

International Journal of Scientific Research in \_\_\_\_\_\_ Mathematical and Statistical Sciences Vol.6, Issue.1, pp.234-236, February (2019) DOI: https://doi.org/10.26438/ijsrmss/v6i1.234236

E-ISSN: 2348-4519

# Solutions of Pell's Equation Involving Jarasandha Numbers

C.Saranya<sup>1\*</sup> and G.Janaki<sup>2</sup>

<sup>1,2</sup>Department of Mathematics, Cauvery College for Women, Tiruchirappalli, India

\*Corresponding Author: c.saranyavinoth@gmail.com

Available online at: www.isroset.org

Received: 19/Jan/2019, Accepted: 10/Feb/2019, Online: 28/Feb/2019

*Abstract*—We look for discovering non-trivial integer solutions to the pell's equation involving jarasandha numbers. Also, we acquire the recurrence relations among the solutions.

Keywords—Jarasandha numbers, Pell's equation, brahmagupta lemma.

# I. INTRODUCTION

Number theorists scrutinize the properties of integers. The initial phase in building a sparkly, new, mathematical theory, be that as it may, is making a hypothetical inquiry about number connections [1-3]. Pell's equation is a diophantine equation of the form  $x^2 = dy^2 + 1$  where *n* is a given positive non-square integer and integer solutions exists for *x* and *y*. Pell's equation is identified with a few other important subjects in mathematics. However, several different procedures are required to solve this equation [4&9].

In Indian epic Mahabharatha, we come across a person named 'jarasandha'. He had a boon that if he was split into 2 parts and thrown apart, the parts would rejoin and return to life. In the field of Mathematics, we have numbers exhibiting the same property as Jarasandha [5-8]. In this communication, we search for non-trivial integer solutions to the pell's equation involving jarasandha numbers. Further recurrence relations on the solutions are inferred.

### **II. METHODOLOGY**

This paper concerns with the pell's equation

$$y^2 = Dx^2 + J \tag{1}$$

where  $D = p^2 - 1$ , p > 1 and J is a jarasandha number.

The initial solution of (1) is  $(x_0, y_0)$  & given by

$$x_0 = \sqrt{J}; \quad y_0 = \sqrt{J(D+1)}$$

To find the other solutions of (1), consider the pell equation  $y^2 = Dx^2 + 1$  whose initial solution  $(\tilde{x}_s, \tilde{y}_s)$  is given by

$$\widetilde{x}_{s} = \frac{1}{2\sqrt{D}} g_{s}$$

$$\widetilde{y}_{s} = \frac{1}{2} f_{s}$$
where
$$f_{s} = (\sqrt{D+1} + \sqrt{D})^{s+1} + (\sqrt{D+1} - \sqrt{D})^{s+1}$$

$$g_{s} = (\sqrt{D+1} + \sqrt{D})^{s+1} - (\sqrt{D+1} - \sqrt{D})^{s+1}, \qquad s = 0, 1, 2...$$

Applying Brahmagupta's lemma between the solutions  $(x_0, y_0)$  and  $(\tilde{x}_s, \tilde{y}_s)$ , the sequence of non-zero distinct integer solutions to (1) are obtained as

$$x_{s} = \frac{1}{2\sqrt{D}} \left( \sqrt{JD} f_{s} + \sqrt{J(D+1)} g_{s} \right)$$
$$y_{s} = \frac{1}{2} \left( \sqrt{J(D+1)} f_{s} + \sqrt{JD} g_{s} \right)$$

and their recurrence relations are found to be

$$x_{s+2} - 2\sqrt{D+1} x_{s+1} + x_s = 0$$
  

$$y_{s+2} - 2\sqrt{D+1} y_{s+1} + y_s = 0, \qquad s = 0, 1, 2...$$

## III. RESULTS AND DISCUSSION

Some numerical examples for the choice of p & J satisfying the pell equation and their solutions are presented in the accompanying table:

Table.1

| S.No | р | J     | Pell equation         | Sequence of Integer solutions                                                                                                                    | Recurrence relation                                                |
|------|---|-------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1.   | 2 | 81    | $y^2 = 3x^2 + 81$     | $x_{s} = \frac{1}{2\sqrt{3}} \left( 9\sqrt{3}f_{s} + 18g_{s} \right)$ $y_{s} = \frac{1}{2} \left( 18f_{s} + 9\sqrt{3}g_{s} \right)$              | $x_{s+2} - 4 x_{s+1} + x_s = 0$<br>$y_{s+2} - 4 y_{s+1} + y_s = 0$ |
| 2.   | 2 | 2025  | $y^2 = 3x^2 + 2025$   | $x_{s} = \frac{1}{2\sqrt{3}} \left( 45\sqrt{3}f_{s} + 90g_{s} \right)$ $y_{s} = \frac{1}{2} \left( 90f_{s} + 45\sqrt{3}g_{s} \right)$            | $x_{s+2} - 4 x_{s+1} + x_s = 0$<br>$y_{s+2} - 4 y_{s+1} + y_s = 0$ |
| 3.   | 3 | 3025  | $y^2 = 8x^2 + 3025$   | $x_{s} = \frac{1}{2\sqrt{8}} \left( 55\sqrt{8}f_{s} + 110g_{s} \right)$ $y_{s} = \frac{1}{2} \left( 110f_{s} + 55\sqrt{8}g_{s} \right)$          | $x_{s+2} - 6x_{s+1} + x_s = 0$<br>$y_{s+2} - 6y_{s+1} + y_s = 0$   |
| 4.   | 4 | 9801  | $y^2 = 15x^2 + 9801$  | $x_{s} = \frac{1}{2\sqrt{15}} \left( 99\sqrt{15}f_{s} + 198g_{s} \right)$ $y_{s} = \frac{1}{2} \left( 198f_{s} + 99\sqrt{15}g_{s} \right)$       | $x_{s+2} - 8 x_{s+1} + x_s = 0$<br>$y_{s+2} - 8 y_{s+1} + y_s = 0$ |
| 5.   | 5 | 88209 | $y^2 = 24x^2 + 88209$ | $x_{s} = \frac{1}{2\sqrt{24}} \left( 297\sqrt{24} f_{s} + 594 g_{s} \right)$ $y_{s} = \frac{1}{2} \left( 594 f_{s} + 297\sqrt{24} g_{s} \right)$ | $x_{s+2} - 10 x_{s+1} + x_s = 0$ $y_{s+2} - 10 y_{s+1} + y_s = 0$  |

#### **IV. REMARKABLE NOTE:**

If we consider the equation  $y^2 = Dx^2 + m^2$  where  $D = p^2 - 1$ , p > 1 and  $m \in z$ , then initial solution is given by  $x_0 = m$ ;  $y_0 = m\sqrt{(D+1)}$  & applying brahmagupta's lemma, the sequence of non-zero distinct integer solutions are obtained as

$$x_{s} = \frac{m}{2\sqrt{D}} \left( \sqrt{D} f_{s} + \sqrt{(D+1)} g_{s} \right)$$
$$y_{s} = \frac{m}{2} \left( \sqrt{(D+1)} f_{s} + \sqrt{D} g_{s} \right)$$

and their recurrence relations are observed to be the equivalent as in the above case.

## V. CONCLUSION AND FUTURE SCOPE

In this paper, we have presented non-zero distinct integer solutions to the pell's equation involving jarasandha numbers. In such a way that, one may search for the solutions to the pell's equation with other suitable numbers.

## REFERENCES

- [1] R.D.Carmichael, "History of theory of numbers and diophantine analysis", Dover Publication, New york, 1959.
- [2] L.J.Mordell, "Diophantine Equations", Academic press, London, 1969.
- [3] T.Nagell, "Introduction to Number theory", Chelsea publishing company, Newyork, 1981.
- [4] H.W.Lenstra Jr, "Solving the pell equation", Notice of the American Mathematical society, Vol 49, No.2, Pp: 182-192. Feb 2002.
- [5] G.Janaki and C.Saranya, "Special Pairs of Pythagorean Triangles and Jarasandha Numbers", American International Journal of Research in Science, Technology, Engineering & Mathematics, issue-13, 118-120, Dec 2015-Feb 2016.
- [6] G.Janaki and C.Saranya, "Special Rectangles and Jarasandha Numbers", Bulletin of Mathematics and Statistics Research, vol-4, issue-2, 63-67, Apr-June 2016.
- [7] G.Janaki and C.Saranya, "Special Pairs of Rectangles and Jarasandha Numbers", Asian Journal of Science & Technology, vol-7, issue-5, 3015-3017, May 2016.
- [8] G.Janaki and C.Saranya, "Pythagorean Triangle with area/perimeter as a Jarasandha Number of orders 2 & 4", International Research Journal of Engineering and Technology, vol 3, issue 7, 1259-1264, July 2016.
- [9] S.Vidhya and G.Janaki, "An Integral solution of negative pell's equation involving two digit sphenic numbers", International Journal of computer sciences and engineering, vol 6, Issue 7, Pp: 444-445, July 2018.

## Int. J. Sci. Res. in Mathematical and Statistical Sciences

# AUTHORS PROFILE

**Ms. C. SARANYA** received the B.Sc., M.Sc., And M.Phil., degree in Mathematics from Bharathidasan University, Trichy, South India. Her ongoing research focusing on the subject of Number Theory.

**Dr. G. JANAKI** received the B.Sc., M.Sc and M.Phil., degree in Mathematics from Bharathidasan University, Trichy, South India. She completed her Ph.D., Degree from Bharathidasan University/National College. She has published many Papers in International and National level Journals. Her research area is Number Theory.