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Abstract: The purpose of this paper is to obtain sufficient conditions for the existence of unique fixed point of generalized 

contractive type mappings on complete metric spaces. 
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I. INTRODUCTION 

 

Guang and Xian generalized the notion of metric spaces, replacing the set of real numbers by an ordered Banach space, 

defining in this way, a cone metric space. These authors also described the convergence of sequences in cone metric spaces and 

introduced the corresponding notion of completeness. Afterwards, they proved some fixed point theorems of contractive 

mappings on complete cone metric spaces. 

 

A. Beiranvand, S. Moradi, M. Omid and H. Pazandeh introduced the classes of T-Contractive functions, extending the Banach 

Contraction principle and Edelstein’s fixed point theorem. 

In this paper, we generalized the notion of T-contractive mapping defined on a complete cone metric space      , and exdend 

the results. 

 

Definitions and preliminary  

 

Definition 1: Let E be a real Banach space and P  a subset of E . P  is called cone if and only if : 

 

1)   is closed, non-empty, and   { }, 

2)                        and non-negative real numbers    ; 

3)        { }. 

 Note also that the relations PPP intintint  and  )0(intint   PP holds. For given cone EP  , we 

can define on E  a partial ordering with respect to P by putting yx   if and only if Pxy  . Further, yx   stands for

yx   and yx  , while     stands for Pxy int , where Pint denotes the interior of P . 

 

http://www.isroset.org/
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Definition 2: Let E  be a real Banach space and EP   be a cone. The cone P  is called normal if there is a number 0K  

such that for all yxEyx  0,,  implies yKx   

The least positive number K  satisfying the above inequality is called the normal constant of P . 

In the following, we always suppose that E  is a real Banach space, P  is a cone in E  with 0int P  and   is the partial 

ordering with respect to P . 

 

Definition 3: Let M  be a non-empty set and EMMd :  a mapping such that: 

(i)          for all       and          if and  only if    ; 

(ii)               for all      ; 

(iii)                      for all        . 

Then d  is called a cone metric on M  and ),( dM  is called a cone metric space.  

Notice that the notion of  a cone metric space is more general than the corresponding of a metric space.  

 

Definition 4: Let ),( dM  be a cone metric space, {  }  a sequence in X . and Xx . 

(i) {  } converges to  , if for every             , there is an    such that for all     ,          . We 

denote this by            or           . 

(ii) If for any             , there is an    such thatfor all       ,           . Then  {  } is called a 

Cauchy sequence in  . 

(iii)       is called a complete cone metric space, if every Cauchy sequence in   is convergent in  . 

 

Lemma 1: Let ),( dM  be a cone metric space, EP a normal cone with normal constant K . let {  } , {  }  be a sequence 

in M  and Myx , . 

(i) {  } converges to   if and only if                . 

(ii) If  {  } converges to   and {  } converges to y then    . That is the limit of {  } is unique. 

(iii) If {  } converges to  , then {  } is Cauchy  sequence. 

(iv) {  } is a Cauchy sequence if and only if                   

(v) If     ,  and      ,       then                . 

 

Definition 5: Let ),( dM  be a cone metric space, P be a normal cone with normal constant K  and MMT : . Then  

(i)   is said to be continuous if             implies that              for all {  } in  . 

(ii)   is said to be subsequentially convergent, if for every sequence  {  } that {   } is convergent ,  

       implies {  } has a convergent subsequences. 

(iii)   is said to be sequentially convergent if for everysequence {  } ,if {   } is convergent, then of  

     {  } also is convergent. 

 

Definition 6: Let ),( dM  be a cone metric space and let MMS :  be a functions. S  is said to be a generalized T  – 

Contraction, if there exist non negative constants cba ,,  such that 124    and 

 

                      (                                      )   (                   ) 
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Lemma 2: Let ),( dM  be a complete cone metric space with normal cone P  with normal constant K . Suppose )1,0(

and {  }  is a sequence in X  such that                                       Then {  }  is a Cauchy sequence in

X . 

 

II. MAIN RESULTS 
 

Theorem 1: Let ),( dM  be a complete cone metric space with normal cone P with normal constant K . In addition let 

MMT :  be a continuous and MMS :  a generalized T  – Contraction. Suppose S and T  commute. Then, 

(1) For every                      
          

(2) There is     such that    
   

        

(3) If   is subsequentially convergent, then  

(i) {    } has a convergent subsequence; 

(ii) There is Mu such that uSu  ; 

(4) If   is sequentially convergent, then for each      the iterate sequence {    } has a converges to  . 

(5)   is constant on the fixed point set of  . If further   is one – one then   has unique fixed point. 

Proof:   

Let     . We define the iterate sequence{  } by                 Then  

                             

                            [                                                       ]             

   [                            ] 

                            [                                                   ]

  [                          ] 

                            [                                                    ]

  [                         ] 

                             [            ]   [            ]   [                         ]  

                                        [            ]  

                                        [            ] 

(       )                                  

             
        

(       )
                  

Now 

  
        

(       )
   

                            

Hence {   } is a Cauchy sequence. 

Since         consequently 

   
   

          
          

   
               

Thus (1) holds. 

Since   is a complete there exists     such that 

   
   

         
   

                                                        …… (2) 

Thus (2) holds. 

Now, suppose   is subsequentially convergent. Then from equation (2) {    } has a convergent subsequence. 

Thus (3(i)) holds. 

So, there are     and      such that    
   

           …… (3) 
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Since   is continuous  

   
   

                                                                         …… (4) 

From (2) & (4) 

    …… (5) 

On the other hand 

               (               ) 

                                          

                             [                                                     ]     

  [                           ] 

On letting    , we get 

                     [                                     ]   [                  ]  

                                 

                                      

                                                                                …… (6) 

               (               ) 

                                          

                             [                                                     ]

  [                            ] 

On letting    , we get 

                     [                                     ]   [                  ]  

                                 

                                      

                                                                                 …… (7) 

From (7) & (6) 

           

   is a fixed point of  . Thus (3(ii)) holds, 

Now, clearly (4) holds. 

Suppose  &  are fixed point of  . 

Then we show that      . 

                      [                                     ]   [                   ]  

                    [                                   ]   [                 ]  

                          

                                                                                   …… (8) 

           

Since   is constant on the fixed point of  . 

Thus (5) holds. 

If   is one – one, from (8) follows that   has unique fixed point if we assume that   is one – one instead of assuming that   and   

commute. 

 

Corollary 1: Let       be a complete cone metric space,   be a normal cone with normal constant  . In addition let       be a 

continuous and       a generalized   – Contraction. Suppose   and   commute. Then, 

1. For every                      
          

2. There is     such that    
   

        

3. If   is subsequentially convergent, then {    } has a convergent subsequence 

4. There is     such that    . 
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5. If   is sequentially convergent, then for each      the iterate sequence {    } has a converges to  . 
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