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Abstract—An algorithm based on collocation points and two-dimensional Haar wavelet basis functions is developed for 

numerical solutions of two-dimensional time-dependent Schr ̈dinger equations. Error analysis of a proposed algorithm 

confirm the convergence of the present method. Numerical examples are performed to illustrate the accuracy of the 

proposed method. 
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I. INTRODUCTION 

In the past few decades, wavelet analysis has been a recently 

developed mathematical tool for solving linear and nonlinear 

differential and integral equations. Greater attempts have 

been done to find wavelet based solutions of differential 

equations. There are many similarities between Fourier 

analysis and wavelet theory. The first wavelet was 

introduced by Haar in 1909. In mathematics, the Haar 

wavelet is a sequence of rescaled square shaped functions 

which together form a wavelet family or basis. The Haar 

wavelet is also the simplest possible wavelet. The technical 

disadvantage of the Haar wavelet is that it is not continuous 

and therefore not differentiable.  But, due to integration of 

such functions, Haar wavelet method is one of the simplest 

and easiest method for solving linear and nonlinear partial 

differential equations. Chen & Hsiao [4] introduced the 

concept of operational matrices of integrations based on Haar 

wavelet for analyzing the lumped and distributed-parameter 

dynamical system. Haar wavelet based collocation methods 

are developed for solving differential equations in [1], [3], 

[7], [10], [11], [13], [14], [15].Some useful numerical 

techniques for the study of partial differential equations are 

discussed in [17], [18]. 

This paper is devoted to the numerical computation of two-

dimensional time dependent Schrodinger equation: 
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where  is the imaginary unit,   is the time dependent wave 

function and   is the potential function. This equation has 

many applications in science and engineering such as in 

quantum mechanics for modeling of quantum devices [2], in 

various quantum calculators [6, 9], in design of certain opto- 

electronic devices [8], in electromagnetic wave propagation 

[12] and  in underwater acoustics [16]. 

This paper is organized as: In Section II, concept of Haar 

wavelet is discussed. The proposed method is presented for 

solving two- dimensional time dependent Schrodinger 

equations in Section III.  In Section IV, error analysis is 

described to confirm the convergence of the proposed method. 

In Section V, some numerical examples are presented to 

illustrate the accuracy of the propose method. 

II. HAAR WAVELET 

Haar functions are an orthogonal family of switched 

rectangular waveforms where amplitudes can differ from one 

function to another.  These functions are defined as: 
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Integer      ,                  and     denotes the 

level of resolution. The integer                   is 
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the translation parameter.  The wavelet number    can be 

calculated as        . The minimum value of the 

number     and the maximum value of          . 

The collocation points are defined as: 

   
     

  
                    

The operational matrices are obtained by using the relation 
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III. PROPOSED METHOD FOR SOLVING TWO- 

DIMENSIONAL SCHRODINGER EQUATION 

Consider the wavelet approximation 
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where ( ) denotes the differentiation with respect to  . The 

constants     and      are real and imaginary components of 

wavelet coefficients respectively.  Integrating (5) one time 

with respect to  , from 0 to   , we obtain 
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Integrating (6) twice with respect to y, from 0 to y,  we 

obtain 
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Substituting     in (7),  we obtain 
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From (7) and (8), we obtain 
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Integrating (6) twice with respect to x, from 0 to  ,  we 

obtain 
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Substituting     in (10),  we obtain 
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From (10) and (11), we obtain 
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Integrating (10) twice with respect to  , from 0 to  ,  we 

obtain 
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where 
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Substituting     in (13),  we obtain 

. 
  (     )   (     )    (     )     (   ) 
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From (13) and (14),  we obtain 
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Differentiating (15) one time with respect to  , we obtain 
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Discretizing (9), (12), (15) and (16) by using         
   and         ,  we obtain 
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In the given scheme 
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Substituting the values from (17)-(20) in (21), we obtain the 

system of algebraic equations 

∑            (          )
  
       (          )   (22) 

where 

  (       )  (  )     (  )        ( )   

  (       )     (  )        ( )   (  )  

       (  )        ( )      (  )        ( )   

In (22),    consists of the remaining terms from (17)-(20) 

and  .  In matrix form,  from (22),  we obtain 

                   (23) 

The dimension of matrix  is   (  ) ,  the dimension of 

matrix   is (  )  (  )  and the dimension of the 

matrix   is   (  ) . From (23), real and imaginary 

components of Haar wavelet coefficients are obtained. The 

numerical solution of (1) is obtained by substituting the real 

and imaginary components of wavelet coefficients into (19). 

IV. ERROR ANALYSIS OF PROPOSED METHOD 

In order to analyze the convergence of our method, we state 

the following convergence theorem: 

Theorem: Suppose that  (   ) satisfies a Lipschitz condition 

on              that is, there exists a positive  

constant such that for all (    ), (    )               
we have  

| (    )   (    )|   |     |. 

Then, the error bound for ‖  (   )‖  is obtained as 
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where  (   )   (     )    (     ) in which 

 (     ) is the exact solution and   (     )is the Haar 

wavelet solution. The Haar wavelet method will be 

convergent, if   (   ) converge to zero when   goes to 

infinity.  The order of convergence of the proposed method is 

3. That is 

‖  (   )‖  (
 

 
)

 

 (see [16]). 

V. NUMERICAL EXAMPLES AND DISCUSSION 

To illustrate the accuracy of the proposed method, some 

numerical examples are solvedusing proposed method. The 

obtained numerical results are compared with exact 

solutions. We alsoreport    ( ) and   ( )  errors of the 

computed solutions which are defined as 

  ( )  
   

        |   (        )       (        )|, 

and 

  ( )  [∑  |      (        )   (        )| 
  

  

     

]

   

  

Example 1: Consider the two-dimensional Schrodinger 

equation (1) with  (   )  (     ).  The exact solution 

of the problem is 

 (     )         (  )    (  ). 

Table 1 show the comparison of different modes of errors of 

Example 1 at different time with         and    .  

Table 2 show the comparison of different modes of errors of 

Example 1 at different time with        and     .   

    Table 1: Comparison of errors at different time  

   ( )   (        )   ( )  (        ) 

T Real part Imaginary 

part 

Real part Imaginary 

part 

0.005 5.916e-07 5.697e-09 2.460e-06 2.369e-08 

0.01 1.838e-06 1.458e-09 7.645e-06 6.063e-09 

0.015 7.290e-06 4.103e-08 3.031e-05 1.706e-07 

0.02 1.289e-05 3.009e-07 5.362e-05 1.251e-06 

     Table 2: Comparison of errors at different time  

   ( )   (       )   ( )  (       ) 

t Real part Imaginary 

part 

Real part Imaginary 

part 

0.05 5.896e-05 5.693e-06 2.452e-04 2.367e-05 

0.1 1.844e-04 1.426e-06 7.670e-04 5.930e-06 

0.15 7.284e-04 4.108e-05 3.029e-03 1.708e-04 

0.2 1.259e-03 2.989e-04 5.237e-03 1.243e-03 

Example 2:  Consider the two-dimensional Schrodinger 

equation (1) with   

 (   )    
 (    )

  (   )
 

 (    )

  (   )
 

The exact solution of the problem is 

 (     )         (   )(   ). 

Table 3 show the comparison of different modes of errors of 

Example 2 at different time with         and    .  

Table 4 show the comparison of different modes of errors of 

Example 2 at different time with        and     .   

    Table 3: Comparison of errors at different time  

   ( )   (        )   ( )  (        ) 

T Real part Imaginary 

part 

Real part Imaginary 

part 

0.005 7.455e-08 1.026e-08 2.690e-07 2.756e-08 

0.01 2.342e-07 4.215e-08 8.508e-07 1.216e-07 

0.015 4.750e-07 8.533e-08 1.737e-06 2.836e-07 

0.02 1.817e-06 3.254e-07 5.366e-06 7.904e-07 

   Table 4: Comparison of errors at different time  

   ( )   (       )   ( )  (       ) 

T Real part Imaginary 

part 

Real part Imaginary 

part 

0.05 8.211e-06 1.159e-06 2.593e-05 3.422e-06 

0.1 2.613e-05 4.608e-06 8.126e-05 1.120e-05 

0.15 5.338e-05 1.009e-05 1.655e-04 2.546e-05 

0.2 1.845e-04 4.678e-05 4.964e-04 1.311e-04 

Example 3:  Consider the two-dimensional Schrodinger 

equation (1) with   

 (   )       
 (    )

  (   )
 

The exact solution of the problem is 

 (     )       (   )    (  ). 

Table 5 show the comparison of different modes of errors of 

Example 3 at different time with         and    .  

Table 6 show the comparison of different modes of errors of 

Example 3 at different time with        and     .   

    Table 5: Comparison of errors at different time  

   ( )   (        )   ( )  (        ) 

t Real part Imaginary 

part 

Real part Imaginary 

part 

0.005 3.938e-07 9.961e-08 1.665e-06 2.187e-07 
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0.01 1.036e-06 4.103e-07 4.640e-06 9.657e-07 

0.015 1.972e-06 8.333e-07 8.841e-06 2.250e-06 

0.02 6.013e-06 1.318e-06 2.427e-05 4.073e-06 

Table 6: Comparison of errors at different time 

 

VI. CONCLUSION 

In the view of above numerical examples, it is concluded that 

two-dimensional Haar wavelet basis functions are more 

reliable and accurate mathematical tool for solving two-

dimensional time-dependent Schr ̈dinger equations. For 

getting the necessary accuracy, the number of calculation 

points may be increased.  
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   ( )   (       )   ( )  (       ) 

t Real part Imaginary 

part 

Real part Imaginary 

part 

0.05 4.274e-05 6.989e-06 1.567e-04 2.606e-05 
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