International Journal of Scientific Research in

Centroidal, Logarithmic and Identric Mean Labeling of Graphs

Alagu S. ${ }^{\mathbf{1 *}}$, R. Kala ${ }^{\mathbf{2}}$
1,2 Dept. of Mathematics, Manonmaniam Sundaranar University Tirunelveli - 627012, Tamilnadu, India
Correspondence Author: alagu391@gmail.com

Available online at: www.isroset.org

Received: 12/Apr/2019, Accepted: 26/Apr/2019, Online: 30/Apr/2019

Abstract

Graph labeling was first introduced by Rosa in 1966 [1]. Labeling of graphs is an assignment of non-negative integers to vertices, edges or both according to some specified conditions. Mean labeling of graphs was introduced by Somasundaram.S and Ponraj.R in 2003[2]\&[3]. Subsequently, labelings of graphs were done with geometric mean, harmonic mean etc.,. We have already introduced Centroidal mean labeling[4], Logarithmic and Identric mean labeling of graphs[5]. In this paper we acquire these mean labelings for some more standard graphs.

MSC 2000: 05C78, 05C38

Keywords: Centroidal Mean, Logarithmic Mean, Identric Mean, Labeling, Mean graphs, Centroidal mean labeling, Logarithmic mean labeling, Identric mean labeling.

I. INTRODUCTION

The study of a mean labeling is a two way process. It not only shows how different graphs behave with respect to the particular mean but also it shows how the mean behaves graphically. This is to present the academic point of view and not the application side of it, though it has some.

Notations : Let a, b be two positive integers. Then $C(a, b)$, $L(a, b), I(a, b)$ denote the Centroidal mean, Logarithmic mean and Identric mean of a and b respectively.

Definition 1.1 [4]: Let $G=(V, E)$ be a graph with p vertices and q edges. G is said to be a centroidal mean graph if it is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1,2, \ldots . q+1$ in such a way that on labeling each edge $e=x y$ with $\left\lfloor\frac{2\left(x^{2}+x y+y^{2}\right)}{3(x+y)}\right\rceil$ or $\left\lceil\frac{2\left(x^{2}+x y+y^{2}\right)}{3(x+y)}\right\rceil$, the resulting edge labels are distinct and are from $1,2, \ldots . q$. In this case, f is called a Centroidal mean labeling.

Definition 1.2 [5]: Let $G=(V, E)$ be a graph with p vertices and q edges. G is said to be a Logarithmic mean graph if it is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1,2, \ldots . q+1$ in such a way that on labeling each edge $e=x y$ with $\left\lfloor\frac{y-x}{\log y-\log x}\right\rfloor$ or $\left\lceil\frac{y-x}{\log y-\log x}\right\rceil$, the resulting edge labels are distinct and are from $1,2, \ldots . q$. In this case, f is called a Logarithmic mean labeling.

Definition 1.3 [5]: Let $G=(V, E)$ be a graph with p vertices and q edges. G is said to be a Identric mean graph if it is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1,2, \ldots . q+1$ in such a way that on labeling each edge $e=x y$ with $\left\lfloor\frac{1}{e}\left(\frac{x^{x}}{y^{y}}\right)^{\frac{1}{x-y}}\right\rfloor$ or $\left\lceil\frac{1}{e}\left(\frac{x^{x}}{y^{y}}\right)^{\frac{1}{x-y}}\right\rceil$, the resulting edge labels are distinct and are from $1,2, \ldots . q$. In this case, f is called a Identric mean labeling.

Definition 1.4 : A graph G is said to be complete, if every pair of distinct vertices are adjacent. A complete graph on n vertices is denoted by K_{n}.

Definition 1.5 [6]: An Alternate Triangular Snake $A\left(T_{n}\right)$ is obtained from a path $u_{1} u_{2} \ldots u_{n}$ by joining u_{i} and u_{i+1} (alternately) to new vertex v_{i}. That is every alternate edge of a path is replaced by C_{3}.

Definition 1.6 [6]: An Alternate Quadrilateral Snake $A\left(Q_{n}\right)$ is obtained from a path $u_{1} u_{2} \ldots u_{n}$ by joining $u_{1}, u_{3, \ldots} u_{n-1}$ (alternately) to new vertices $v_{1}, v_{2}, \ldots v_{\frac{n}{2}}$ respectively, $u_{2}, u_{4}, \ldots u_{n}$ to new vertices $w_{1}, w_{2}, \ldots w_{n}$ respectively and then joining v_{i} and $w_{i}\left(1 \leq i \leq \frac{n}{2}\right)^{2}$ or by joining $u_{2}, u_{4}, \ldots u_{n-2}$ (alternately) to new vertices $v_{1}, v_{2}, \ldots v_{\frac{n}{2}-1}$ respectively, $u_{3}, u_{5}, \ldots u_{n-1}$ to new vertices $w_{1}, w_{2}, \ldots w_{\frac{n}{2}-1}$ respectively and then joining v_{i} and $w_{i}\left(1 \leq i \leq \frac{n}{2}-1\right)$.

That is every alternate edge of a path is replaced by C_{4}. The two types of Alternate Quadrilateral Snakes correspond to whether C_{4} starts from u_{1} or u_{2} respectively.

Definition 1.7 [6]: The square G^{2} of a graph G has $V\left(G^{2}\right)=$ $V(G)$, with u, v adjacent in G^{2} whenever $d(u, v) \leq 2$ in G.

II. MAIN RESULTS

Section I

Theorem 1 : Alternate Triangular Snakes are Centroidal, Logarithmic and Identric mean graphs.

Proof :

Let $A\left(T_{n}\right)$ be an Alternate Triangular snake. Two different cases arise depending on the structure of $A\left(T_{n}\right)$.

Case (i): C_{3} starts from u_{1}
Consider the function $f: V\left(A\left(T_{n}\right)\right) \rightarrow\{1,2, \ldots q+1\}$ defined by $f\left(u_{i}\right)=2 i-1(1 \leq i \leq n)$ and $f\left(v_{i}\right)=$ $2 i$ for $i=1,3, . . n-1$. The edges $u_{i} u_{i+1}(1 \leq i \leq n)$ receive the label $2 i, u_{i} v_{i}(i=1,3,5 . . n-1)$ receive $2 i-1$ as the label , $v_{i} v_{i+1}(i=1,3,5 \ldots n-1)$ receive the label $2 i+1$.

Case (ii) : C_{3} starts from u_{2}
Let the function $f: V\left(A\left(T_{n}\right)\right) \rightarrow\{1,2, \ldots q+1\}$ be defined by $\quad f\left(u_{1}\right)=1, f\left(u_{2}\right)=2, f\left(u_{i}\right)=2 i-2(3 \leq i \leq n)$, $f\left(v_{i}\right)=2 i-1$ for $i=2,4,6 \ldots n-2$. The edges $u_{i} u_{i+1}(1 \leq i \leq n-1), u_{i} v_{i}(i=2,4,6 \ldots n-2)$, $v_{i} u_{i+1}(i=2,4,6 \ldots n-2)$ receive the label $2 i-1,2 i-$ $2,2 i$ respectively.

These functions work well as Centroidal, Logarithmic and Identric mean labeling.
Thus $A\left(T_{n}\right)$ is Centroidal, Logarithmic and Identric mean graph.

Theorem 2 : Alternate Quadrilateral Snakes are Centroidal, Logarithmic and Identric mean graphs.

Proof :

Let $A\left(Q_{n}\right)$ be an Alternate Quadrilateral snake. Two different cases arise depending on the structure of $A\left(Q_{n}\right)$.

Case (i): C_{4} starts from u_{1}
Define $f: V\left(A\left(T_{n}\right)\right) \rightarrow\{1,2, \ldots q+1\} \quad$ by $f\left(u_{1}\right)=1$, $f\left(v_{1}\right)=2, f\left(w_{1}\right)=3, f\left(u_{2}\right)=4$,
$f\left(u_{i}\right)=f\left(u_{i-2}\right)+5 ;(3 \leq i \leq n)$,
$f\left(v_{i}\right)=f\left(v_{i-1}\right)+5 ; 2 \leq i \leq \frac{n}{2}$,
$f\left(w_{i}\right)=f\left(w_{i-1}\right)+5 ; 2 \leq i \leq \frac{n}{2}$.
Edges get labeled in the following manner.
$f\left(u_{1} v_{1}\right)=1, f\left(v_{1} w_{1}\right)=2, f\left(u_{1} u_{2}\right)=3, f\left(u_{2} w_{1}\right)=$
$4, f\left(u_{2} u_{3}\right)=5$,
$f\left(u_{i} u_{i+1}\right)=f\left(u_{i-2} u_{i-1}\right)+5 ; 3 \leq i \leq n-1$,
$f\left(u_{i} v_{\frac{i+1}{2}}\right)=f\left(u_{i-2} v_{\frac{i-1}{2}}\right)+5 ; i=3,5,7 \ldots n-1$
$f\left(v_{i} w_{i}\right)=f\left(v_{i-1} w_{i-1}\right)+5 ; 2 \leq i \leq \frac{n}{2}$,
$f\left(u_{i} w_{\frac{i}{2}}\right)=f\left(u_{i-2} w_{\frac{i}{2}-1}\right)+5 ; i=4,6, \ldots n$
Hence all the edge labels are distinct.
Case (ii) : C_{4} starts from u_{2}
Define $f: V\left(A\left(T_{n}\right)\right) \rightarrow\{1,2, \ldots q+1\}$ by
$f\left(u_{1}\right)=1, f\left(u_{2}\right)=2, f\left(v_{1}\right)=3$,
$f\left(w_{1}\right)=4, f\left(u_{3}\right)=5$,
$f\left(u_{i}\right)=f\left(u_{i-2}\right)+5 ;(4 \leq i \leq n)$,
$f\left(v_{i}\right)=f\left(v_{i-1}\right)+5 ; 2 \leq i \leq \frac{n}{2}-1$,
$f\left(w_{i}\right)=f\left(w_{i-1}\right)+5 ; 2 \leq i \leq \frac{n}{2}-1$.
Edges labels are as follows.
$f\left(u_{1} u_{2}\right)=1, f\left(u_{2} v_{1}\right)=2$,

$$
f\left(v_{1} w_{1}\right)=3, f\left(u_{2} u_{3}\right)=4, f\left(u_{3} w_{1}\right)=5
$$

$f\left(u_{i} u_{i+1}\right)=f\left(u_{i-2} u_{i-1}\right)+5 ; 4 \leq i \leq n-1$,
$f\left(u_{i} v_{\frac{i}{2}}\right)=f\left(u_{i-2} v_{\frac{i}{2}-1}\right)+5 ; i=4,6,8 \ldots n-2$,
$f\left(v_{i} w_{i}\right)=f\left(v_{i-1} w_{i-1}\right)+5 ; 2 \leq i \leq \frac{n}{2}-1$,
$f\left(u_{2 i+1} w_{i}\right)=f\left(u_{i-2} w_{i-1}\right)+5 ; 2 \leq i \leq \frac{n}{2}-1$.
The labels are all distinct.
Hence $A\left(Q_{n}\right)$ is Centroidal, Logarithmic and Identric mean graph.

In the above two theorems we see that the same function works for Centroidal, Logarithmic and Identric labeling. Now we have a theorem where Centroidal mean labeling and Logarithmic/Identric mean labeling have different functions.

Theorem 3: P_{n}^{2} is Centroidal, Logarithmic and Identric mean graph.

Proof:

The function $f: V\left(P_{n}^{2}\right) \rightarrow\{1,2,3, \ldots . q+1\}$ defined by $f\left(u_{1}\right)=1, f\left(u_{i}\right)=2(i-1) ;(2 \leq i \leq n)$ yields labels for the edges $u_{i} u_{i+1}(1 \leq i \leq n-1)$ as $2 i-1$ and for the edges $u_{i} u_{i+2}(1 \leq i \leq n-2)$ as $2 i$. Hence this function is a Centroidal mean labeling.

The function $f: V\left(P_{n}^{2}\right) \rightarrow\{1,2,3, \ldots . q+1\}$ defined by $f\left(u_{i}\right)=2(i-1) ;(1 \leq i \leq n-1), \quad f\left(u_{n}\right)=2 n-2$ yields labels for the edges $u_{i} u_{i+1}(1 \leq i \leq n-1)$ as $2 i-1$
and for the edges $u_{i} u_{i+2}(1 \leq i \leq n-2)$ as $2 i$. Hence this function is Logarithmic and Identric mean labeling.

Thus P_{n}^{2} is a Centroidal, Logarithmic and Identric mean graph.

Section II

Centroidal mean labeling of $\boldsymbol{K}_{\boldsymbol{n}}$

Now we make some observations which will be useful in establishing the impossibility of Centroidal mean labeling of K_{n}, in general.

Observation 1 :

For $m \geq 2, \frac{2 m}{3}-\left\lfloor\frac{2 m}{3}\right\rfloor=0 \quad$ if $m=3 k$

$$
\begin{aligned}
& =0.333 \text { if } m=3 k-1 \\
& =0.666 \text { if } m=3 k-2
\end{aligned}
$$

Observation 2: $C(1, m) \simeq \frac{2 m}{3}$ as m grows larger. That is, $C(1, m)$ approaches $\frac{2 m}{3}$.
$C(1, m)-\frac{2 m}{3}=\frac{2}{3}-\frac{2 m}{3(m+1)}$
$\frac{m}{m+1} \rightarrow 1$ as $m \rightarrow \infty$
Hence $\lim _{n \rightarrow \infty}\left[C(1, m)-\frac{2 m}{3}\right]=0$
Observation $3:\lfloor C(1, m)\rfloor=\left\lfloor\frac{2 m}{3}\right\rfloor$

$$
\begin{aligned}
C(1, m) & =\frac{2}{3}(m+1)-\frac{2 m}{3(m+1)} \\
& =\frac{2 m}{3}+\frac{2}{3}\left(1-\frac{m}{m+1}\right) \\
& =\frac{2 m}{3}+\frac{2}{3(m+1)}
\end{aligned}
$$

Note that for $m=1, \frac{2}{3(m+1)}=0.333$
Case (i) : $\frac{2 m}{3}$ is an integer $\Rightarrow\lfloor C(1, m)\rfloor=\left\lfloor\frac{2 m}{3}\right\rfloor$
Case (ii) : $\frac{2 m}{3}=\left\lfloor\frac{2 m}{3}\right\rfloor+0.333$

$$
\frac{2 m}{3}<C(1, m)<\frac{2 m}{3}+0.333=\left\lfloor\frac{2 m}{3}\right\rfloor+0.666
$$

Therefore $\lfloor C(1, m)\rfloor=\left\lfloor\frac{2 m}{3}\right\rfloor$
Case (iii) : $\frac{2 m}{3}=\left\lfloor\frac{2 m}{3}\right\rfloor+0.666$
$\frac{2 m}{3}<C(1, m)<\frac{2 m}{3}+0.333=\left\lfloor\frac{2 m}{3}\right\rfloor+0.999$
Therefore $\lfloor C(1, m)\rfloor=\left\lfloor\frac{2 m}{3}\right\rfloor$
Observation 4 : For $m \geq 6, \quad C(1, m)-\frac{2 m}{3}<\frac{1}{10}$

$$
\begin{aligned}
C(1, m) & =\frac{2\left(1+m+m^{2}\right)}{3(1+m)} \\
& =\frac{2}{3}(1+m)-\frac{2 m}{3(m+1)} \\
C(1, m) & -\frac{2 m}{3}=\frac{2}{3}\left[1-\frac{m}{m+1}\right]=\frac{2}{3(m+1)} \\
m \geq 6 & \Rightarrow m+1 \geq 7 \\
& \Rightarrow 3(m+1) \geq 21 \\
& \Rightarrow \frac{2}{3(m+1)} \leq \frac{2}{21}<\frac{1}{10} \\
& \Rightarrow C(1, m)-\frac{2 m}{3}<\frac{1}{10}
\end{aligned}
$$

Observation 5 : For $m \geq 6$,

$$
\begin{aligned}
& C(2, m)-C(1, m)<\frac{1}{10} \\
& C(2, m)-C(1, m)=\frac{2\left(4+2 m+m^{2}\right)}{3(2+m)}-\frac{2\left(1+m+m^{2}\right)}{3(1+m)} \\
& =\frac{2}{3}\left[1-\frac{m^{2}}{(m+1)(m+2)}\right] \\
& C(2, m)-C(1, m)<\frac{1}{10} \Leftrightarrow \frac{2}{3}\left[1-\frac{m^{2}}{(m+1)(m+2)}\right]<\frac{1}{10} \\
& \Leftrightarrow 1-\frac{m^{2}}{(m+1)(m+2)}<\frac{3}{20} \\
& \Leftrightarrow \frac{m^{2}}{(m+1)(m+2)}>\frac{17}{20} \\
& \Leftrightarrow 3 m^{2}-51 m-34>0 \\
& \Leftrightarrow m>17.6 \& m<0.64
\end{aligned}
$$

Hence $C(2, m)-C(1, m)<\frac{1}{10} \quad \forall m \geq 18$
Observation 6 : For $m \geq 30, C(3, m)-C(2, m)<\frac{1}{10}$
$C(3, m)-C(2, m)=\frac{2\left(9+3 m+m^{2}\right)}{3(3+m)}-\frac{2\left(4+2 m+m^{2}\right)}{3(2+m)}$

$$
\begin{aligned}
& =\frac{2}{3}(m+3)-\frac{2 m}{m+3}-\quad \frac{2}{3}(m+ \\
& \text { 2) }+\frac{4 m}{3(m+2)} \\
& =\frac{2}{3}\left[\frac{5 m+6}{(m+2)(m+3)}\right] \\
& C(2, m)-C(1, m)<\frac{1}{10} \Leftrightarrow \frac{2}{3}\left[\frac{5 m+6}{(m+2)(m+3)}\right]<\frac{1}{10} \\
& \Leftrightarrow \frac{5 m+6}{(m+2)(m+3)}<\frac{3}{20} \\
& \Leftrightarrow 3 m^{2}-85 m-102>0 \\
& \Leftrightarrow m<-1.15 \& m>29.48
\end{aligned}
$$

Therefore, $C(2, m)-C(1, m)<\frac{1}{10} \quad \forall m \geq 30$
Result : All the above observations lead to the result that, for $m \geq 30$,

$$
\left\lfloor\frac{2 m}{3}\right\rfloor<C(1, m)<C(2, m)<C(3, m)<\left\lfloor\frac{2 m}{3}\right\rfloor+1
$$

Theorem 4 : For $n>4, K_{n}$ is not a Centroidal mean graph.

Proof :

Let $q=\frac{n(n-1)}{2}$ be the number of edges. To get 1 as an edge label, some pair of vertices receive (1,2). Therefore 1 and 2 are compulsory vertex labels. To get 2 as an edge label, some pair of vertices must receive one of the following : $(1,2),(2,3),(1,3)$. Since $(1,2)$ has already been used for the label 1 , it is inevitable that we go for $(2,3)$ or $(1,3)$. Either of the choices demand the need for 3 as a vertex label. So it is mandatory that some triplet receives $1,2,3$ as vertex labels. Now to get q as an edge label, one of the following must be given to some pair of vertices.
$(q-2, q),(q-1, q),(q-1, q+1),(q, q+1),(q-2, q+$ 1), $(q-3, q+1)$

Hence some vertex must receive either q or $q+1$.
But for $m \geq 30,\left\lfloor\frac{2 m}{3}\right\rfloor<C(1, m)<C(2, m)<C(3, m)<$ $\left\lfloor\frac{2 m}{3}\right\rfloor+1$.

It becomes impossible to give different labels to $(1, q),(2, q),(3, q) \quad$ or $\quad(1, q+1),(2, q+1),(3, q+1)$. Therefore, $K_{n}(n \geq 9)$ is not a Centroidal mean graph. It is easy to see that K_{2}, K_{3}, K_{4} are Centroidal mean graphs. Now we give the argument for $5 \leq n \leq 8$. For $n=6,7,8, q=$ 15, 21, 28 respectively. For K_{6}, one of the vertices must receive 15 or 16 . But all of $C(1,15 / 16), C(2,15 / 16), C(3,15 / 16)$ lie between 10 and 11. Labeling $(1,15 / 16),(2,15 / 16),(3,15 / 16)$ with different labels is impossible. As for $K_{7}, C(1,7 / 8), C(2,7 /$ $8), C(3,7 / 8)$ all lie between 14 and 15 and hence different labels for those three edges are out of question. Similarly for K_{8},
$18<C(1,28)<C(2,28)<C(3,28)<19$ and
$19<C(1,29)<C(2,29)<C(3,29)<20$.
Now let us consider K_{5}. Since $q=10$, some vertex must receive 10 or 11 as a label. If some vertex is given 11 , then the inequality $7<C(1,11)<C(2,11)<C(3,11)<8$ makes it impossible in giving different labels to $(1,11),(2,11),(3,11)$. Suppose that 10 is given for some vertex. Then the possibilities are $(9,10)$ and $(8,10)$.
But $6<C(1,9)<C(2,9)<C(3,9)<7$ and $5<C(1,8)<$ $C(2,8)<C(3,8)<6$.
Therefore, K_{5} is not a Centroidal mean graph.
Hence the theorem.

III. CONCLUSION

In [4] and [5], we have already investigated the Centroidal, Logarithmic and Identric mean labelings for the following types of graphs : Path, Cycle, Star, Triangular Snake, Quadrilateral Snake, Crown, Ladder, Comb, Caterpillar and Dragon.

In this paper, we have investigated these three mean labelings for a few more standard graphs like Alternate Triangular Snake, Alternate Quadrilateral Snake, product graph P_{n}^{2} and Centroidal mean for the Complete graph K_{n}. As a scope for future work, further investigation with more graphs may be carried out; moreover, as in other mean labelings, general characterization results may be of interest.

Acknowledgement: The first author thanks Department of Science and Technology (DST), India, for its financial support through INSPIRE fellowship.

REFERENCES

[1]. Rosa. A, On Certain Valuations of the Vertices of a Graph, Theory of Graphs (International Symposium, Rome July 1996, Gordon and Breach, NV and Dunod Paris), (1967), 349-355.
[2]. Somasundaram. S and Ponraj. R, Mean Labeling of Graphs, National Academy Science Letters, 26(2003) pp.210-213.
[3]. Somasundaram. S and Ponraj. R, Some results on mean graphs, Pure and Applied Mathematika Sciences, 58(2003), 29-35.
[4]. Alagu. S and R. Kala, Centroidal Mean Labeling of graphs, Far East Journal of Mathematical Sciences (To appear)
[5]. Alagu. S and R. Kala, Logarithmic and Identric Mean Labeling of Graphs (Communicated)
[6]. Gallian. J.A , A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, (DS6)(2012).

AUTHORS’ PROFILE

Alagu. S, (M.Sc., M.Phil.) is a Research Scholar pursuing Ph.D degree in Mathematics at Manonmaniam Sundaranr University, Tirunelveli. She gave a brilliant academic performance securing first rank at the university level in both undergraduate and postgraduate studies. Presently, she is a DST INSPIRE fellow.

Dr.R.Kala is a Professor of Mathematics at Manonmaniam Sundaranar University, Tirunelveli. She has published 3 books, 45 papers in International journals and 9 in national journals. She has 19 years of teaching experience and 25 years of research experience.

