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Abstract—In this paper, authors newly introduce radical cubic type functional equation and obtain its general solution. Also, 

investigate the Hyers-Ulam-Rassias stability of introduced radical cubic type functional equation in modular space. 
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I.  INTRODUCTION  

S.M. Ulam [10] is the pioneer for the stability problem in 

functional equations. In 1940, while he was delivering a talk 

before the Mathematics Club of University of Wisconsin, he 

dicussed a number of unsolved problems. Among those was 

the following question concerning the stability of 

homomorphisms: 

     Let G  be a group G  be a metric group with metric 

( , )   . Given 0   does there exist a 0   such that if a 

function :f G G satisfies the inequality 

( ( ), ( , ( ))d f xy f x f y   for all ,x y G , then there exists a 

homomorphism :h G G exist with ( ( ), ( ))d f x h x  for 

all x in G ? 

     In 1941, D.H. Hyers [3] provided a partial solution to 

Ulam’s question. Indeed, he proved the following celebrated 

theorem. 

Theorem 1.1: [3]  Assume that 1E  and 2E  be two Banach 

spaces. If a function 1 2:f E E satisfies the inequality                          

                          ( ) ( ) ( )f x y f x f y           

for some 0 and  for all 1,x y E ,  then the limit  

                               
(2 )

( ) lim
2

n

nn

f x
a x


                  

exists for each x  in 1E  and 1 2:a E E is the unique 

additive mapping satisfying 

                                 ( ) ( )f x a x                              

for any 1x E . Moreover, if ( )f tx  is continuous in t  for 

each fixed 1x E , then a is linear. 

      From the above theorem, one can say that the additive 

functional equation  

                           ( ) ( ) ( )f x y f x f y    

 is stable in the sense of Hyers and Ulam (or) it is called 

Hyers-Ulam stability. In 1978, Th.M. Rassias [8] gave a 

generalized solution to Ulam’s problem for approximately 

linear mappings and he proved a new generalizations to the 

Hyers-Ulam stability theory where he used the controlled 

function as the sum of powers of norms. The phenomenon 

that was introduced and proved by Th.M. Rassias is called 

Hyers-Ulam-Rassias stability (or) generalized Hyers-Ulam 

stability. The definitions related to our main theorem can be 

referred in [4]. 

     In this paper, authors newly introduce radical cubic type 

functional equation 

          23

(2 ) (2 )

8 ( ) 8 ( ) 36

f x y f x y

f x y f x y f xy

  

    
       (0.1)            

for all ,x y  . Using orthogonality, authors obtain its 

general solution and investigate the Hyers-Ulam-Rassias 

stability in modular space. 

II. GENERAL SOLUTION OF (0.1) 

     In this section, we obtain the general solution of the 

functional equation (0.1). Throughout this section, let X and 

Y  be real vector spaces. 

Theorem 2.1. Let X  and Y  be real vector spaces. If a 

function :f X Y satisfies the functional equation 

        23

(2 ) (2 )

8 ( ) 8 ( ) 36

f x y f x y

f x y f x y f xy

  

    
            (2.1) 

for all ,x y X ,  then  :f X Y is odd and cubic. 

Proof: Suppose a function :f X Y satisfies (2.1). Putting 

0x y   in (2.1), we get (0) 0f  . Let 0y  in (2.1), we 

obtain 

                                   (2 ) 8 ( )f x f x                                (2.2) 

for all x X . Let 0x  in (2.1), we obtain 

http://www.isroset.org/
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                                  ( ) ( )f y f y                                  (2.3) 

for all y X . Hence, :f X Y  is odd. Setting 

( , ) ( , )x y x x and using (2.2), we obtain 

                                (3 ) 27 ( )f x f x                                (2.4) 

for all x X . From (2.2) and (2.4), we arrive  

                                
3( ) ( )f nx n f x                                 (2.5) 

for all x X . Hence, :f X Y is cubic.  

III.  ORTHOGONAL STABILITY OF (0.1) 

     In this section we assume that the convex modular   has 

the Fatou property such that satisfies the 8  condition with 

0 8  . In addition, we assume that ( , )E   denotes an 

orthogonality space and we define 

            23

( , ) (2 ) (2 ) 8 ( )

8 ( ) 36

Df x y f x y f x y f x y

f x y f xy

     

  
 

for all ,x y E with x y , on the other hand, we give the 

Hyers-Ulam-Rassias stability of the equation (0.1) in 

modular spaces. 

 

Theorem 3.1: Let X  is a  -complete modular space. Let 

 ,E   with dim 2E  be a real normed linear space and let 

:f E X be a mapping fulfilling  

                              ( , )
p p

Df x y x y                  (3.1) 

for all ,x y E  with x y . Then there exists a unique 

orthogonally cubic mapping :C E X such that 

                        
2

( ) ( )
16 2

p

p
C x f x x




 
 


             (3.2) 

for all x E . The function ( )C x  is defined by 

                         
(2 )

( ) lim
8

n

nn

f x
C x x E


   .          (3.3) 

Proof: Setting ( , )x y by ( ,0)x in (3.1), we obtain  

                       (2 )
( )

8 16

pf x
f x x



 

  
 

                    (3.4) 

for all x E . Now replacing x  by 2x  in (3.4), we arrive 

                      
2(2 )

(2 ) 2
8 16

ppf x
f x x



 

  
 

            

(3.5) 

for all x E . From (3.4) and (3.5), we obtain 

 

     

     

         

 

2

2
3

2

2 3 33

2

2 3 33

2

2 2 3 3 33 3

6

3

(2 )
( )

2

(2 ) (2 ) (2 )
( )

2 22

(2 ) (2 ) (2 )
( )

2 22

(2 ) (2 ) (2 )
( )

2 2 22 2

1 2
2 2

pp

f x
f x

f x f x f x
f x

f x f x f x
f x

f x f x f x
f x

x





 

 
 


 

 
 
 
 

 
    
 
 

   
      
   

  

   
      
   

  

 


(3.6) 

In general, using induction on a positive integer n , we obtain 

that 

       

 
  

1
6

3
3

0

(2 )
( ) 2

2 22

n n
pi pi

n
i

f x
f x x


 






 
  
  
 

           (3.7) 

for all x E . Indeed, for n = 1 the relation (3.7) is true. 

Assume that the relation (3.7) is true for n, and we show this 

relation rest true for n + 1, thus we have 

          

 

     

     

  

1

1
3

1

1 3 33

1

1 3 33

6

3
0

(2 )
( )

2

(2 ) (2 ) (2 )
( )

2 22

(2 ) (2 ) (2 )
( )

2 22

2
2 2

n

n

n

n

n

n

n
pi pi

i

f x
f x

f x f x f x
f x

f x f x f x
f x

x





 




















 
 
 
 

 
    
 
 

   
      
   

  





 

for all x E . Hence the relation (3.7) is true for all x E , 

then (3.7) become 

            

 

 6

3 6
3

1 2(2 )
( )

2 2 1 22

n
pn

p

n p

f x
f x x










  
  
   
 

       (3.8) 

for all x E . Replacing x by 2m x in (3.8), we have 

                                        

 

 6

3 6
3

1 2(2 )
(2 ) 2

2 2 1 22

n
pn m

pm mp

n p

f x
f x x










  
  
   
 

      (3.9) 

for all x E . Hence 
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 
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 
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6
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3 6

(2 ) (2 )
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1 (2 )
(2 )

2 2
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2 2 1 2
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p

f x f x

f x
f x

x





















 
 
 
 

 
  
 
 




 

               (3.10) 

for all .x E If ,m n  we get, the sequence 
(2 )

8

n

n

f x 
 
 

is 

  Cauchy sequence in the   complete modular space 

X  . Hence 
(2 )

8

n

n

f x 
 
 

is   convergent in X   and we well 

define the mapping from E into X   satisfying 

                      
2

( ) ( )
16 2

p

p
C x f x x




 
 


. 

To prove C  satisfies (0.1), replace ( , )x y by (2 ,2 )n nx y  in 

(3.1) and divide by 8n  then it follows that 

          

     

     

 

 

2
3

2 2 2 2

1
8 2 8 2

8

36 2 2

2 2 .
8

n n

n n

n

n n

p p
n n

n

f x y f x y

f x y f x y

f x y

x y





 
   
 
    
 
  
  

  

 

 

Taking limit as n in the above inequality, we get 

          

     

   23

2 2 8

0
8 36

C x y C x y C x y

C x y C xy


     
  
   
 

, 

which gives 

             
   

     23

2 2

8 8 36

C x y C x y

C x y C x y C xy

  
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for all ,x y E with x y . Therefore :C E X is an 

orthogonally cubic mapping which satisfies (0.1). To prove 

the uniqueness: Let C  be another orthogonally cubic 

mapping satisfying (0.1) and the inequality (3.2). Then 

 

 

    

  23

( ) ( )

1
(2 ) (2 )

8

1
(2 ) (2 ) (2 ) (2 )

8

1 2

16 22

0

n n

n

n n n n

n

p

pn p

C x C x

C x C x

C x f x f x C x

x

as n





 



 



 

   

 
  

 

 

 

for all x E . Therefore C is unique. This completes the 

proof of the theorem. 

IV. CONCLUSION 

     In this paper, authors introduced a new radical cubic 

functional equation and obtained its general solution, also 

investigated its Hyers-Ulam-Rassias stability in modular 

spaces using orthogonality. 
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