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Abstract– In this paper, we discuss some results on coupled common fixed point theorems of C – Class function on ordered S – 

metric spaces, which are study of generalisation of some existing results are given in form of corollaries. 
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I. INTRODUCTION  

 

In 2012, S. Sedghi et al. introduced the concept of S–metric spaces[14]. In 2013, Animesh Gupta discussed the cyclic 

contraction on S–metric spaces[5]. S. Sedghi et al. developed the concept of generalization of fixed point theorems in S–metric 

spaces[15], [16]. In 1984, M.S. Khan, M. Swalech and S. Sessa expanded the research of the metric fixed point theory to a new 

category by introducing a control function which they called an altering distance function[11]. A.H. Ansari introduced the 

notion of C class function [2], [3] and many authors discussed in common fixed point and S–metric space [1], [7], [10], [12]. 

In this Paper, we proved some Coupled common fixed point theorems using C – Class function on ordered S – metric spaces, 

which are study of generalisation of some existing results. 

 

The following definitions and properties will be needed in the sequel: 

 

Definition 1.1. [14] Let X be a nonempty set. An S–metric on X is a function ),0[: 3 XS that satisfies the following 

conditions for all Xazyx ,,, . 

(S1) 0),,( zyxS for all Xazyx ,,, with ,zyx 
 (S2) 0),,( zyxS if and only if ,zyx   

(S3) ),,(),,(),,(),,( azzSayySaxxSzyxS  for all Xazyx ,,, . 

The pair ),( SX is called an S–metric space. 

Example 1.2. [5] Let X be a non-empty set, d is ordinary metric space on X, then 

),(),(),,( zydzxdzyxS  is an S–metric on X. 

Lemma 1.3. [15] Let ),( SX be an S–metric space. Then we have ),,(),,( uvvSvuuS  . 

Definition 1.4. [16] Let ),( SX be an S–metric space. 

(1) A sequence }{ nu in X converges to u if and only if 0),,( uuuS nn
as n . That is, there  

exists Nn 0
such that for all  ),,(,0 uuuSnn nn

for each 0 . We denote this by uun
n




lim or 

0),,(lim 


uuuS nn
n

. 

http://www.isroset.org/
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(2) A sequence }{ nu in X is called a Cauchy sequence if 0),,( mnn uuuS as mn, . That is there exists 

Nn 0
such that for all ,, 0nmn  ),,( mnn uuuS for each 0 . 

(3) The S–metric space ),( SX is called complete if every Cauchy sequence is convergent. 

Lemma 1.5. [16] Let ),( SX be an S–metric space. If there exists sequence }{},{ nn yx such that xxn
n




lim and 

,lim yyn
n




then ),,(),,(lim yxxSyxxS nnn
n




. 

Lemma 1.6. [9] Let ),( SX be an S–metric space. Then 

),,,(),,(2),,( zyySyxxSzxxS 
 and 

),,,(),,(2),,( yzzSyxxSzxxS 
 for all Xzyx ,, . 

Definition 1.7. Let ),( X be partially ordered set. Then Xba , are called comparable if )( ba or )( ab holds. 

Definition 1.8. Let X be a nonempty set. Then ),,( SX is called an ordered S–metric space if: 

(1) ),( SX is an S–metric space, 

(2) ),( SX is a partially ordered set. 

Definition 1.9. [6] Let ),( X be partially ordered set and XXXH : . The mapping H is said to has the mixed 

monotone property if H is monotone non-decreasing in its first argument and is monotone non-increasing in its second 

argument, i.e., for any Xba , , 

),,(),(,, 212121 baHbaHaaXaa  
 ),(),(,, 212121 baHbaHbbXbb   . 

Definition 1.10. [8] Let ),( X be partially ordered set and suppose XXXH : and XXg : . The mapping 

H is said to has the mixed g–monotone property if His monotone g–non-decreasing in its first argument and is monotone g–

non-increasing in its second argument, i.e., for any Xba , , 

),,(),()()(,, 212121 baHbaHagagXaa  
 ),(),()()(,, 212121 baHbaHbgbgXbb   . 

Definition 1.11. [6] An element XXba ),( is called a coupled coincidence point of the mappings 

XXXF : and XXg : if gabaF ),( , gbabF ),( and their common coupled fixed point if 

agabaF ),( and bgbabF ),( . 

Definition 1.12. [13] Let X be a non-empty set. Then we say that the mappings XXXK : and XXg : are 

commutative if ),(),( gbgaKbagK  . 

Definition 1.13. [13] An element XXba ),( is called a coupled fixed point of mapping XXXK : if 

abaK ),( and babK ),( . 

Definition 1.14. Let ),( SX and ),( SX  be two S–metric spaces, and let ),(),(: SXSXf  be a function. Then f 

is said to be continuous at a point Xa if and only if for every sequence 
nx in X, 0),,( axxS nn

implies 

0))(),(),((  afxfxfS nn
. A function f is continuous at X if and only if it is continuous at all Xa . 

In the following lemma we see the relationship between a metric and an S–metric. 

Lemma 1.15. [4] Let ),( dX be a metric space. Then the following properties are satisfied: 

(1) ),(),(),,( zvdzudzvuS  for all Xzvu ,, is an S–metric on X; 

(2) uun  in },{ dX if and only if uun  in ),( dSX ; 

(3) }{ nu is Cauchy in },{ dX if and only if }{ nu is Cauchy in ),( dSX ; 

(4) },{ dX is complete if and only if ),( dSX is complete. 
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Definition 1.16. [2]A mapping ),0[),0[: 2 F is called C–Class function if it is 

continuous and satisfies following axioms: 

(1) stsF ),( ; 

(2) 0),( tsF implies that either 0s or 0t ; for all ),0[, ts . 

Note for some F we have that 0)0,0( F . 

We denote C–Class functions as C. 

Example 1.17. [2]The following functions RF  2),0[: are elements of C, for all ),0[, ts : 

(1) 0),(,),(  tstsFtstsF ; 

(2) 0),(,10,),(  sstsFmmstsF ; 

(3) 
 

0),(),,0(;
1

),( 


 sstsFr
t

s
tsF

r
or 0t ; 

(4) 0),(,1),1()log(),(  sstsFatattsF s
or 0t ; 

(5) 0)1,(,,2)1ln(),(  sssFeaatsF s
; 

(6) 
   0),(),,0(,1,)(),( 11   tstsFrlllstsF

r
t

; 

(7) 0),(,1,log),(   sstsFaastsF at
or 0t ; 

(8) 0),(,
12

1
),( 






















 tstsF

t

t

s

s
stsF ; 

(9) )1,0(),0[:),(),(   sstsF and is continuous, 0),(  sstsF ; 

(10) 0),(,),( 


 tstsF
tk

t
stsF ; 

Definition 1.18. [11] A function ),0[),0[:  is called an altering distance function if the following properties are 

satisfied: 

(i)    is non-decreasing and continuous, 

(ii)  0)( t if and only if 0t . 

Definition 1.19. [2]An ultra-altering distance function is a continuous, non-decreasing mapping ),0[),0[:  such 

that ),0[,0)(  tt and 0)0(  . 

We denote this set with u . 

II. MAIN RESULT 

 

Theorem 2.1. Let ),,( SX be an ordered S–metric space. Let XX : and XXXH : be mappings such 

that H has the mixed  –monotone property on X and there exist two elements X00 , with    000 , H  

and   ),( 000  H such that as follows: 

       
    

     














],,,,[

,],,,,[
,,,,,






ySxSk

ySxSk
FHyxHHS

(2.1) 

for Xyx  ,,,,, with   x and   y or   x and   y  and 

),0[),0[:  is an altering distance function, u and F C. Assume the following conditions: 

(i) )()( XXXH  , 

(ii) )(X is complete, continuous and commutes with H. 

Then H and have a coupled coincidence point ),(  . If   or   , then there   ),()( H . 
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Proof. Let 
00 , be two points such that ),()( 000  H and ),()( 000  H . As )()( XXXH  , 

we take 11, in a way that ),()( 001  H and ),()( 001  H . 

Again since )()( XXXH  , take X22 , such that ),()( 112  H and ),()( 112  H . 

Repeating in this way to construct two sequences }{ n  and }{ n in X such that, 

),,()(),()( 11 nnnnnn HandH   
for all 0n

   
(2.2) 

Now, we claim that for all 0n , 

    )()( 1nn   ,      (2.3) 

and 

    )()( 1nn   .      (2.4) 

 

By induction principle, take 0n . Since ),()( 000  H and   ),( 000  H , we see that 

),()( 001  H  and ),()( 001  H ,and so )()( 10   , and   )( 10   , i.e., (2.3) and(2.4) holds 

for 0n . Suppose that (2.3) and (2.4) are valid for some 0n . As H is a mixed  –monotone property and also

)()( 1nn   , )()( 1nn   , then from (2.2), we have 

),(),()( 11 nnnnn HH      

and 

   )(),(),( 11   nnnnn HH   . 

similarly, 

   ),(),()( 1112 nnnnn HH      

and 

   )(),(),( 2111   nnnnn HH   . 

Then from (2.2) and (2.3), we get 

   )()( 21  nn   and )()( 21  nn H    

We conclude by induction principle that (2.3) and (2.4) holds for all 0n . 

Continuing this process, we see clearly that 

 )()()()( 1210 n  

and 

 )()()()( 1210 n  

If  nnnn  ,),( 11 
,then H and   have a coupled coincidence point. So, we suppose that  nnnn  ,),( 11 

 for 

all 0n , i.e., we suppose that either  nnnn H   ),()( 1
or  nnnn H   ),()( 1

. 

Next, we proves that, for all 0n , 

  
     

      







































],,,,[2
2

1

,],,,,[2
2

1

,,

011011

011011

11







SSk

SSk

FS
n

n

nnn .
(2.5) 

For n = 1, we have 

  
       

        










001111

001111

122
,,,,,

,,,,,,
,,






HHHS

HHHS
FS

 

    

     














],,,,[

,],,,,[

011011

011011





SSk

SSk
F
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],,,,[

,],,,,[2
2

1

011011

011011





SSk

SSk
F

.
 

And hence (2.5) holds for 1n . Therefore, we assume that (2.5) holds for 0n .Since )()( 1 nn  
and

)()( 1 nn g  
, by using (2.2) and (2.5), we have 

  
       

        
















11

11

11
,,,,,

,,,,,,
,,

nnnnnn

nnnnnn

nnn
HHHS

HHHS
FS




  

    

     


















],,,,[

,],,,,[

11

11

nnnnnn

nnnnnn

SSk

SSk
F




.            

(2.6) 

Now, 

  
       

        
















221111

221111

1
,,,,,

,,,,,,
,,

nnnnnn

nnnnnn

nnn
HHHS

HHHS
FS




  

    

     


















],,,,[

,],,,,[

211211

211211

nnnnnn

nnnnnn

SSk

SSk
F




.   

(2.7) 

and 

  
       

        
















221111

221111

1
,,,,,

,,,,,,
,,

nnnnnn

nnnnnn

nnn
HHHS

HHHS
FS




  

    

     


















],,,,[

,],,,,[

211211

211211

nnnnnn

nnnnnn

SSk

SSk
F




.   

(2.8) 

From (2.7) and (2.8), we get that

     

    ],,,,[2

,,,,

211211

11









nnnnnn

nnnnnn

SSk

SS




. 

holds for Nn . From (2.6), we have 

       ],,,,[,, 1111   nnnnnnnnn SSkS   

    ],,,,[2 211211

2

  nnnnnn SSk   

  

      







 ],,,,[2

2

1
011011  SSk

n
. 

Hence for all Nn , we have 

         







 ],,,,[2

2

1
,, 01101111  SSkS

n

nnn .
(2.9) 

Suppose Nnm , , with Nm  . First, let ,12  pm (2.9) we have 

      

 1

21111

,,

,,,,2,,









mmm

mmmnnnnmm

S

SSS



 

 

       ],,,,[2
2

1
2 011011

2
1

 SSkk
m

ni

mi
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     ],,,,[2

2

1

21

2
011011

1
 SSk

k

k m
n





















. 

Further, let pm 2 . Again, using (S3),(2.9) we obtain 

      111 ,,,,2,,   mmmnnnnmm SSS  
 

     ],,,,[2 011011

1

 SSk
m

ni

i






 

 
   ],,,,[

21

2
011011  SS

k

k
n




 . 

Letting mn, . Since 12 k , using Lemma (1.2) we conclude that 0),,(lim
,




nmm
mn

S  . 

Thus }{ n is Cauchy sequence in )(X . Similarly }{ n is Cauchy sequence in )(X .Since )(X is complete, we 

have }{ n and }{ n are convergent to some X and X respectively. Since is continuous, we have 

)}({ n is convergent to  and )}({ n is convergent to , that is, 

)())((lim  


n
n

and )())((lim  


n
n

. 

Since, H and  are commutative, we have 

       1,)(),(  nnnnn HH 
 

and
 

       1,)(),(  nnnnn HH  . 

Next, we claim that ),(  is coupled coincidence point of H and  . From (2.1) we have 

             nnn HHHSHHS  ,,,,,,,,, 1 
 

    

     














],,,,[

,],,,,[

nn

nn

SSk

SSk
F




 

Letting n and also  is continuous, we get 

     
    

     














],,,,[

,],,,,[
,,,,






SSk

SSk
FHHS  

  00,0  F . 

Hence   ,H . Similarly,   ,H . 

Next we claim that      ,H . Since   , is a coupled coincidence point of  H and  , we have 

  ,H and   ,H . Suppose that   . Then from (2.1) we have 

           ,,,,,,, HHHSS   

    

     














],,,,[

,],,,,[





SSk

SSk
F . 

Also, 

           ,,,,,,, HHHSS   

    

     














],,,,[

,],,,,[





SSk

SSk
F . 

Therefore, 

    
    

     














],,,,[2

,],,,,[2
,,,,






SSk

SSk
FSS . 



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                Vol. 6(2), Apr 2019, ISSN: 2348-4519 

  © 2019, IJSRMSS All Rights Reserved                                                                                                                                   190 

Since 2k < 1, we get 

    
    

     



















,,,,

,,,,,
,,,,

SS

SS
FSS , 

which is contradiction. Hence   and     ,, HH  .Since }{ 1n is a subsequence of 

}{ n , we have }{ 1n is convergent to  . 

Thus, 

  
       

        










nn

nn

n
HHHS

HHHS
FS






,,,,,

,,,,,,
,, 1  

    

     














],,,,[

,],,,,[

nn

nn

SSk

SSk
F




. 

Letting n and also  is continuous, we get 

  
    

     














],,,,[

,],,,,[
,,






SSk

SSk
FS . 

and also, 

  
    
     















],,,,[

,],,,,[
,,






SSk

SSk
FS . 

Thus, 

    
    

     














],,,,[2

,],,,,[2
,,,,






SSk

SSk
FSS . 

Since 12 k , by last inequality, only if   0,, S and   0,, S . Hence   and   . 

Thus we get     ,H . 

 

Corollary 2.2.Let ),,( SX be an ordered S–metric space. Let XX : and XXXH : be mappings such 

that H has the mixed  –monotone property on X and there exist two elements X00 , with    000 , H  

and   ),( 000  H such that as follows: 

       
    

     














],,,,[

,],,,,[
,,,,,






yySxxSk

yySxxSk
FHyxHyxHS

 
for Xyx ,,, with x  and y  or x  and y  and ),0[),0[:  is an altering 

distance function, u and F  C. Assume the following conditions: 

(i) )()( XXXH  , 

(ii) is continuous and commutes with H. 

(iii) )(X is complete. 

Then there exist X such that   ),()( H . 

Proof. From Theorem (2.1) by taking x and y . 

 

Corollary 2.3.Let ),,( SX be an ordered S–metric space. Let XXXH : be mappings such that H has the 

mixed monotone property on X and there exist two elements X00 , with  000 , H  and ),( 000  H

. Let there exists a constant 









2

1
,0k such that the following holds: 
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],,,,[

,],,,,[
,,,,,






yySxxSk

yySxxSk
FHyxHyxHS

 

for Xyx ,,, with x and y or x and y . If ),,( SX regular then there exist X such that

 ),(H . 

Proof. We defined XX : by   . Then the mappings H and  satisfies all the conditions of Corollary 2.2. 

Hence the result follows. 

 

Corollary 2.4.Let ),,( SX be an ordered S–metric space. Let XXg : and XXXH : be mappings has 

the mixed monotone property on X and there exist two elements X00 , with    000 , H  and

  ),( 000  H . Let there exists a constant 









2

1
,0k such that the following holds: 

       
    

     














],,,,[

,],,,,[
,,,,,






yySxxSk

yySxxSk
FHyxHyxHS

 
for Xyx ,,, with x  and y  or x  and y  and ),0[),0[:  is an altering 

distance function, u and F  C. Assume the following conditions: 

(i) )()( XXXH  , 

(ii) )(X is complete, 

(iii)  is continuous and commutes with H. 

Then there exist X such that   )(),(H . 

Proof. Put   1t for all ),0[ t the result follows. Moreover, we get a generalization of theorem given in [16]. 

 

Corollary 2.5.Let ),,( SX be complete ordered S–metric space. Let XXXH : be mappings such that H has 

the mixed monotone property on X and there exist two elements X00 , with  000 , H  and

),( 000  H . Let there exists a constant 









2

1
,0k such that the following holds: 

       
    

     














],,,,[

,],,,,[
,,,,,






yySxxSk

yySxxSk
FHyxHyxHS   

for Xyx ,,, with x and y or x , y and ),0[),0[:  is an altering distance function,

u and F  C. If ),,( SX regular then there exist X such that  ),(H . 

Proof. Let XX : be defined as  )( . Then all conditions of Corollary 2.4 are satisfied. 
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