )]] 

                                  (   (    )   (    )]     (    )   (    )])  for all       and     
 

 
,     [  

 

 
) .   and 

  are altering distance and ultra altering distance functions respectively,      such that  (   )   ( )   ( ).  Then   

has a fixed point in   

Proof: for every      and                         

  ( (       ))   ( (         )) 

            ( (   (      )   (          )]     (        )   (        )])   
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 (   (      )   (          )]     (        )   (        )] )) 

             ( (   (       )   (       )]     (     )   (         )])  
                     (   (       )   (       )]     (     )   (         )]) )  
             ( (   (       )   (       )]     (         )])  
                       (   (       )   (       )]     (         )]) ) 

            ( (   (       )   (       )]     (       )   (       )])  
                          (   (       )   (       )]     (       )   (       )]) ) 

           ( ((   )  (       )   (       )])  ((   )  (       )   (       )])) 

              ((   )  (       )   (       )])   

    (       )    (       )   where   
   

  (   )
 

   (       )     (     ) 

For     we have  

   (     )   (       )   (         )     (       ) 

                                   ] (     ) 

                    
  

(   )
 (     ) 

Let     be given, choose a natural number    such that   
  

(   )
 (     )    for all      this implies  (     )   . For 

      {  } is a Cauchy sequence in (   ) is a complete cone metric space, there exists     such that     . Choose a 

natural number    such that   (    )  
 (   )

 
 , for all     . Hence for      we have  (    )  

 (   )

 
 where 

       

  ( (    ))   ( (      )   (     )) 

                        ( (   (      )   (    )]     (     )   (     )]   (      ))  
 (   (      )   (    )]     (     )   (     )]   (      )) )  

                        ( (   (       )   (    )]     (     )   (      )]   (      )) 

  (   (       )   (    )]     (     )   (      )]   (      )) 

            ( (   (       )   (    )]     (     )   (    )   (      )]   (      ))  

                  (   (       )   (    )]     (     )   (    )   (      )]   (      )) 

           ( (  (       )    (    )    (     )    (    )    (      )   (      ))  
              (  (       )    (    )    (     )    (    )    (      )   (      )) ) 

          (  (       )    (    )    (     )    (    )    (      )   (      ) 

 (   ) (    )    (     )    (      )   (      ) 

                              (     )   (      )   (      ) 

      (    )  
  (     )  (      )  (      )]

(   )
  

     (    )  
 

 
 

 

 
 

 

 
 

   (    )    

For all        (    )  
 

 
 for all    , we get 

 

 
  (    )    and     we get 

 

 
    and   is closed  (    )  

  bu  (    )    

∴  (    )    and so     . 

 

Corollary 2.1:  Let (   ) be a complete cone metric space and the mapping       ( ) be multivalued map satisfying for 

each       

  ( (     ))   ( (   (    )   (    )])  (   (    )   (    )]) ) 

 for all       and   [  
 

 
).   and   are altering distance and ultra altering distance functions respectively,      such that 

 (   )   ( )   ( ).   Then   has a fixed point in   

Proof: The proof of the corollary immediately follows by putting     in the previous theorem. 

 

Theorem 2.2: Let (   ) be a complete cone metric space and the mapping       ( ) be multivalued map satisfy the 

condition 

 ( (     ))   ( (    { (   )  (    )  (    )})  (    { (   )  (    )  (    )}) ) 
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For all       and       ).   and   are altering distance and ultra altering distance functions respectively,      such that 

 (   )   ( )   ( ).   Then   has a fixed point in   

 

Proof: for  every      and    ,        and          

  ( (       ))   ( (         )) 

          ( (    { (       )  (      )  (          )})  (    { (       )  (      )  (          )})) 

           ( (    { (       )  (       )  (       )})  (    { (       )  (       )  (       )}) ) 

           ( (  (       ))  (  (       )) ) 

            (     ) 

 For     we have  

   (     )   (       )   (         )     (       ) 

                                   ] (     ) 

                    
  

(   )
 (     ) 

Let     be given, choose a natural number    such that   
  

(   )
 (     )    for all      this implies  (     )   . For 

      {  } is a Cauchy sequence in (   ) is a complete cone metric space, there exists     such that     . Choose a 

natural number    such that   (    )  
 

 
 , for all     . Hence for      we have  (    )  

 

 
  

  ( (    ))   ( (      )   (     )) 

                         ( (    { (    )  (      )  (    )}   (      ))  
                                (    { (    )  (      )  (    )}   (      )) )  
                          ( (    { (    )  (       )  (    )}   (      ))  
                                (    { (    )  (       )  (    )}   (      )) ) 

            ( (    { (    )  (    )   (      )  (    )}   (      ))  
                                    (    { (    )  (    )   (      )  (    )}   (      )) 

  (    )    

For all        (    )  
 

 
 for all    , we get 

 

 
  (    )    and     we get 

 

 
    and   is closed   (    )  

  bu  (    )    

∴  (    )    and so     . 

 

Corollary 2.2: Let (   ) be a complete cone metric space and the mapping       ( ) be multivalued map satisfy the 

condition 

                           (     )    (   )  
For all       and       ).   and   are altering distance and ultra altering distance functions respectively,      such that 

 (   )   ( )   ( ).    Then   has a fixed point in   

Proof: The proof of the corollary immediately follows by taking  (   )as maximum value in previous theorem. 

Note 2.3: We prove the above theorems in the setting of   is a normal cone with normal constant   

 

Theorem 2.4: Let (   ) be a complete cone metric space and    a normal cone with normal constant  . Suppose the mapping 

      ( ) be multivalued map satisfy the condition 

  ( (     ))   ( (    { (   )  (    )  (    )  (    )  (    )})  

 (    { (   )  (    )  (    )  (    )  (    )}) ) 

For all       and       ).   and   are altering distance and ultra altering distance functions respectively,      such that 

 (   )   ( )   ( ).   Then   has a fixed point in   

Proof: for  every      and    ,        and          

  ( (       ))   ( (         )) 

                 ( (    { (       )  (      )  (          )  (        )  (        )})  
                      (    { (       )  (      )  (          )  (        )  (        )}) ) 

                 ( (    { (       )  (       )  (       )  (     )  (         )})  
                         (    { (       )  (       )  (       )  (     )  (         )}) ) 

                ( (    { (       )  (       )  (         )})  
                       (    { (       )  (       )  (         )}) ) 

                 ( (    { (       )  (         )})  (    { (       )  (         )}) ) 
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                 (    { (       )  (         )} 
Case (i) If  (       )    (       ) then we get,  (       )     (     ) for     

   (     )   (       )   (         )     (       ) 

                                   ] (     ) 

                    
  

(   )
 (     ) 

We get ‖ (     )‖   
  

(   )
‖ (     ).   (     )    as      . Hence {  } is a Cauchy sequence. By the 

completeness of  , there is    . such that      as     

  ( (    ))   ( (      )   (     )) 

                     ( (    { (    )  (      )  (    )  (     )  (     )}   (      ))  
 (    { (    )  (      )  (    )  (     )  (     )}   (      )) ) 

                  ( (    { (    )  (       )  (    )  (     )  (      )}   (      ))  
 (    { (    )  (       )  (    )  (     )  (      )}   (      )) ) 

                  ( (  (    ))  (  (    )) ) 

 (    )   . Hence       

Case (ii)  (       )    (         ) then we get 

  (       )     (       )   (       )] 

                      
 

   
  (       )] 

                        (       )]             where    
 

   
   

For     

  (     )   (       )   (         )     (       ) 

                                   ] (     ) 

                    
  

(   )
 (     ) 

We get ‖ (     )‖   
  

(   )
‖ (     ).   (     )    as      . Hence {  } is a Cauchy sequence. By the 

completeness of  , there is    . such that      as     

  ( (    ))   ( (      )   (     )) 

                         ( (    { (    )  (      )  (    )  (     )  (     )}   (      ))  
                              (    { (    )  (      )  (    )  (     )  (     )}   (      )) ) 

                           ( (    { (    )  (       )  (    )  (     )  (      )}   (      ))  
                                 (    { (    )  (       )  (    )  (     )  (      )}   (      )) ) 

                           ( (  (    ))  (  (    )) ) 

 (    )   . Hence       

        (  (   ))   ( (     )) 

                             ( (    { (   )  (    )  (    )  (    )  (    )})  
                                   (    { (   )  (    )  (    )  (    )  (    )}) ) 

                              ( (    { (   )  (   )  (   )  (   )  (   )})  
                              (    { (   )  (   )  (   )  (   )  (   )}) ) 

                             ( (   (   )])  (   (   )])) 

                             (   (   )]) 

This is contradiction and hence   has a unique fixed point in   

 

Corollary 2.3: Let (   ) be a complete cone metric space and    a normal cone with normal constant  . Suppose the mapping 

      ( ) be multivalued map satisfy the condition 

 ( (     ))   ( (    { (   )  (    )  (    )})  (    { (   )  (    )  (    )})) 

For all       and       ).  ).   and   are altering distance and ultra altering distance functions respectively,      such 

that  (   )   ( )   ( ).   Then   has a fixed point in   

Proof: The proof of the corollary immediately follows since 

   { (   )  (    )  (    )}     { (   )  (    )  (    )  (    )  (    )} 
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