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I. INTRODUCTION 

          In 1996,Dontchev[8] initiated the study of  contra 

continuous functions. Subsequently, Jafari and Noiri [15, 16] 

exhibited contra α-continuous and contra pre-continuous 

functions in topological spaces. In this paper, a new class of 

generalized contra continuous functions by using δgp-closed 

sets, called contra δgp-continuous functions is introduced 

and study  some of their basic properties. Relationships 

between  contra δgp-contin- uous functions and  other related 

functions are investigated.  

 

II. PRELIMINARIES 

 

Definition 2.1 A subset A of a topological space X is called 

pre-closed[19](resp, b-closed [1],regular closed [26],semi-

closed[18] and  α-closed[21]) if cl(int(A))⊆A 

(resp,cl(int(A))∩int(cl(A))⊆A, A=cl(int(A)),int(cl(A))⊆A 

and  int(cl(int(A)))⊆A). 

 

Definition 2.2 A subset A of a topological space X is called  

δ-closed[28] if  A = cl
δ
(A)  where  

 cl
δ 

(A) = {x ∈ X: int(cl(U))∩A = υ, U ∈ τ and  x ∈ U } 

 

Definition 2.3 A subset A of a topological space X is called , 

(i)δgp-closed[5](resp,gpr-closed[13] and gp-closed[17]) if 

pcl(A) ⊆ U whenever A ⊆ U and U is  δ-open (resp, regular 

open and open) in X. 

(ii) gδs-closed[3] if scl(A) ⊆ U whenever A⊆ U and U is  

 δ-open in X. 

           The complements of the above mentioned closed sets 

are their respective open sets.  

Definition 2.4 A function f:X→Y  from a topological space 

X into a topological space Y is called, 

(i) contra continuous[8] (resp,contra pre-continuous[15], 

contra-α-continuous[16], contra gp-continuous[7] and contra 

gpr-continuous) if  f
−1

(G) is closed  (resp, pre-closed,  α-

closed,gp-closed and gpr-closed) in X for every open set G 

of Y. 

(ii)perfectly-continuous[23] if  f
−1

(G)  is clopen in X for 

every open set G of Y. 

(iii)pre-closed[10] if for every closed subset A of X, f(A) is 

pre-closed in Y. 

(iv) δgp-continuous[27](resp,comletely-continuous[2] and 

super continuous[20]) if  f
−1

(G)  is δgp-open (resp, 

regular-open and  δ-open )in X for every open set G of Y. 

 

Definition 2.5 A space X is called, 

(a) extremely disconnected[12] if the closure of every open 

subset of X is open. 

(b)strongly irresolvable[11] if every open subspace of X is 

irresolvable. 

(c)semi-regular[6]  if every open set is δ-open in X. 

(d)Urysohn[29] if for each pair of distinct points x and y of 

X, there exist open sets U and V containing x and y 

respectively such that  cl(U)  ∩ cl(V) = υ. 

(e)regular[29] if U is open in X and x∈ U, then there is an 

open set V containing x such that cl(V) ⊆ U. 

 

 

Definition 2.5  A space X is s a i d  t o  b e :  

(i) Tδgp–space if every δgp-closed subset of  X is closed. 

(ii) δgpT1/2-space space if every δgp-closed subset of  X  is 

pre-closed. 
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3 .Contra δgp-Continuous Functions. 

 

Definition 3.1 A function f:X→Y   is called contra delta 

generalized pre-continuous (briefly, contra  δgp-contin- 

uous) if the inverse image of every open set of Y is  

δgp-closed in X. 

 

Theorem 3.2 A function f:X→Y   is contra  δgp-contin- 

uous if and only if   f
−1

(U) is δgp-open in X for every 

closed set U of Y. 

 

Remark 3.3 From Definitions 2.4 and 3.1, we have the 

following diagram of implications for a function f:X→Y    

                                               

                                            Perfectly continuity 

                                                           ↓ 

contra pre-continuity ←contra continuity  

             ↓ 

contra gp-continuity → contra δgp-continuity 

                                                              ↓ 

                                              contra gpr-continuity 

 

 

None of the implications in above diagram is reversible. 

 

Example 3.4 Consider X={a,b,c,d} with the topologies  

Τ = { X,Ф,{a},{b},{a},{b},{a,b,c}} and  σ 

={X,υ,{a},{b},{a,b}, {a,c},{a,b,c}}. Define f:(X,τ 

)→(X,σ)by f(a)=f(b)=a, f(c)=b and f(d)=c. Then f is contra 

gpr-continuous but not contra  δgp-continuous, since {a} is 

open in Y but  

f
−1

({a})={a,b}  is not  δgp-closed in X.  

Define g:(X,τ )→(X,σ) by  g(a)=g(c)=a, g(b)=b and 

g(d)=d. Then g is contra δgp-continuous but not contra  

gp-continuous, since {a}  is open  in Y  but   

g
−1

({a})={a,c}  is not gp-closed in X. 

 

Remark 3.5 (a) contra δgp-continuity and  δgp-contin- uity 

are independent  each other. 

(b) contra δgp-continuity and contra gδs-continuity are 

independent each other. 

Example 3.6 In Example 3.4,f is δgp-continuous but not 

contra  δgp-continuous. 

 

Example 3.7 Consider X,_ and _ as in Example in 3.4. 

Define h:(X,τ )→(X,σ) by h(a)=d, h(b)=c, h(c)=a and 

h(d)=b. Then h is contra δgp-continuous but not δgp-

continuous, since {a,b}  is open in Y but  h
−1

({a,b})={c,d}  

is not  δgp-open in X . 

 

Definition 3.8 A space X is called locally  δgp-indiscrete if 

every  δgp-open set is  δgp-closed in X. 

 

Theorem 3.9 If f:X→Y is a contra  δgp-continuous and X is 

locally  δgp-indiscrete space, then f is  δgp-continuous. 

Proof: Let V be a closed set in Y. Since f is contra  δgp-

continuous and X is locally  δgp-indiscrete space, then  

f
−1

(V) is  δgp-closed in X. Hence f is  δgp-continuous. 

 

Definition 3.10 [22] A space X is called locally indiscrete if 

every open set is closed in X. 

 

Theorem 3.11 If f:X→Y is a _gp-continuous and Y is 

locally indiscrete space, then f is contra  δgp-continuous. 

Proof: Let G be any open set of  Y. Since Y is locally 

indiscrete space and f is  δgp-continuous, then f
−1

(G) is  

 δgp-closed in X. Hence f is contra  δgp-continuous. 

 

Theorem 3.12 [27] (a)In extremely disconnected space X, 

every gδs-closed set is  δgp-closed. 

(b)In strongly irresolvable space X, every  δgp-closed set is 

gδs-closed. 

              As a consequence of Theorem 3.12, we have the 

following Theorem 3.13 and Theorem 3.14. 

 

Theorem 3.13 If f:X→Y is a contra gδs-continuous and X is 

extremely disconnected space, then f is contra  δgp-

continuous. 

 

Theorem 3.14 If f:X→Y is a contra δgp-continuous and X is 

strongly irresolvable space, then f is contra gδs-continuous. 

 

Theorem 3.15 If f:X→Y is contra δgp-continuous and X is 

Tδgp-space,then f is contra continuous. 

Proof: Suppose X is Tδgp-space and f is contra  δgp-

continuous. Let G be an  open set in Y,by hypothesis 
  

f
−1

(G)  is  δgp-closed in X and hence  f
−1

(G) is closed in 

X. Therefore f is contra continuous. 

 

Theorem 3.16 If f:X→Y is contra  δgp-continuous and X is 

δgpT1/2-space,then f is contra pre-continuous. 

 

Proof: Suppose X is  δgpT1/2-space and f is contra δgp-

continuous. Let G be an open set in Y,by hypothesis  

 f
−1

(G) is δgp-closed in X and hence f
−1

(G) is pre-closed 

 in X. Therefore f is contra pre-continuous. 

 

Theorem 3.17 If f:X→Y is contra δgp-continuous and  X is 

semi regular, then f is contra gp-continuous. 

Proof: Follows from the fact that every open set is  δ-open in 

semi-regular space. 

 

Lemma 3.18 [27] For a subset A of a space X, the following 

are equivalent: 

(a)A is clopen; 

(b)A is open and pre-closed; 

(c)A is open and gp-closed; 
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(d)A is δ-open and  δgp-closed; 

(e)A is regular-open and gpr-closed. 

Lemma 3.19 For a subset A of a space X, the following are 

equivalent: 

(a)A is clopen . 

(b) A is regular-open and pre-closed. 

(c)A is  δ-open and pre-closed. 

            Following Theorem is immediate from Lemma 3.18 

and Lemma 3.19: 

 

Theorem 3.20  The  following statements   are  

equivalent  for  a  function f:X→Y: 

(a)f is perfectly continuous. 

(b)f is continuous  and contra  pre-continuous. 

(c)f is continuous  and contra  gp-continuous. 

(d)f is super-continuous and contra  δgp-continuous.  

(e)f is r-continuous  contra  gpr-continuous. 

(f )f is r-continuous  and contra  pre-continuous. 

(g)f is super-continuous and contra  pre-continuous. 

 

Theorem 3.21  If  f:X→Y  is  contra   δgp-contin- 

uous,   then  the  following equivalent statements  hold: 

(i)  For  each x ∈ X and  each closed set B of Y 

containing  f(x),there  exists an δgp-open set A in X 

containing  x such that f(A)⊂B. 

(ii)For each x ∈ X and each open set G of Y not 

containing  f(x),there  exists a δgp-closed set H in X not 

containing  x such that f
−1

(G)⊂H. 

Proof: Let B be a closed set in Y such that  f(x)∈B, 

then x ∈ f
−1

(B).  By hypothesis, f
−1

(B )  is δgp-open set  

in  X containing  x.   Let  A = f
−1

(F), then f(A) = 

f(f
−1

(B))⊂B. 

 

Theorem 3.22  [5] Let A⊂X.Then  x∈ δgpcl(A) if 

and  only if U∩A=  Φ, for every δgp-open set U 

containing  x. 

       

       Recall that  for a subset A of a space (X,τ ),  the set 

∩{U∈τ /A⊆U} is called the kernel of A and is denoted 

by ker(A). 

 

 

Lemma 3.23  [14] The following properties  hold for 

subsets A and B of a space X : 

(i)  x ∈ ker(A) if and only if A∩F=υ  for any closed set F 

of X containing  x. 

(ii)  A ⊂ ker(A)  and A = ker(A)  if A is open in X. 

(iii)  If A ⊂ B, then ker(A) ⊂ ker(B). 

 

Definition 3.24  A space X is said to be δgp- additive 

if δGPC(X)  is closed under arbitrary intersections. 

 

Theorem 3.25  Let X be δgp-additive, then the 

following are equivalent for a function f:X→Y. 

(i)  f is contra  δgp-continuous. 

(ii)  For  each x ∈ X and each closed set D of Y 

containing f(x),  there  exists an δgp-open set C in X 

containing  x such that f(C)⊂D.  

(iii) f(δgpcl(C))⊂ker(f(C)) for every subset C of X. 

(iv) δgpcl(f
−1

(D))⊂ f
−1

(ker(D))for every subset D of Y. 

Proof: (i)→(ii)It follows from Theorem  3.21 

(ii)→(i) Let G be a closed set in Y containing  f(x),then  

x ∈ f
−1

(G).  From  (ii), there exists δgp-open set Ux  in X 

containing  x such that f(Ux)⊂D, Ux⊂  f
−1

(G).  

Thus f
−1

(G)=∪{Ux : x ∈ f
−1

(G)} is δgp-open in X . 

(i)→(iii)Let C be any subset of X. Suppose y∈/ker(f(C)), 

then by Lemma 3.23, there exists a closed set D in Y 

containing  y such that  f(C) ∩ D = υ.  Hence we have,  

C ∩ f
−1

(D)=υ and δgp-cl(C) ∩ f
−1

(D)=υ which 

implies f(δgpcl(C)) ∩ D=υ and hence y∈/f(δgpcl(C)). 

Therefore f(δgpcl(C)) ⊂ ker(f(C)). 

(iii)→(iv)Let D ⊂ Y, then f
−1

(D) ⊂ X. By (iii) and 

Lemma3.23, f (δgpcl(f
−1

(D))) ⊂ ker(f (f
−1

(D))) ⊂  

ker(D). Thus δgpcl(f
−1

(D)) ⊂ f
−1

(ker(D)). 

(iv)→(i) Let U be any open subset of Y. Then by (iv) 

and Lemma 3.23, δgpcl(f
−1

(U) ⊂ f
−1

(ker(U)) =  

f
−1

(U) and δgpcl(f
−1

(U)) = f
−1

(U). Therefore  

 f
−1

(V) is δgp-closed set in X. 

 

 

Theorem 3.26  If a surjective function f:(X,τ )→(Y,σ) 

is contra δgp-continuous and preclosed with X as a Tδgp -

space, then Y is locally indiscrete. 

Proof: Let H be any open set in Y. Since f is contra  

δgp-continuous and X is Tδgp-space, then f
−1

(H) is 

closed in X. Since f is preclosed, then H is preclosed in Y. 

Thus we have cl(H) = cl(int(H))⊂H and hence H is 

closed in Y. 

 

 

Theorem 3.27  If f:(X,τ )→(Y,σ) is contra δgp-contin- 

uous, X is δgp-additive and Y is regular,  then f is δgp-

continuous. 

Proof:Let x ∈ X and  N be any  open set of Y contain- 

ing  f(x).   As Y is regular, there  exists an open set M in 

Y containing  f(x) such that  cl(M) ⊂ N.  Since f is contra  

δgp-continuous, there  exists an  δgp-open set  U in  X 

containing  x such that f(U) ⊂ cl(M). Then f(U) ⊂ cl(M) 

⊂ N. Hence by Theorem  3.25, f is δgp- contin- uous. 

                        Recall that, for a function f:X→Y,the subset 

{(x,f(x)):x∈X}⊂X×Y is called the graph of f and is 

denoted by G(f ). 
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Definition 3.28  The graph G(f ) of a function f:(X,τ 

)→(Y,σ) is said to be contra  δgp-closed if for each 

(x,y)∈(X×Y)-G(f ) there exist δgp-open set U in X 

containing  x and closed set V in Y containing  y such that 

(U×V)∩G(f )=υ. 

 

Theorem 3.29  The  graph  G(f )  of a  function  

 f:(X,τ )→(Y,σ) is  contra δgp-closed in  X×Y  if and  

only for each  (x,y)∈(X×Y)-G(f )  there  exist δgp-open 

set U in X containing  x and  closed set V in Y 

containing  y such that f(U)∩V=υ. 

 

Theorem 3.30  If f:(X,τ )→(Y,σ) is contra δgp-contin- 

uous and Y is Urysohn, then G(f ) is contra  δgp-closed in 

the product space X×Y. 

Proof:Let (x,y)∈(X×Y)-G(f ),then  y=f(x) and there  exist 

open sets U and V such that  f(x)∈U,y∈V and 

cl(U)∩cl(V)=υ.  Since f is contra  δgp-continuous, then 

there  exists a δgp-open set G such that  x∈G and 

f(G)⊂cl(U)  and hence we obtain f(G)∩cl(V)=υ.This 

shows that G(f ) is contra  δgp-closed. 

 

Theorem 3.31  Let g:X→X×Y be the graph function of 

f:X→Y,defined by g(x)=(x,f(x)) for each x∈X. Then f is 

contra  δgp-continuous,if g is contra  δgp- continuous. 

Proof:Let V be any open set in Y, then X×V is an open 

set in X×Y.It  follows that  f 
−1 

(U)=g
−1

(X×U)  is δgp-

closed in X since  g is contra  δgp-continuous. Hence f is 

contra  δgp-continuous. 

 

Definition 3.32  [24] A space X is submaximal if every 

pre-open set is open in X. 

 

Theorem 3.33  If M and N are δgp-closed sets in a 

submaximal space X, then M∪N is δgp-closed in X. 

Proof:  Let U be δ-open set  in  X such that  M∪N⊂U. 

Then  pcl(M)⊂U  and pcl(N)⊂U since M and N are δgp-

closed sets.  As X is submaximal, pcl(A)=cl(A) for  any  

subset  A  of X. Therefore  pcl(M∪N)=pcl(M)∪pcl(N)⊂U  

and  hence M∪N is δgp-closed. 

 

Corollary 3.34  If A and B are δgp-open sets in 

submaximal space X, then A∩B is δgp-open in X. 

 

Theorem 3.35  [5] If A⊂X is δgp-closed,then 

A=δgpcl(A) 

 

Remark 3.36  Converse of above theorem is true if X 

is δgp-additive. 

 

Theorem 3.37  Assume that X is δgp-additive. If 

f:X→Y and g:X→Y are contra δgp-continuous, X is 

submaximal and Y is Urysohn.  Then F={x∈X:f(x)=g(x)} 

is δgp-closed in X. 

Proof:  Let x∈X-F, then  f(x)=g(x). Therefore,there  

exist open sets  U and  V such that  f(x)∈U,g(x)∈V and  

cl(U)∩cl(V)=υ because Y is Urysohn.   Since f and g are 

contra  δgp-continuous , f
−1

(cl(U))   and g
−1

(cl(V)) are 

δgp-open sets in X . Let M= f
−1

(cl(U))  and N = 

g
−1

(cl(V)), then M and N are δgp-open sets containing  

x. Set O=M∩N,  then O is δgp-open set in X. Hence  

f(O)∩g(O)=f(M∩N)∩g(M∩N)⊂f(M)∩g(N)=cl(U)∩cl(V) 

=υ and so O∩F=υ. From Theorem 3.22, x ∈/δgpcl(F). 

Hence by above remark,  F is δgp-closed in X. 

 

Definition 3.38  A space X is called δgp-connected 

provided that  X is not the union of two disjoint 

nonempty δgp-open sets. 

 

Theorem 3.39  For  a space X the following are 

equivalent: (a)  X is δgp-connected. 

(b) υ and X are the only subsets of X which are both δgp-

open and δgp-closed. (c) Every contra  δgp-contin- uous 

function of X into a discrete space Y with at least two 

points is a constant  function. 

Proof:  (a)→(b): Suppose A is any proper  δgp-open 

and δgp-closed subset of   X.   Then  X-A is both δgp-

closed and  δgp-open in  X. Then  X=A∪(X-A)  and 

A∩(X-A)=υ  which contradicts  the fact that  X is δgp-

connec- ted.  Hence A=υ or X. 

(b)→(a): Suppose X=A∪B where A and B are disjoint 

δgp-open subsets of X. Since A=X-B,  A is both δgp-

closed and δgp-open but by assumption  A=υ or X which 

is a contradiction. Hence (a)  holds. 

(b)→(c): Let f:X→Y be a contra  δgp-continuous function 

where Y is a discrete space with at least two points.  Then  

f
−1

({y})  is δgp-closed and δgp-open for each y ∈ Y 

and  X = ∪{f
−1

({y}): y ∈ Y}.By hypothesis,   

f
−1

({y})  = υ or  X. If  f
−1

({y})=υ for all y ∈ Y, 

then f is fails to be a function.  Then there exists only one 

point y ∈ Y such that f
−1

({y})=υ and hence  

f
−1

({y})=X. This shows that f is constant 

(c)→(b):  Let N be a nonempty  proper  δgp-open and  

δgp-closed subset of X. Let f:X→Y be a contra  δgp-

continuous function defined by f(N)={y} and f(X- 

N)={z} for  some distinct  points  in  Y.  By (c),  f is 

constant  it  follows that N=X. 

 

Theorem 3.40  If f:X→Y  is a contra  δgp-continuous  

function  and  X is 

δgp-connected space, then Y is not a discrete space. 

Proof: If possible,let Y be a discrete space.  Let A be a 

proper non empty open and closed subset of Y. Since f is 
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contra  δgp-continuous, then f
−1

(A) is proper nonempty 

δgp-open and δgp-closed subset of X which contradicts  the 

fact that X is δgp-connected space.  Hence Y is not 

discrete. 

 

Theorem 3.41  If a surjective  function  f:X→Y  is 

contra  δgp-continuous and X is δgp-connected space, then 

Y is connected. 

Proof:  Suppose that  Y is not  a connected  space.   

Then  there  exist disjoint open sets U and V in Y such 

that Y=U∪V.  Therefore  U and V are closed sets in Y. 

Since f is contra  δgp-continuous, f
−1

(U)  and  f
−1

(V)  

are  δgp-open sets in X . Also f is surjective , f
−1

(U)  

and  f
−1

(V)  are  non  empty disjoint  and X = f
−1

(U)  

∪ f
−1

(V) which contradicts  the fact that X is δgp-

connected space. Hence Y is connected. 

 

Theorem 3.42  Let X be a δgp-connected and Y be T1   

-space.  If f:X→Y 

is contra  δgp-continuous,  then f is constant. 

Proof: By hypothesis Y is T1 -space, K={ f
−1

(y): 

y∈Y} is a disjoint  δgp-open partition  of X. If |K|≥2,  

then X is the union  of two nonempty δgp-open sets. 

This is contradiction to the fact that X is δgp-connected.  

Therefore  |K|=1  and hence f is constant. 

 

Definition 3.43 A topological space X is said to be δgp-

Hausdorff space if for any pair of distinct points x and y, 

there exist disjoint δgp-open sets G and H such that x ∈ 

G and y ∈ H. 

 

Theorem 3.44  If an  injective  function  f:X→Y  is 

contra  δgp-continuous and Y is an Urysohn space.  Then 

X is δgp-Hausdorff. 

Proof:  Let  x and  y be any  two distinct  points  in  X 

and  f is injective,then f(x)=f(y).  Since Y is an Urysohn 

space,  there  exist open sets A and B in Y containing  

f(x) and f(y) respectively,such that cl(A)∩cl(B)=υ.Then 

f(x) ∈ cl(A) and  f(y) ∈ cl(B).  Since f is contra  δgp-

continuous, then  by Theorem  3.8,  there exist δgp-open 

sets  C and  D in  X containing  x and  y,respectively,such  

that f(C) ⊆ cl(A)  and f(D) ⊆ cl(B). We have C ∩ D ⊆ 

f
−1

(cl(A)) ∩ f
−1

(cl(B)) = f
−1

(υ) = υ. Hence X is 

δgp-Hausdorff. 

 

Definition 3.45  [25] A space X is called Ultra  normal  

space,  if each pair of disjoint closed sets can be separated  

by disjoint clopen sets. 

 

Definition 3.46  A topological space X is said to be δgp-

normal if each pair of disjoint closed sets can be separated  

by disjoint δgp-open sets. 

 

Theorem 3.47  If f:X→Y be contra  δgp-continuous 

closed injection  and Y is ultra  normal,  then X is δgp-

normal. 

Proof: Let E and F be disjoint closed subsets of X. Since 

f is closed and injective f(E) and f(F) are disjoint closed 

sets in Y. Since Y is ultra normal there exist disjoint 

clopen sets U and V in Y such that f(E)⊂U  and f(F)⊂V.  

This im- plies E⊂ f
−1

(U) and F⊂ f
−1

(V). Since f is 

contra δgp-continuous injection, f
−1

(U) and f
−1

(V) are 

disjoint δgp-open sets in X. This shows X is δgp-normal. 

 

Remark 3.48  The composition of two contra δgp-

continuous functions need not be contra  δgp-continuous as 

seen from the following examples. 

 

Example 3.49  let X=Y=Z={a,b,c}, 

τ ={X,υ,{a},{b},{a,b}},σ={Y,υ,{a}} and 

η={Z,υ,{b,c}} be topologies on X,Y and Z respectively.  

Define a function f:X→Y as f(a)=a,f(b)=b and f(c)=c  

and a function g:Y→Z as g(a)=b,g(b)=c and g(c)=a. 

Then f and g are contra  δgp-continuous but g⋆f:X→Z is 

not contra δgp-continuous, since  there exists an open set 

{b,c} in Z such that(g⋆f)
−1

{b,c}={a,b} is not δgp-

closed in X. 

 

Theorem 3.50  For  any  two functions  f:X→Y  and  

g:Y→Z,the  following hold: 

(i)g⋆f  is contra  δgp-continuous  if f is contra  δgp-

continuous  and  g is contra continuous. 

(ii)g⋆f is contra  δgp-continuous if f is δgp-continuous and 

g is contra  continuous. 

(iii)g⋆f is contra δgp-continuous f is δgp-irresolute and g is 

contra δgp-continuous.  

Proof:(i) Let U be an open set in Z. Then g
−1

(V) is 

open in Y since g is continuous.  

Therefore  f
−1

[g
−1

(U)]=(g⋆f )
−1

(U)  is δgp-closed in X 

because f is contra δgp-continuous.  Hence g⋆f is contra  

δgp-continuous. 

The proofs of (ii)  and (iii)  are analogous to (i)  with the 

obvious changes. 

 

Theorem 3.51  Let f:X→Y be contra  δgp-continuous 

and g:Y→Z be δgp- continuous  with Y is Tδgp -space, 

then g⋆f:X→Z is contra  δgp-continuous.  

Proof:Let V be any open set in Z . Since g is δgp-

continuous, g
−1

(V)  is δgp- open in  Y and  since  Y is 

Tδgp -space,  g
−1

(V)  open in  Y . Since  f is contra 

δgp-continuous,  f
−1

(g
−1

(V ))=(g⋆f )−1
(V ) is δgp-closed 

set in X. Therefore  g⋆f is contra  δgp-continuous. 
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Definition 3.52  A function f:X→Y is called pre δgp-

closed if the image of every δgp-closed set of X is δgp-

closed in Y. 

 

Theorem 3.53  Let f:X→Y  be pre δgp-closed surjec- 

t ion  and g:Y→Z be a function  such  that  g⋆f:X→Z is  

contra  δgp-continuous,then   g is  contra  δgp- contin- 

uous. 

Proof:Let U be any open set in Z.Then (g⋆f )
−1

(U)= 

f
−1 

(g
−1

(U )) is δgp-closed in X. Since f is a pre δgp-

closed surjection, f(f
−1

(g
−1

(U)))= g
−1

(U ) is δgp- 

closed set in Y.  Therefore,  g is contra  δgp-continuous. 
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