

International Journal of Scientific Research in _ Mathematical and Statistical Sciences

Volume-5, Issue-4, pp.283-288, August (2018)

E-ISSN: 2348-4519

On Contra Delta Generalized Pre-Continuous Functions

J.B. Toranagatti

Department of Mathematics, Karnatak University's Karnatak College, Dharwad, India

**Corresponding Author: jagadeeshbt2000@gmail.com, Tel.:* +919986624200

Available online at: www.isroset.org

Accepted 27/Jun/2018, Online 30/Aug/2018

Abstract- In this paper, the notion of contra δgp -continuous functions is introduced by utilizing δgp -closed sets in topological spaces. Some of their fundamental properties are studied the relationships of contra δgp -continuous functions with other related functions are discussed.

Keywords- Sgp-open set, contra continuoud function, contra pre-continuous function, contra Sgp-continuous function.

I. INTRODUCTION

In 1996,Dontchev[8] initiated the study of contra continuous functions. Subsequently, Jafari and Noiri [15, 16] exhibited contra α -continuous and contra pre-continuous functions in topological spaces. In this paper, a new class of generalized contra continuous functions by using δ gp-closed sets, called contra δ gp-continuous functions is introduced and study some of their basic properties. Relationships between contra δ gp-contin- uous functions and other related functions are investigated.

II. PRELIMINARIES

Definition 2.1 A subset A of a topological space X is called pre-closed[19](resp, b-closed [1],regular closed [26],semiclosed[18] and α -closed[21]) if cl(int(A)) \subseteq A (resp,cl(int(A)) \cap int(cl(A)) \subseteq A, A=cl(int(A)),int(cl(A)) \subseteq A and int(cl(int(A))) \subseteq A).

Definition 2.2 A subset A of a topological space X is called δ -closed[28] if $A = cl_{\delta}(A)$ where

 $cl_{\delta}(A) = \{x \in X: int(cl(U)) \cap A = \phi, U \in \tau \text{ and } x \in U \}$

Definition 2.3 A subset A of a topological space X is called, (i) δ gp-closed[5](resp,gpr-closed[13] and gp-closed[17]) if pcl(A) \subseteq U whenever A \subseteq U and U is δ -open (resp, regular open and open) in X.

(ii) g\deltas-closed[3] if scl(A) \subseteq U whenever A \subseteq U and U is δ -open in X.

The complements of the above mentioned closed sets are their respective open sets.

Definition 2.4 A function $f:X \rightarrow Y$ from a topological space X into a topological space Y is called,

(i) contra continuous[8] (resp,contra pre-continuous[15], contra- α -continuous[16], contra gp-continuous[7] and contra gpr-continuous) if $f^{-1}(G)$ is closed (resp, pre-closed, α -closed,gp-closed and gpr-closed) in X for every open set G of Y.

(ii)perfectly-continuous[23] if $f^{-1}(G)$ is clopen in X for every open set G of Y.

(iii)pre-closed[10] if for every closed subset A of X, f(A) is pre-closed in Y.

(iv) δ gp-continuous[27](resp,comletely-continuous[2] and super continuous[20]) if $f^{-1}(G)$ is δ gp-open (resp, regular-open and δ -open)in X for every open set G of Y.

Definition 2.5 A space X is called,

(a) extremely disconnected[12] if the closure of every open subset of X is open.

(b)strongly irresolvable[11] if every open subspace of X is irresolvable.

(c)semi-regular[6] if every open set is δ -open in X.

(d)Urysohn[29] if for each pair of distinct points x and y of X, there exist open sets U and V containing x and y respectively such that $cl(U) \cap cl(V) = \varphi$.

(e)regular[29] if U is open in X and $x \in U$, then there is an open set V containing x such that $cl(V) \subseteq U$.

Definition 2.5 A space X is said to be:

(i) $T_{\delta gp}$ -space if every δgp -closed subset of X is closed.

(ii) $\delta gpT_{1/2}$ -space space if every δgp -closed subset of X is pre-closed.

© 2017, IJCSE All Rights Reserved

3.Contra *δgp*-Continuous Functions.

Definition 3.1 A function $f:X \rightarrow Y$ is called contra delta generalized pre-continuous (briefly, contra δ gp-continuous) if the inverse image of every open set of Y is δ gp-closed in X.

Theorem 3.2 A function $f:X \rightarrow Y$ is contra δgp -continuous if and only if $f^{-1}(U)$ is δgp -open in X for every closed set U of Y.

Remark 3.3 From Definitions 2.4 and 3.1, we have the following diagram of implications for a function $f:X \rightarrow Y$

$$\begin{array}{c} \text{Perfectly continuity} \\ \downarrow \\ \text{contra pre-continuity} \leftarrow \text{contra continuity} \\ \downarrow \\ \text{contra gp-continuity} \rightarrow \text{contra } \delta \text{gp-continuity} \\ \downarrow \\ \text{contra gpr-continuity} \end{array}$$

None of the implications in above diagram is reversible.

Example 3.4 Consider X={a,b,c,d} with the topologies $T = \{ X, \Phi, \{a\}, \{b\}, \{a\}, \{b\}, \{a,b,c\} \}$ and σ ={X, $\phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{a,b,c\} \}$. Define f:(X, τ) \rightarrow (X, σ)by f(a)=f(b)=a, f(c)=b and f(d)=c. Then f is contra gpr-continuous but not contra δ gp-continuous, since {a} is open in Y but

 $f^{-1}(\{a\})=\{a,b\}$ is not δgp -closed in X. Define $g:(X,\tau) \rightarrow (X,\sigma)$ by g(a)=g(c)=a, g(b)=b and g(d)=d. Then g is contra δgp -continuous but not contra gp-continuous, since $\{a\}$ is open in Y but

 $g^{-1}(\{a\}) = \{a,c\}$ is not gp-closed in X.

Remark 3.5 (a) contra δ gp-continuity and δ gp-contin-uity are independent each other.

(b) contra δgp -continuity and contra $g\delta s$ -continuity are independent each other.

Example 3.6 In Example 3.4, f is δgp -continuous but not contra δgp -continuous.

Example 3.7 Consider X,_ and _ as in Example in 3.4. Define h: $(X,\tau) \rightarrow (X,\sigma)$ by h(a)=d, h(b)=c, h(c)=a and h(d)=b. Then h is contra δ gp-continuous but not δ gp-continuous, since {a,b} is open in Y but $h^{-1}(\{a,b\})=\{c,d\}$ is not δ gp-open in X.

Definition 3.8 A space X is called locally δgp -indiscrete if every δgp -open set is δgp -closed in X.

Theorem 3.9 If $f:X \rightarrow Y$ is a contra δgp -continuous and X is locally δgp -indiscrete space, then f is δgp -continuous. **Proof**: Let V be a closed set in Y. Since f is contra δgp -continuous and X is locally δgp -indiscrete space, then

 $f^{-1}(V)$ is δgp -closed in X. Hence f is δgp -continuous.

Definition 3.10 [22] A space X is called locally indiscrete if every open set is closed in X.

Theorem 3.11 If $f:X \rightarrow Y$ is a _gp-continuous and Y is locally indiscrete space, then f is contra δgp -continuous. Proof: Let G be any open set of Y. Since Y is locally

indiscrete space and f is δgp -continuous, then $f^{-1}(G)$ is δgp -closed in X. Hence f is contra δgp -continuous.

Theorem 3.12 [27] (a)In extremely disconnected space X, every gos-closed set is δ gp-closed.

(b)In strongly irresolvable space X, every δgp -closed set is gos-closed.

As a consequence of Theorem 3.12, we have the following Theorem 3.13 and Theorem 3.14.

Theorem 3.13 If $f:X \rightarrow Y$ is a contra gos-continuous and X is extremely disconnected space, then f is contra δgp -continuous.

Theorem 3.14 If $f:X \rightarrow Y$ is a contra δgp -continuous and X is strongly irresolvable space, then f is contra g δs -continuous.

Theorem 3.15 If $f:X \rightarrow Y$ is contra δgp -continuous and X is T δgp -space, then f is contra continuous.

Proof: Suppose X is $T_{\delta gp}$ -space and f is contra δgp -continuous. Let G be an open set in Y, by hypothesis

 $f^{-1}(G)$ is δgp -closed in X and hence $f^{-1}(G)$ is closed in X. Therefore f is contra continuous.

Theorem 3.16 If $f:X \rightarrow Y$ is contra δgp -continuous and X is $\delta gpT_{1/2}$ -space, then f is contra pre-continuous.

Proof: Suppose X is $\delta gpT_{1/2}$ -space and f is contra δgp -continuous. Let G be an open set in Y,by hypothesis

 $f^{-1}(G)$ is δ gp-closed in X and hence $f^{-1}(G)$ is pre-closed in X. Therefore f is contra pre-continuous.

Theorem 3.17 If $f:X \rightarrow Y$ is contra δgp -continuous and X is semi regular, then f is contra gp-continuous.

Proof: Follows from the fact that every open set is δ -open in semi-regular space.

Lemma 3.18 [27] For a subset A of a space X, the following are equivalent: (a)A is clopen; (b)A is open and pre-closed;

(c)A is open and gp-closed;

(d)A is δ -open and δ gp-closed;

(e)A is regular-open and gpr-closed.

Lemma 3.19 For a subset A of a space X, the following are equivalent:

(a)A is clopen.

(b) A is regular-open and pre-closed.

(c)A is δ -open and pre-closed.

Following Theorem is immediate from Lemma 3.18 and Lemma 3.19:

Theorem 3.20 The following statements are equivalent for a function $f:X \rightarrow Y$:

(a)f is perfectly continuous.

(b)f is continuous and contra pre-continuous.

(c)f is continuous and contra gp-continuous.

(d)f is super-continuous and contra δgp -continuous.

(e)f is r-continuous contra gpr-continuous.

(f)f is r-continuous and contra pre-continuous.

(g)f is super-continuous and contra pre-continuous.

Theorem 3.21 If $f:X \rightarrow Y$ is contra δgp -continuous, then the following equivalent statements hold: (i) For each $x \in X$ and each closed set B of Y containing f(x), there exists an δgp -open set A in X containing x such that $f(A) \subset B$.

(ii)For each $x \in X$ and each open set G of Y not containing f(x), there exists a δ gp-closed set H in X not containing x such that $f^{-1}(G) \subset H$.

Proof: Let B be a closed set in Y such that $f(x)\in B$, then $x \in f^{-1}(B)$. By hypothesis, $f^{-1}(B)$ is δ gp-open set in X containing x. Let $A = f^{-1}(F)$, then $f(A) = f(f^{-1}(B)) \subset B$.

Theorem 3.22 [5] Let $A \subset X$. Then $x \in \delta \operatorname{gpcl}(A)$ if and only if $U \cap A = \Phi$, for every $\delta \operatorname{gp-open}$ set U containing x.

Recall that for a subset A of a space (X,τ) , the set $\cap \{U \in \tau / A \subseteq U\}$ is called the kernel of A and is denoted by ker(A).

Lemma 3.23 [14] The following properties hold for subsets A and B of a space X :

(i) $x \in ker(A)$ if and only if $A \cap F=\phi$ for any closed set F of X containing x.

(ii) $A \subset ker(A)$ and A = ker(A) if A is open in X. (iii) If $A \subset B$, then $ker(A) \subset ker(B)$.

Definition 3.24 A space X is said to be δgp - additive if $\delta GPC(X)$ is closed under arbitrary intersections.

Theorem 3.25 Let X be δgp -additive, then the

following are equivalent for a function $f:X \rightarrow Y$.

(i) f is contra δ gp-continuous.

(ii) For each $x \in X$ and each closed set D of Y containing f(x), there exists an δgp -open set C in X containing x such that $f(C) \subset D$.

(iii) $f(\delta gpcl(C)) \subset ker(f(C))$ for every subset C of X.

(iv) $\delta \text{gpcl}(\mathbf{f}^{-1}(\mathbf{D})) \subset \mathbf{f}^{-1}(\ker(\mathbf{D}))$ for every subset D of Y. **Proof:** (i) \rightarrow (ii)It follows from Theorem 3.21

(ii) \rightarrow (i) Let G be a closed set in Y containing f(x),then

 $x \in f^{-1}(G)$. From (ii), there exists δgp -open set U_X in X

containing x such that $f(U_X) \subset D, U_X \subset f^{-1}(G)$.

Thus $f^{-1}(G)=\cup \{U_X : x \in f^{-1}(G)\}$ is δgp -open in X. (i) \rightarrow (iii)Let C be any subset of X. Suppose $y \notin ker(f(C))$, then by Lemma 3.23, there exists a closed set D in Y containing y such that $f(C) \cap D = \varphi$. Hence we have,

 $C \cap f^{-1}(D) = \phi$ and $\delta gp-cl(C) \cap f^{-1}(D) = \phi$ which implies $f(\delta gpcl(C)) \cap D = \phi$ and hence $y \notin f(\delta gpcl(C))$. Therefore $f(\delta gpcl(C)) \subset ker(f(C))$.

(iii)→(iv)Let D ⊂ Y, then $f^{-1}(D) ⊂ X$. By (iii) and Lemma3.23, f (δ gpcl($f^{-1}(D)$)) ⊂ ker(f ($f^{-1}(D)$)) ⊂ ker(D). Thus δ gpcl($f^{-1}(D)$) ⊂ $f^{-1}(ker(D))$.

(iv)→(i) Let U be any open subset of Y. Then by (iv) and Lemma 3.23, $\delta \operatorname{gpcl}(\mathbf{f}^{-1}(\mathbf{U}) \subset \mathbf{f}^{-1}(\ker(\mathbf{U})) =$ $\mathbf{f}^{-1}(\mathbf{U})$ and $\delta \operatorname{gpcl}(\mathbf{f}^{-1}(\mathbf{U})) = \mathbf{f}^{-1}(\mathbf{U})$. Therefore $\mathbf{f}^{-1}(\mathbf{V})$ is $\delta \operatorname{gp-closed}$ set in X.

Theorem 3.26 If a surjective function $f:(X,\tau) \rightarrow (Y,\sigma)$ is contra δgp -continuous and preclosed with X as a $T_{\delta gp}$ -space, then Y is locally indiscrete.

Proof: Let H be any open set in Y. Since f is contra δ gp-continuous and X is $T_{\delta gp}$ -space, then $f^{-1}(H)$ is closed in X. Since f is preclosed, then H is preclosed in Y. Thus we have $cl(H) = cl(int(H)) \subset H$ and hence H is closed in Y.

Theorem 3.27 If $f:(X,\tau) \rightarrow (Y,\sigma)$ is contra δ gp-continuous, X is δ gp-additive and Y is regular, then f is δ gp-continuous.

Proof:Let $x \in X$ and N be any open set of Y containing f(x). As Y is regular, there exists an open set M in Y containing f(x) such that $cl(M) \subset N$. Since f is contra δ gp-continuous, there exists an δ gp-open set U in X containing x such that $f(U) \subset cl(M)$. Then $f(U) \subset cl(M) \subset N$. Hence by Theorem 3.25, f is δ gp-contin-uous.

Recall that, for a function $f:X \rightarrow Y$, the subset $\{(x,f(x)):x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G(f).

© 2018, IJSRMSS All Rights Reserved

Definition 3.28 The graph G(f) of a function $f:(X,\tau)$ \rightarrow (Y, σ) is said to be contra δ gp-closed if for each $(x,y)\in (X\times Y)$ -G(f) there exist δgp -open set U in X containing x and closed set V in Y containing y such that $(U \times V) \cap G(f) = \varphi$.

Theorem 3.29 The graph G(f) of a function

 $f:(X,\tau) \rightarrow (Y,\sigma)$ is contra δgp -closed in X×Y if and only for each $(x,y)\in(X\times Y)$ -G(f) there exist δgp -open set U in X containing x and closed set V in Y containing y such that $f(U) \cap V = \phi$.

Theorem 3.30 If $f:(X,\tau) \rightarrow (Y,\sigma)$ is contra δgp -continuous and Y is Urysohn, then G(f) is contra δgp -closed in the product space $X \times Y$.

Proof:Let $(x,y)\in(X\times Y)$ -G(f),then y=f(x) and there exist open sets U and V such that $f(x) \in U, y \in V$ and $cl(U) \cap cl(V) = \varphi$. Since f is contra δgp -continuous, then there exists a δgp -open set G such that $x \in G$ and $f(G) \subset cl(U)$ and hence we obtain $f(G) \cap cl(V) = \varphi$. This shows that G(f) is contra δgp -closed.

Theorem 3.31 Let $g: X \rightarrow X \times Y$ be the graph function of f:X \rightarrow Y,defined by g(x)=(x,f(x)) for each x \in X. Then f is contra δgp-continuous, if g is contra δgp- continuous.

Proof:Let V be any open set in Y, then $X \times V$ is an open set in X×Y.It follows that $f^{-1}(U)=g^{-1}(X\times U)$ is δgp closed in X since g is contra *δgp*-continuous. Hence f is contra δgp -continuous.

Definition 3.32 [24] A space X is submaximal if every pre-open set is open in X.

Theorem 3.33 If M and N are δgp -closed sets in a submaximal space X, then MUN is δgp -closed in X.

Proof: Let U be δ -open set in X such that $M \cup N \subset U$. Then $pcl(M) \subset U$ and $pcl(N) \subset U$ since M and N are δgp closed sets. As X is submaximal, pcl(A)=cl(A) for any subset A of X. Therefore $pcl(M \cup N) = pcl(M) \cup pcl(N) \subset U$ and hence MUN is δgp -closed.

Corollary 3.34 If A and B are δgp -open sets in submaximal space X, then $A \cap B$ is δgp -open in X.

Theorem 3.35 [5] If $A \subset X$ is δgp -closed, then $A = \delta gpcl(A)$

Remark 3.36 Converse of above theorem is true if X is δgp -additive.

Theorem 3.37 Assume that X is δgp -additive. If f:X \rightarrow Y and g:X \rightarrow Y are contra δ gp-continuous, X is

submaximal and Y is Urysohn. Then $F = \{x \in X: f(x) = g(x)\}$ is δgp -closed in X.

Proof: Let $x \in X$ -F, then f(x) = g(x). Therefore, there exist open sets U and V such that $f(x)\in U, g(x)\in V$ and $cl(U) \cap cl(V) = \phi$ because Y is Urysohn. Since f and g are contra δgp -continuous , $f^{-1}(cl(U))$ and $g^{-1}(cl(V))$ are δgp -open sets in X. Let M= f⁻¹(cl(U)) and N = $g^{-1}(cl(V))$, then M and N are δgp -open sets containing x. Set $O=M\cap N$, then O is δgp -open set in X. Hence $f(O) \cap g(O) = f(M \cap N) \cap g(M \cap N) \subset f(M) \cap g(N) = cl(U) \cap cl(V)$ = ϕ and so $O \cap F = \phi$. From Theorem 3.22, x $\notin \delta gpcl(F)$. Hence by above remark, F is δgp -closed in X.

Definition 3.38 A space X is called δgp -connected provided that X is not the union of two disjoint nonempty δgp -open sets.

Theorem 3.39 For a space X the following are equivalent: (a) X is δgp -connected.

(b) φ and X are the only subsets of X which are both δgp open and *dgp-closed*. (c) Every contra *dgp-contin-* uous function of X into a discrete space Y with at least two points is a constant function.

Proof: (a) \rightarrow (b): Suppose A is any proper δ gp-open and *dgp-closed* subset of X. Then X-A is both *dgp*closed and δgp -open in X. Then X=AU(X-A) and $A \cap (X-A) = \varphi$ which contradicts the fact that X is δgp connec-ted. Hence $A=\phi$ or X.

(b) \rightarrow (a): Suppose X=AUB where A and B are disjoint δgp -open subsets of X. Since A=X-B, A is both δgp closed and δgp -open but by assumption $A=\phi$ or X which is a contradiction. Hence (a) holds.

(b) \rightarrow (c): Let f:X \rightarrow Y be a contra δ gp-continuous function where Y is a discrete space with at least two points. Then

 $f^{-1}(\{y\})$ is δgp -closed and δgp -open for each $y \in Y$ and $X = \bigcup \{ \mathbf{f}^{-1}(\{y\}) : y \in Y \}$. By hypothesis,

 $f^{-1}({y}) = \phi$ or X. If $f^{-1}({y})=\phi$ for all $y \in Y$, then f is fails to be a function. Then there exists only one point $y \in Y$ such that $f^{-1}(\{y\}) = \varphi$ and hence

 $f^{-1}(\{y\})=X$. This shows that f is constant

(c) \rightarrow (b): Let N be a nonempty proper δ gp-open and δgp -closed subset of X. Let f:X \rightarrow Y be a contra δgp continuous function defined by $f(N) = \{y\}$ and f(X)-N)= $\{z\}$ for some distinct points in Y. By (c), f is constant it follows that N=X.

Theorem 3.40 If $f:X \rightarrow Y$ is a contra δgp -continuous function and X is

 δgp -connected space, then Y is not a discrete space.

Proof: If possible, let Y be a discrete space. Let A be a proper non empty open and closed subset of Y. Since f is

© 2018, IJSRMSS All Rights Reserved

contra δgp -continuous, then $f^{-1}(A)$ is proper nonempty δgp -open and δgp -closed subset of X which contradicts the fact that X is δgp -connected space. Hence Y is not discrete.

Theorem 3.41 If a surjective function $f: X \rightarrow Y$ is contra δgp -continuous and X is δgp -connected space, then Y is connected.

Proof: Suppose that Y is not a connected space. Then there exist disjoint open sets U and V in Y such that $Y=U\cup V$. Therefore U and V are closed sets in Y. Since f is contra δ gp-continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are δ gp-open sets in X. Also f is surjective, $f^{-1}(U)$ and $f^{-1}(V)$ are non empty disjoint and $X = f^{-1}(U)$

 $\cup f^{-1}(V)$ which contradicts the fact that X is δgp -connected space. Hence Y is connected.

Theorem 3.42 Let X be a δ gp-connected and Y be T₁-space. If f:X \rightarrow Y

is contra δgp -continuous, then f is constant.

Proof: By hypothesis Y is T_1 -space, $K = \{ f^{-1}(y) : y \in Y \}$ is a disjoint δgp -open partition of X. If $|K| \ge 2$, then X is the union of two nonempty δgp -open sets. This is contradiction to the fact that X is δgp -connected. Therefore |K|=1 and hence f is constant.

Definition 3.43 A topological space X is said to be δgp -Hausdorff space if for any pair of distinct points x and y, there exist disjoint δgp -open sets G and H such that $x \in G$ and $y \in H$.

Theorem 3.44 If an injective function $f:X \rightarrow Y$ is contra δgp -continuous and Y is an Urysohn space. Then X is δgp -Hausdorff.

Proof: Let x and y be any two distinct points in X and f is injective,then f(x)=f(y). Since Y is an Urysohn space, there exist open sets A and B in Y containing f(x) and f(y) respectively,such that $cl(A)\cap cl(B)=\varphi$. Then $f(x) \in cl(A)$ and $f(y) \in cl(B)$. Since f is contra δgp -continuous, then by Theorem 3.8, there exist δgp -open sets C and D in X containing x and y,respectively,such that $f(C) \subseteq cl(A)$ and $f(D) \subseteq cl(B)$. We have $C \cap D \subseteq f^{-1}(cl(A)) \cap f^{-1}(cl(B)) = f^{-1}(\phi) = \phi$. Hence X is δgp -Hausdorff.

Definition 3.45 [25] A space X is called Ultra normal space, if each pair of disjoint closed sets can be separated by disjoint clopen sets.

Definition 3.46 A topological space X is said to be δgp normal if each pair of disjoint closed sets can be separated by disjoint δgp -open sets. **Theorem 3.47** If $f:X \rightarrow Y$ be contra δgp -continuous closed injection and Y is ultra normal, then X is δgp -normal.

Proof: Let E and F be disjoint closed subsets of X. Since f is closed and injective f(E) and f(F) are disjoint closed sets in Y. Since Y is ultra normal there exist disjoint clopen sets U and V in Y such that $f(E) \subset U$ and $f(F) \subset V$. This im- plies $E \subset f^{-1}(U)$ and $F \subset f^{-1}(V)$. Since f is contra δgp -continuous injection, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint δgp -open sets in X. This shows X is δgp -normal.

Remark 3.48 The composition of two contra δgp -continuous functions need not be contra δgp -continuous as seen from the following examples.

Example 3.49 let $X=Y=Z=\{a,b,c\},\$

 $\tau = \{X,\phi, \{a\}, \{b\}, \{a,b\}\}, \sigma = \{Y,\phi, \{a\}\}$ and $\eta = \{Z,\phi, \{b,c\}\}$ be topologies on X,Y and Z respectively. Define a function f:X \to Y as f(a)=a,f(b)=b and f(c)=c and a function g:Y \to Z as g(a)=b,g(b)=c and g(c)=a. Then f and g are contra δ gp-continuous but g*f:X $\to Z$ is not contra δ gp-continuous, since there exists an open set $\{b,c\}$ in Z such that(g*f)⁻¹ $\{b,c\} = \{a,b\}$ is not δ gpclosed in X.

Theorem 3.50 For any two functions $f:X \rightarrow Y$ and $g:Y \rightarrow Z$, the following hold:

(i)g*f is contra δ gp-continuous if f is contra δ gp-continuous and g is contra continuous.

(ii)g*f is contra δ gp-continuous if f is δ gp-continuous and g is contra continuous.

(iii)g*f is contra δ gp-continuous f is δ gp-irresolute and g is contra δ gp-continuous.

Proof:(i) Let U be an open set in Z. Then $g^{-1}(V)$ is open in Y since g is continuous.

Therefore $f^{-1}[g^{-1}(U)] = (g \star f)^{-1}(U)$ is δgp -closed in X because f is contra δgp -continuous. Hence $g \star f$ is contra δgp -continuous.

The proofs of (ii) and (iii) are analogous to (i) with the obvious changes.

Theorem 3.51 Let $f:X \rightarrow Y$ be contra δ gp-continuous and $g:Y \rightarrow Z$ be δ gp- continuous with Y is $T_{\delta gp}$ -space, then $g \star f:X \rightarrow Z$ is contra δ gp-continuous.

Proof:Let V be any open set in Z. Since g is δgp -continuous, $g^{-1}(V)$ is δgp -open in Y and since Y is $T_{\delta gp}$ -space, $g^{-1}(V)$ open in Y. Since f is contra δgp -continuous, $f^{-1}(g^{-1}(V))=(g*f)^{-1}(V)$ is δgp -closed set in X. Therefore g*f is contra δgp -continuous.

© 2018, IJSRMSS All Rights Reserved

Definition 3.52 A function $f:X \rightarrow Y$ is called pre δgp closed if the image of every δgp -closed set of X is δgp closed in Y.

Theorem 3.53 Let $f:X \rightarrow Y$ be pre δgp -closed surjection and $g:Y \rightarrow Z$ be a function such that $g \star f:X \rightarrow Z$ is contra δgp -continuous, then g is contra δgp -continuous.

Proof:Let U be any open set in Z.Then $(g \star f)^{-1}(U) = f^{-1}(g^{-1}(U))$ is δgp -closed in X. Since f is a pre δgp -closed surjection, $f(f^{-1}(g^{-1}(U))) = g^{-1}(U)$ is δgp -closed set in Y. Therefore, g is contra δgp -continuous.

REFERENCES

- [1] D.Andrijivic, On b-open sets, Mat. Vesnic, Vol .48, pp .59-64,1996.
- [2] S.P.Arya and R.Gupta, On strongly continuous mappings, Kyungpook Mathematical Journal, Vol.14, pp. 131-143,1974.
- [3] S.S.Benchalli and Umadevi Neeli, Generalized δ semi closed sets in topological spaces, International journal applied mathematics, Vol.24, pp.21-38,2011.
- [4] S.S. Benchalli, Umadevi Neeli and G.P. Siddapur, Contra gδs- continuous functions in topological spaces, International Journal of Applied Mathematics, Vol.25, pp 457-471,2012
- [5] S.S.Benchalli and J.B.Toranagatti, Delta generalized preclosed sets in topological spaces, International Journal of Contemporary Mathematical Sciences, Vol.11, pp. 281-292,2016
- [6] J.Cao, M.Ganster, I.Reilly and M.Steiner, δ-closure, θclosure and generalized closed sets, Applied General Topology, Vol.6, pp.79-86,2005.
- [7] Dunya M. Hammed and Mayssa Z. Salman, Some types of contra gp-closed functions in topological spaces, Journal of Al-Nahrain University, Vol.17, pp.189-198,2014.
- [8] J. Dontchev, Contra continuous functions and strongly S-closed mappings, International Journal of Mathematics and Mathematical Sciences, Vol.19, pp.303-310,1996
- [9] J.Dontchev and T.Noiri, Contra-semicontinuous functions, Mathematica Pannonica, Vol.10, pp.159-168, 1999.
- [10] N.El-Deeb,I.A.Hasanein,A.S.Mashhour and T.Noiri,On pregular spaces, Bull. math. Soc. sc. math. Roumanie Tome,Vol.27, pp.311-315,1983.
- [11]J. Foran and P. Liebnitz, A characterization of almost resolvable spaces, Rendiconti del Circolo Matematico di Palermo, Vol.40, pp.136-141,1991.
- [12] L.Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N.J., 1960.
- [13] Y.Gnanambal, On generalized pre-regular closed sets in topological spaces, Indian Journal of Pure and Applied Mathematics, Vol.28, pp.351-360, 1997.
- [14] S.Jafari and T.Noiri, Contra-super-continu- ous functions. Annales Universitatis Scientiarium
- Budapestinensis de Rolando Eötvös Nominatae. Sectio Mathematica, Vol.42, pp.27-34.1999.
- [15] S.Jafari and T.Noiri, On contra pre continuous functions. Bulletin of the Malaysian Mathematical Sciences Society, Vol.25, pp.115-128,2002.

- Vol. 5(4), Aug 2018, ISSN: 2348-4519
- [16] S.Jafari and T.Noiri, Contra α-continuous functions between topological spaces. Iranian International Journal of Science, Vol.2, pp.153-167,2001.
- [17] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T_{1/2}, Mem. Faculty of Science Kochi University Series A Mathematics, Vol.17, pp.33-42,1996.
- [18] N.Levine, Semi-open sets and semi-continuity in topological spaces, American Mathematical Monthly, Vol.70, pp. 36-41,1963.
- [19] A. S. Mashhour, M. E. Abd El-Monsef and S. N. EL-Deeb,On pre-continuous and weak pre continuous mappings, Proceedings of the Mathematical and Physical Society of Egypt, Vol.53, pp.47-53,1982.
- [20] B.M.Munshi and D.S.Bassan, Super-continuous mappings, Indian Journal of Pure and Applied Mathematics, Vol.13, pp 229-236, 1982.
- [21] O. Njastad, On some classes of nearly open sets, Pacific. J. Math., Vol.15, pp 961-970,1965.
- [22] T.Nieminen,On ultrapseudocompact and related spaces, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica, Vol.3, pp 185-205,1977.
- [23] T.Noiri, Super-continuity and some strong forms of continuity, Indian Journal of Pure and Applied Mathematics, Vol.15, pp 241-250,1984.
- [24] I.L.Reilly and M.K.Vamanamurthy, On some quetions concerning preopen sets, Kyungpook Mathematical Journal, Vol.30, pp 87-93, 1990.
- [25] R.Staum, The algebra of bounded continuous functions into a non- archimedean field, Pacific Journal of Mathematics, Vol.50, pp 169-185, 1974.
- [26] M.Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math.soc, Vol.41, pp.371-381,1937.
- [27] J.B.Toranagatti, Delta generalized pre-continuous functions in topological spaces, International Journal of Pure and Applied Mathematics, Vol.116, pp.829-843, 2017.
- [28] N.V.Veliko, H-closed topological spaces, American Mathematical Society Translations, Vol.78, pp.103-118,1968.
- [29] S. Willard, General topology, University of Alberta, Adissonwislly puplishing company,1970.

AUTHOR PROFILE

Mr. J.B. Toranagatti is working as Asst. Professor at Karnatak Collage, Dharwad, Karnataka, India. He is having overall teaching experience of 12 years. His research areas of interest are General Topology and Fuzzy Topology. He has published research papers in pre revived International Journals.