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Abstract-The existing models of HIV infection are non-linear system of differential equations. Solving system of differential 

equations is very difficult task and also drawing inference is not easy. Therefore, an attempt has been made to estimate the HIV 

replication periodically using Markov processes in the condition of decay of CD4
+T  cells. The proposed model is illustrated in 

this paper. 
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I. INTRODUCTION 

In the viral dynamic study, the HIV infection spread in the human being is very vast in the world. It is a major epidemic in the 

world now days.HIV infection is naturally distory the human the immune system, in particularly by depleting the CD4
+  

T cells. 

The HIV transmission system has biologic and social determinants. Biologic determinants include characteristics of the 

pathogen, the host, and biomedical interventions. Social determinants include individual-level, pair wise and community-level 

processes that affect behavior, and thus the structure and dynamics of the transmission networks. In the 1990s, the time to 

development of AIDS after initial infection with the virus is approximately 10 to 12 years. In the mid 1980s, however, the 

average time from infection to AIDS was 8 to 10 years (Klatt, 1998). This improvement in time to development of AIDS is 

due, in part, to improved diagnosis, increased use of antiretroviral therapy and improved management of opportunistic 

infections.At this stage of infection, viral load in an individual may be extremely high, around one million copies/ml, although 

individual variation is significant. Although CD4
+   

T cell counts may also vary, individuals with CD4
+
 counts below 200 

cells/mm3 are at the greatest risk of developing opportunistic infections (note that CD4
+   

T cell counts of healthy individuals are 

usually above 1000 cells/mm3) (Chibatamoto, 1996).The overall effect of infection with HIV and its interaction with the 

body's natural response mechanisms is severe damage to the immune system, destroying by the means which the human body 

naturally defends itself against infections. Following entry into the host is disseminated via the blood and circulatory system to 

different tissues in the body. From this moment of infection, the virus is replicating at extremely rapid rates. As the virus 

replicates and spreads throughout the body. 

Effectively, the virus has now hijacked the host cell's own replication system. As a result, when the cellular DNA is 

transcribed, so the viral DNA to form an RNA transcript. Further processing of this RNA into messenger RNA (mRNA) and 

genomic viral RNA occurs. The viral mRNA is then translated into viral proteins, which along with the genomic RNA, are 

assembled into new virus particles. This last stage requires the viral enzyme, protease (Marr, 1998). Finally, the new viral 

particles are released from the infected cell and go on to infect other cells in the body. 

This paper concentrated to the periodically viral replication of infected persons. The stochastic models are designed 

for the viral replication in the CD4
+   

T cells and lysing CD4
+   

T cells count and illustrated.  

Singer et al. (2007) have explained the point of departure for this study was the gross misunderstanding among 

researchers concerning which stochastic matrices are compatible with a continuous-time Markov process having stationary 

transition probabilities. Myron S. Cohen et al. (2008) have given several behavioral and structural strategies have made a 

difference male circumcision provides substantial protection from sexually transmitted diseases, including HIV-1, and the for 

prevention holds great promise.Cassels et al. (2012) have discussed mathematical models provide a way to examine the 

potential effects of the proximate biologic and behavioral determinants of HIV transmission dynamics, alone and in 

combination. The purpose of this article is to show how mathematical modeling studies have contributed to our understanding 

of the dynamics and disparities in the global spread of HIV.Mbogoet al. (2013) have explained stochastic model for in-host 

http://www.isroset.org/


  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                Vol. 5(5), Oct 2018, ISSN: 2348-4519 

  © 2018, IJSRMSS All Rights Reserved                                                                                                                                   244 

HIV dynamics that included combined therapeutic treatment and intracellular delay between the infection of a cell and the 

emission of viral particles. This is model included dynamics of three compartments the number of healthy CD4 cells, the 

number of infected CD4 cells, and the HIV virons and it described HIV infection of CD4 T cells before and during therapy. 

Tang Ning et al.(2013)have  studied the non-Markovian dynamical properties of a two-level system coupled to a zero-

temperature structured environment under the NRWA.They derived the TCL master equation in the limit of weak coupling 

between the system and its environment. Doss et al. (2014) have briefed out the Continuous-time linear birth–death-

immigration (BDI) processes are frequently used in ecology and epidemiology to model stochastic dynamics of the population 

of interest. In clinical settings, multiple birth–death processes can describe disease trajectories of individual patients, allowing 

for estimation of the effects of individual covariates on the birth and death rates of the process.Leonid et al. (2015) have 

considered a stochastically perturbed Nowak–May model of virus dynamics within a host. Using the direct Lyapunov method, 

they found sufficient conditions for the stability in probability of equilibrium states of this model. Mathematical model for the 

spread of HIV and AIDS amongst PWIDs. Stochasticity into their model by using the standard technique of parameter 

perturbation. The spread of the disease amongst PWIDs can be described by the differential equation the fraction of PWIDs 

who must clean their needles after use, the effects of HIV testing, or the amount that PWIDs need to decrease their syringe 

sharing rates in order to reduce  beneath one and eliminate disease. Liang et al. (2016).O Abu et al. (2016) have discussed 

stochastic differential equation models for vertical and heterosexual transmission dynamics of HIV/AIDS in a population are 

formulated and investigated. The models were solved numerically to investigate the effects of ART, condom use and both on 

the transmission dynamics and to also examine the model performance. Precharattana et al.(2016)have given  the infection of 

human immunodeficiency virus type 1(HIV-1), causing acquired immunodeficiency syndrome (AIDS), is responsible for 

millions of deaths worldwide. Pathogenesis medical professionals use the CD4 count and viral load in HIV-1 patient blood to 

refer the stage of disease progression and to decide when to begin treatment. Konstantina Palla et al. (2017) have illustrated 

Bayesian nonparametric prior over feature allocations for sequential data, the birth death feature allocation process (BDFP). 

The BDFP models the evolution of the feature allocation of a set of N objects across a covariate (e.g. time) by creating and 

deleting features. Joseph N. Inungu et al. (2017) have explained the understanding of the lifecycle of the HIV was a turning 

application of antiretroviral agents point that provided researchers with the knowledge and tools needed to prosecute drug 

discovery efforts focused on targeted inhibition with specific pharmacological agents. The following models explain the natural 

replication of HIV in the CD4
+   

T cells.   

 

II. MODELING OF HIV REPLICATION 

 

Let 𝑋𝑡 ,𝑠
 𝑡 - is denoted by the random variable as the viral replication at time t and state S. Where, S-state space 

represents number of replicated virus, Time space t is each succeeding periods. If 𝑋01
 𝑡 = 𝑖, 𝑋12

 𝑡 = 𝑗, 𝑋23
 𝑡 = 𝑘 ; 𝑡 =

0,1,2, …denotes, each succeeding period viral replication. The conditional probability of AIDS stage infected person is denote 

by,                      

𝑃𝑖 ,𝑖+𝑎 𝑋 𝑡 = 𝑗/𝑋(𝑡) = 𝑖 > 𝑃 𝑋 𝑡 = 𝑖                                  ;  𝑖 = 0,1,2𝑃𝑖+𝑎,𝑖+2𝑎 𝑋 𝑡 = 𝑘/𝑋(𝑡) = 𝑖 + 𝑎 

> 𝑃𝑖 ,𝑖+𝑎  𝑋 𝑡 = 𝑗/𝑋(𝑡) = 𝑖 > 𝑃 𝑋 𝑡 = 𝑖  

Since i, j, k, Considered as states of non-infection, infection, become critical AIDS.A time space represents the each 

succeeding period (i.e.) every three month. 

𝑋1,2 𝑡 →Current infection stage  𝑖 − 𝑘 .There are n stages available in between [i, k] n stage may be time period. Where, 𝑎 =

𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 ; 𝑎1 > 𝑎2 > 𝑎3 > 𝑎4 > ⋯ > 𝑎𝑛 ≥  𝑎𝑖
𝑛
𝑖=1  

𝐼𝑓𝑎𝑛+1 ≥  𝑎𝑖
𝑛
𝑖=1 , 𝑋 𝑡𝑖 = 𝑘.     , j state classified as n intervals. 𝑛 + 1 𝑡ℎState.  

Where 𝑋 𝑡𝑖 is the state space of the random variable. (Viral replication).The transition probability is given by 

𝑃 𝑋 𝑡2 = 𝑗/𝑋(𝑡1) = 𝑖 = 𝑃𝑖𝑗  

𝑃 𝑋 𝑡3 = 𝑘/𝑋 𝑡2 = 𝑖 = 𝑃𝑗𝑘      ,Where,𝑃𝑖𝑗 < 𝑃𝑗𝑘 . 
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Then 𝐸 𝑋𝑛+1 𝑡  =  𝑎𝑖𝑃𝑖𝑗
𝑛
𝑖=1 and𝑃𝑖𝑖 = 0, 𝑃 𝑋 𝑡 = 𝑗/𝑋(𝑡) = 𝑖 = 𝑃𝑖𝑗 ∼Binomial distribution. In the every period initial 

infection of 𝐶𝐷4
+T is distributed as binomial, and end period viral replication is distributed as Poisson. 

The conditional density of viral replication of current period is given by 

𝑃 𝑥 𝑡 = 𝑗/𝑥(𝑡) = 𝑖 =
𝑃  𝑥 𝑡 = 𝑗 ∩ (𝑥 𝑡 = 𝑖) 

  𝑃 𝑥 𝑡 = 𝑗 × 𝑃 𝑥 𝑡 = 𝑖  𝑛
𝑖=1

 

𝑃 𝑋 = 𝑖 =  𝑃 𝑋 = 𝑖, 𝑌 = 𝑗 =  𝑃 𝑋 = 𝑖/𝑌 = 𝑗 𝑃 𝑌 = 𝑗 

∞

𝑗=0

∞

𝑗=0

 

 

                                                                  =   
𝑗

𝑖
 

∞

𝑗=𝑖

𝑃𝑖 1 − 𝑃 𝑗−𝑖
𝑒−𝑗𝜆𝑗

𝑗!
𝑖𝑓𝑗 < 𝑖 ≥ 0 

                             =
 𝜆𝑝 𝑖𝑒−𝜆

𝑖!
 

  1 − 𝑝 𝜆 
𝑗−𝑖

 𝑗 − 𝑖 !

∞

𝑗=𝑖

 

=
 𝜆𝑝 𝑖𝑒−𝜆

𝑖!
𝑒 1−𝑝 𝜆  

    =
 𝜆𝑝  𝑖𝑒−𝜆𝑝

𝑖!
  [Which is distributed as Poisson with  parameter λp.] 

Let as assume that Succeeding period viral load {Xt, s} is random variable which is distributed as exponential with 

parameter 𝜃 =
 𝑎𝑖

𝑛  and Transition probability of succeeding periods is given by               

𝑡1          𝑡2. . .          𝑡𝑛  

𝑃𝑡 ,𝑠 = 𝜆𝑖𝑗 =  
𝜆11 𝜆12 … 𝜆1𝑛

⋮ ⋮ ⋮
𝜆𝑁1 𝜆𝑁2 … 𝜆𝑁𝑛

  

The State space is viral replication ever the n period is given by  

𝐴𝑖𝑗 =  

𝑎11 𝑎12 … 𝑎1𝑛

⋮ ⋮ ⋮
𝑎𝑁1 𝑎𝑁2 … 𝑎𝑁𝑛

             

  and 

The Time space has n- period is denoted by 

 𝑡1 𝑡2 … 𝑡𝑛  

HIV replication is treated as the markov chain, the sequence of random variable the time space and state space is 

finite. Time space-is treated as every period of (every three months) monitoring viral level.𝑎𝑖 𝑖 = 1,2,… , 𝑛  State space-is 

treated as viral load per period say 𝑎1 , 𝑎2 , … 𝑎𝑛  

Viral replication is random variable which is considered as rapid growth. It is monotonically increasing function and 

also infect to rapidly to 𝐶𝐷4
+𝑇 cells. Which is distributed as exponential with rate of replication per period is considered as 
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𝜃𝑖𝑎𝑖𝑖 = 1,2, … , 𝑛 and 𝑎𝑖 ′𝑠 state. 𝑋𝑖 , 𝑎𝑖  is said to be the viral replication in the blood plasma of HIV infected person. The 

probability matrix of the “N” infected persons and their n period viral replication is given by. 

𝑃𝑗𝑖 =  
𝜆1𝑎1 𝜆1𝑎2 … 𝜆1𝑎𝑛

⋮ ⋮ ⋮
𝜆𝑁𝑎1 𝜆𝑁𝑎2 … 𝜆𝑁𝑎𝑁

  

Where,𝜆𝑗𝑎𝑖 ∩ 𝜆𝑗𝑎𝑖+1,𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, …𝑁and 0 < 𝜆𝑖 < 1, 𝑎𝑖 > 0. 

 𝑋𝑖𝑎𝑖  is said to be continuous time markov chain and its time space is stationary steady state (every three month).but the state 

space is the increasing order  of the exponential growth 𝑎1 < 𝑎2 < 𝑎3 … < 𝑎𝑖 … < 𝑎𝑛  .The transition probability of the j
th

 

patient i
th

 period viral replication is denoted by 𝜆𝑗𝑎𝑖 . 𝜆𝑗 →is j
th 

patient’s probability that to replicate the virus in the 𝐶𝐷4
+𝑇 

cell.𝑎𝑖 is viral load per period. ( 0 < 𝜆𝑖 < 1, 𝑎𝑖 > 0)  Let as assume that viral replication is towards constant rate for 

successions periods, 𝜆𝑗 =
𝑙𝑛𝑎𝑖

102 . 

Where𝜆1 > 𝜆2 > 𝜆𝑗 > 𝜆𝑗+1 > 𝜆𝑗+2 > ⋯ > 𝜆𝑗+𝑛  for a particular patient probability of the (n+1)
th

 period is denoted by 

𝜆𝑛+1 = 1 −  
𝜆𝑗

𝑛 
𝑛
𝑗=1                  ;      0 <  𝜆𝑗 < 1         and               𝜆𝑗 = 1𝑛+1

𝑗=1  

Under the assumption, of 

(1)  (j+1)
th

 probability will be maximum. 

(2) 𝑎𝑛+1 ≥   𝑎𝑖
𝑛
𝑖=1  𝑛  

(3) 𝑎𝑛 <   𝑎𝑖
𝑛
𝑖=1  𝑛  

The average viral replication of the I
st
 patient is denoted by,𝐸 𝑋𝑡 ,𝑠 1

=  𝜆1𝑖𝑎1𝑖
𝑛
𝑖=1 at first patient average viral replicate at 

i
th

  period, 

𝐸 𝑋𝑡1𝑠 𝑁
=  𝜆𝑁𝑖𝑎𝑁𝑖 ,𝑛

𝑖=1 denoted the n periods average viral replication of N
th

 patients. 

𝐸 𝑋𝑡1𝑠  at (n+1)
th

 period is consider as the future prediction of viral replication. That is 𝐸 𝑋𝑡1𝑠 𝑛+1
= 𝜆𝑛+1𝑎𝑛+1 , 

Where, 𝑎𝑛 =  𝑎𝑖
𝑛
𝑖=1  , 𝑎𝑛+1 ≥ 𝑎𝑛   , 𝜆𝑛+1 = 1 − 𝜆𝛼  and 𝜆𝛼 =  

𝜆𝑖𝑗
𝑛 

𝑛
𝑖=1 , 𝛼 = 1,2,3, … , 𝑁 

Where 𝜆𝛼  is the average of probability n period a particular patient. 

Let 𝑎𝑖𝑗 > 0,  it is distributed as Poisson random variable j
th

 patient i
th

 period average replication. The average 

replication of (n+1) period is denoted by, 𝐸 𝑋𝑡,𝑠 𝑎𝑡 (𝑛+1)
=  1 − 𝜆𝛼 𝑎𝑛  

Where 𝑎𝑛  is poisson random variable and 𝜆𝛼  is exponential random variable, 

  𝐸 𝑋𝑡1𝑠
 
𝑗
 

1

, 𝑗 > 0, 𝑡 > 0, 𝑠 > 0 𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … , 𝑁. 

Homogeneous t is stationary (time space) probability equal interval. (Every month) s is dependent to the previous 

state. (Viral load per period) is stochastic processes. In which viral replication is continuous time markov chain. Therefore 

Average replication of first person n period is denoted by 
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𝐴1𝑖𝜆1𝑖
′ =  𝑎11 𝑎12

… 𝑎1𝑛  

𝜆11

𝜆12

⋮
𝜆1𝑛

  

𝐴1𝑖𝜆1𝑖
′ =  𝑎11𝜆11 + 𝑎12𝜆12 + ⋯ +𝑎1𝑛𝜆1𝑛  

The average replication of N
th

 patients first period average replication is given. 

𝜆𝑗1
′ 𝐴𝑗1 =  𝜆11𝜆12 …𝜆𝑗1 …𝜆𝑁1 

 
 
 
 
 
 
𝑎11

𝑎21

⋮
𝑎𝑗1

⋮
𝑎𝑁1 

 
 
 
 
 

 

𝜆𝑗1
′ 𝐴𝑗1 =  𝜆11𝑎11 + 𝜆21𝑎21 + 𝜆𝑗𝑖𝑎𝑗𝑖 + ⋯ + 𝜆𝑁1𝑎𝑁1  

The following table-I explain the exponential nature of the viral replication for the future period is illustrated. 

Table-I 

Period(x) Viral Load(𝒂𝒊) Probability  𝝀𝒋 =
𝒍𝒏𝒂𝒊

𝟏𝟎𝟎  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

260 

2600 

26000 

260000 

2600000 

26000000 

260000000 

2600000000 

26000000000 

260000000000 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

0.08 

0.09 

0.10 

0.11 

The above model is illustrate through following graph-I 

GRAPH I: 
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Graph I illustrate that viral load is increasing and probability of infection increases by assumption of exponential growth rate of 

replication.  

III. Model for Lysing 𝑪𝑫𝟒
+𝑻Cells, Over the 𝒏 Periods 

Viral replication in a individual 𝐶𝐷4
+𝑇 calls is denoted by𝑎𝑖𝑗 . It is a random variable at time t. The number of 𝐶𝐷4

+𝑇 

cells that release the virus at time t is denoted by𝜀𝑖𝑗 . It also a random variable each lysing individual 𝐶𝐷4
+𝑇 is independent 

identically distributed .which is denoted by 

𝑃 𝜀𝑖𝑗  = 𝑃𝑖𝑗 ,                                 𝑖 = 1,2, … , 𝑛,   𝑗 = 1,2, … , 𝑘 

The sequence of  𝜀𝑖𝑗   lysing 𝐶𝐷4
+𝑇cell at time interval  𝑡1 − 𝑡0  is called as discrete state space of stochastic process. 

The value of   𝜀𝑖𝑗  are discrete numbers (i.e.) state space 𝐴. Time space is countable 𝑡1 − 𝑡0, 𝑡2 − 𝑡1, …  . At time interval 

𝑡1 =  𝑡1 − 𝑡0 , assumption that there are two 𝐶𝐷4
+𝑇  cells are lysing ((i.e.)  𝜀11  and𝜀12 , at time interval 𝑡1the state space is 2) 

similarly at 𝑡2 − 𝑡1 there five lysing 𝐶𝐷4
+𝑇cells. (i.e.)   𝜀21 , 𝜀22 , 𝜀23 , 𝜀24and 𝜀25 the state space is 5. 

The total number of lysing cells at time 𝑡𝑖  is denoted by. 

𝜀𝑖 =   𝜀𝑖𝑗𝑗𝑖 at time 𝑡𝑖 . 

The probability of the random variable  𝜀𝑖𝑗   to be lysing is denoted by  𝑃𝑖𝑗  𝑖 = 1,2, … , 𝑛, 

𝑗 = 1,2, … , 𝑘. It is the stationary distribution over the period. 

  𝑃 𝜀𝑖𝑗  = 1. (𝑖. 𝑒. )   𝑃𝑖𝑗 = 1.

𝑗𝑖𝑗𝑖

 

The number of virus released by 𝐶𝐷4
+𝑇cells is denoted by  𝑏𝑡𝑖

 ,at time 𝑡𝑖 . The interval of time 𝑡0 < 𝑡1 < 𝑡2 < 𝑡3 … <

𝑡𝑛+1 the values of 𝑏𝑡𝑖
at each time interval independent 𝑏𝑡0

, 𝑏𝑡1
, 𝑏𝑡2

, 𝑏𝑡3
, … , 𝑏𝑡𝑛 , (𝑖. 𝑒) 𝑏𝑡 , 𝑡 ∈ 𝑇  is independent increment 

Stochastic Process, that is given by, 

𝑃 𝑏𝑡𝑛+1
/𝑏𝑡𝑚

= 𝑥𝑛 , 𝑏𝑡𝑛−1
= 𝑥𝑛−1, … , 𝑏𝑡0

= 𝑥0 . 

0

0.02

0.04

0.06

0.08

0.1

0.12

λ
j
p

ro
b

ab
ili

ty
 o

f 
in

fe
ct

io
n

 

viral load

Viral Replication
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The state space A and time space𝑡 ∈ 𝑇 .  𝑏𝑡 , 𝑡 ∈ 𝑇 , 𝑇 ∈  0, ∞  for every three months. Interval, is markov process, and 

𝑏𝑡0
< 𝑏𝑡1

< 𝑏𝑡2
< ⋯ < 𝑏𝑡𝑛 . Then  

𝐸 𝑏 𝑡 𝑛 +1
/𝑏 𝑡 𝑛

= 𝑥 𝑛 …𝑏 𝑡 0
= 𝑥 0 = 𝑥 𝑛 . 

Where,    𝐸 𝑏 𝑡 𝑛
/𝑏 𝑡 𝑛

= 𝑥 𝑛 …𝑏 𝑡 0
= 𝑥 0 = 𝑏 𝑡 𝑛

. 

The expected number of replication at 𝑡 𝑛 +1 is same as the 𝑡 𝑛  is called as martingale process. The stationary 

probability matrix of succeeding time periods of  𝐶𝐷 4
+𝑇  cells. 

 

The transition stationary probability matrix is illustrated below. 

𝑃 𝑖𝑗 =

 
 
 
 
 
 

1  0   0
0.4     0.6   0
0.1     0.3      0.6

0           …         0
0           …          0
0           …          0

  0.1   0.2  0.3
⋮ ⋮ ⋮

  0.05  0.05      0.15

0.4     …      0
⋮ ⋮ ⋮

  0.25      …       0.50 
 
 
 
 
 

 

𝑖 = 1,2, … , 𝑛    ; 𝑗 = 1,2, … , 𝑛 .                   

Every succeeding period the number of 𝐶𝐷 4
+𝑇  cells lysing is usually increased, the stationary probability will be also 

increased. At time 𝑡 𝑖 , 𝑏 𝑡 𝑖
, 𝑖 = 1,2, … , 𝑛   is random variable it value 𝑥 𝑡 𝑖

=   𝑏 𝑖𝑗  𝜀 𝑡 𝑖  𝑗𝑖 ,the state space of   𝑏 𝑡 𝑖
  is 

given by  

     𝜀 𝑖𝑗 =  

𝑏 11 𝑏 12 … 𝑏 1𝑛

⋮ ⋮ ⋮
𝑏 𝑛 1 𝑏 𝑛 2 … 𝑏 𝑚𝑛

 𝑥 𝑖𝑗 < 𝑥 𝑖𝑗 +1;   𝑖 = 1,2, … , 𝑛 ;   𝑗 = 1,2, … , 𝑛  

            𝐸  𝑏 𝑡 𝑛 +1
 =  𝑃 𝑖𝑗 𝜀 𝑡 𝑖𝑗

𝑛

𝑖 =1

 

             The number of lysing 𝐶𝐷 4
+𝑇  cells is denoted by 𝜀 𝑖𝑗 . The viral replication of individual 𝐶𝐷 4

+𝑇  cell is independent 

and identicatically distributed.  

Random variable  𝜀 𝑖𝑗  , 𝑖 = 1,2, … , 𝑛 , cells number of lysing with probability at time 𝑡 𝑖 . 

𝑃  𝜀 𝑖𝑗 = 𝑏 𝑖  = 𝑃 𝑖 , 𝑃  𝜀 1 = 𝑏 1 = 𝑃 1, 𝑃  𝜀 2 = 𝑏 2 = 𝑃 2, 

 𝑃 𝑘 = 1, 𝑖 = 1,2, … , 𝑛 , 𝑗 = 1,2, … , 𝑘

𝑛

𝑖 =1

 

 Let us assume that, at time 𝑡 1, there a two cells lysing namely, 

𝜀 11 = 500, 𝜀 22 = 1500 

𝑃  𝜀 11 = 0.1, 𝑃  𝜀 12 = 0.9 

𝑋 11 = 𝑏 1𝜀 1
+ 𝑏 2𝜀 2
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At 𝑡 2,there a five cells lysing    

𝑏 21 = 200, 𝑏 22 = 500, 𝑏 23 = 300, 𝑏 24 = 400, 𝑏 25 = 1500. 

                   𝑃  𝜀 21 = 0.2, 𝑃  𝜀 22 = 0.3, 𝑃  𝜀 23 = 0.1, 𝑃  𝜀 24 = 0.1, 𝑃  𝜀 25 = 0.2. 

 

𝑋 2 = 𝑏 1𝜀 2
+ 𝑏 2𝜀 2

+ 𝑏 3𝜀 2
+ ⋯ + 𝑏 𝑛 𝜀 2

. 

At 𝑡 𝑖 , 𝜀 𝑖 ,there are n cells lysing,𝜀𝑖𝑗  is the random variable number of 𝐶𝐷4
+𝑇 cells lysing out j

th
 cells of   i

th
 time 

𝑡1 < 𝑡2 <, … , < 𝑡𝑛+1. The 𝑋𝑖  , 𝑖 = 1,2, … , 𝑛(Number of virus replicated at the time 𝑡𝑖of by𝐶𝐷4
+𝑇 calls). 𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛are period 

of time independent distributed.At time 𝑡𝑛+1,the number of replicate of virus, is denoted by 𝑋𝑛+1 

𝑋𝑛+1 =  𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 + 𝐵

𝑛

𝑖=1

 

Where,                                                

𝑋𝑖 =  𝑏𝑖𝑗 , 𝑖 = 1,2, … , 𝑛,   𝑗 = 1,2, … , 𝜀𝑖 .                                                 

𝜀𝑖

𝑗=1

 

The probability of number of viral replication at 𝑡𝑛+1is denoted by 

𝑃 𝑋𝑡𝑛+1
/𝑋𝑡𝑛+1

= 𝑏𝑛 , 𝑋𝑛−1 = 𝑏𝑛−1, … , 𝑋𝑛 = 𝑏𝑛  

𝑝 𝑋𝑛+1𝜖𝐵/𝑋𝑛 = 𝑏𝑛 = 𝑃𝑡𝑛+1
is a markov process, and its expected number of viral replication is considered as 

martingale.𝐸 𝑋𝑛+1/𝑋𝑛 = 𝑏𝑛 , 𝑋𝑛−1 = 𝑏𝑛−1, … , 𝑋𝑡1
= 𝑏1 =𝑏𝑛 is martingale. 

𝐸 𝑋𝑛 =  𝑋𝑖𝑃 𝑋𝑖 = 𝑏𝑛

𝑛

𝑖=1

,                                   𝑖 = 1,2, … , 𝑛 

𝐸 𝑋𝑡𝑛+1
 = 𝐸 𝑋𝑛+1 ,    

                         If 𝐵 = 0 ⟹ 𝐸 𝑋𝑡𝑛+1
 = 𝐸 𝑋𝑛+1  

                         If 𝐵 > 𝑎𝑛 ⟹ 𝐸 𝑋𝑡𝑛+1
 > 𝐸 𝑋𝑛 .  

The distribution of lysing 𝐶𝐷4
+𝑇cells is given in the following matrix over the period of time. 

     Let 𝜀 =  

𝜀11

𝜀21 𝜀22

⋮
𝜀𝑛1

⋮
𝜀𝑛2

⋮
…

⋮
𝜀𝑛𝑛

  be an infinite matrix of random variables. Let the random variable 𝜀𝑗𝑖 ,1 ≤ 𝑗 ≤ 𝑖, 𝑖 = 1,2, … in 

each row be independent, and let all of them have finite first through third moments.(i.e.) 𝐸 𝜀𝑗𝑖  = 𝑏𝑗𝑖 , 𝐸 𝜀𝑗𝑖 − 𝑏𝑗𝑖  
2

=

𝜎𝑗𝑖
2 , 𝐸  𝜀𝑗𝑖 − 𝑏𝑗𝑖   

3
= 𝑣𝑗𝑖 . 

Set 𝑏𝑗 =  𝑏𝑗𝑖
𝑖
𝑗=1 , 𝜎𝑗

2 =  𝜎𝑗𝑖
2𝑖

𝑗=1 , 𝑣𝑗 =  𝑣𝑗𝑖
𝑖
𝑗=1 , 1 ≤ 𝑗 ≤ 𝑖, 𝑖 = 1,2, … 



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                Vol. 5(5), Oct 2018, ISSN: 2348-4519 

  © 2018, IJSRMSS All Rights Reserved                                                                                                                                   251 

Then under the assumption lim𝑛→∞ 𝑣𝑛 𝜎𝑛
−3 = 0. 

The sum 𝜀𝑛 = 𝜀𝑛1 + 𝜀𝑛2 + ⋯ + 𝜀𝑛𝑛 , 𝑛 ≥ 1is asymptotically 𝑁 𝑏𝑛 , 𝜎𝑛
2 distributed. 

𝜀 =  

50

100 200
⋮

300

⋮
200

⋮
⋯

⋮
50

 ,   𝐸 𝜀𝑗𝑖  =  𝜀𝑗𝑖𝑃 𝜀𝑗𝑖  = 𝑏𝑗𝑖  

𝑖. 𝑒) 𝑏𝑗𝑖 =  

𝑏11

𝑏21 𝑏22

⋮
𝑏𝑛1

⋮
𝑏𝑛2

⋮ ⋮
⋯ 𝑏𝑛𝑛

 =  

50

10 40
⋮

150

⋮
80

⋮ ⋮
⋯ 30

  

𝑖. 𝑒) 𝜎𝑗𝑖
2 =

 
 
 
 
𝜎11

2

𝜎21
2 𝜎22

2

⋮
𝜎𝑛1

2

⋮
𝜎𝑛2

2
⋮ ⋮

⋯ 𝜎𝑛𝑛
2  
 
 
 

=  

8100

25600 44100
⋮

122500

⋮
102400

⋮         ⋮
⋯ 72900

  

𝑖. 𝑒)𝑉𝑖𝑗 =  

𝑣11

𝑣12 𝑣22

⋮
𝑣𝑛1

⋮
𝑣𝑛2

⋮ ⋮
⋯ 𝑣 𝑛𝑛

 =  

729000

4096000 9261000
⋮

42875000

⋮
32768000

⋮  ⋮
⋯    19683000

  

𝑏 𝑗 = 60,       𝜎 𝑗
2 = 62600, 𝑣 𝑗 = 18235333.33 

 

GRAPH II: 

 

The above graph II illustrate that the variation of viral load follows the normal distribution from this we identify the probability 

of infection is increased. 
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IV. CONCLUSION 

 The model which is estimated here to the HIV replication periodically as the Markov processes under the condition of 

decay of CD4
+Tcells. This idea will help to the physician those who me treated HIV infected patients to suggest a proper 

treatment for infected patients in advance. When data in the large size viral load of the infected patients follows normal is 

distribution in future and the graph II explain the variation of viral load when the probability infection is increased. 
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