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l. INTRODUCTION

This paper deals with some quasi- condition on rings and
modules. The term quasi- arises from Hirano’s study of a
number of concepts which arose from [1]. He defined quasi-
Armendariz rings and established a number of interesting
properties of these rings as follows:

Definition 1.1: A ring R is quasi-Armendariz if whenever
polynomials f(¥) = TiZsa: X" and £(X) = $7,b:%7 satisfy
FfXIR[X]1g(x) = 0then a;Rb; = 0 forall i.j.

Quasi-Armendariz modules can be defined analogously.
They were studied by Baser [2] and other authors. The
definition is as follows:

Definition 1.2:A left R-module M is a quasi-Armendariz if
whenever two polynomials f(X)} = ¥Z,a;X" € R[X] and
m(X) = F7_,m X e M[X] satisfy fOXIR[X]m(X) =0
then a; Rm; = 0for i, .

In view of these definitions it seems appropriate to call a
vanishing condition in which an element a is replaced by the
corresponding principal left ideal Ra as a quasi-condition. A
few quasi-conditions are defined and studied in this paper. In
section 1l, we have extended various quasi-compatibility
condition from [6]. In section Il we define and study two
quasi-analogues of the reduced module concept.

Il. QUASI-COMPATIBILITY

We begin with the following definitions
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Definition:2.1 A left R -module M is direct- & -
quasicompatible(d- & -quasicompatible) whenever & € R and
m € M satisfying afm =0, we have ala)Bm =0, it is
reverse- « -quasicompatible(r- & -quasicompitible) if
whenever a € B and m € M satisfying ela)Am =0, we
have aflm = 0,

Definition 2.2: A ring R is left d-a-quasicompatible(r- -
quasicompitible) if the left R-module R is left d- & -
quasicompatible(r- a-quasicompitible).

Proposition 2.3: If a left #-module M is d-a&-compatible
then M is left d-e-quasicompatible.

Proof: Let e € A and m e M satisfy afm = 0 that is
atm =0 for all t € K. Since M is d-a-compatible then we
have w{al)(tm) =0 for all £t R . Hence it implies
a(a)fAm =0,

Remark 2.4: If left R-module M is «-quasicompatible and
semicommutative, then left -module M is compatible.

Some results that hold in the compatibility case have
straightforward analogues in the quasicompatibility case. We
record a few of them.

Proposition 2.5: Let R be a ring and @ be an onto
endomorphism in R. Then ring R is left r- a-quasicompatible
if and only if & is one-to-one and R is right d- & -
quasicompatible.

Proof: Assume that R is a left r-zz-quasicompatible. Then the
condition @(a)fb =0 implies aRb = 0 .This vyields, on
letting b=1, & is one-to-one. Suppose next that elements a, b
of Rsatisfy aRb = 0, that is (at}b =0 for all t € R. Then
alat)a(B) = 0 that is ela)a(t)a(l) = 0for all t €R.
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Since @ is onto, we have alalse(b) =0 for all s €R.
Therefore ala)Ra(b) = 0. By r-a-quasi-compatibility of R,
we get aRe(b) = 0. Next assume that R is right d-e-quasi-
compatible and a.b R satisfy alalRb =0 implies
ala)(th) =0 for all t € B. Then alala(th) = 0 holds,
implying alath) = 0. Since « is one-to-one then ath = 0
that is aRb = 0,

Proposition 2.6: A flat module over a left d- e -quasi-
compatible is d-a-quasi-compatible.

We remark that the analogue in the
compatibility case holds.

reverse o -

I1l.  QUASI-REDUCEDNESS

For the definition of quasi-armendariz modules see 1.2.
Definition 3.1: A left R -module M is linearly quasi-
Armendariz if whenever two linear polynomials
fX)=a+bX eR[X] and mX)=m+nX € M[X]
satisfy F(X}R[X]m(X)} = 0 then aRn = 0and bAm = 0.

Definition 3.2: A left R -module M is ps-Armendariz if
whenever two polynomials f(X) = EiZga:X' € R[[X]] and
m(X) = T5,mX e M[[X]] satisfy f(X)R[[x]}m(X) = 0

then a; Rm; = 0 forall i .

It may be noted that ps-Armendariz modules are quasi-
Armendariz and quasi-Armendariz modules are linearly
quasi-Armendariz.

We next introduce two definitions which is to be called
as quasi-reducedness conditions.

Definition 3.3: Let M be a left R-module. We say that M
satisfies condition QR-1 if whenever element @ € R and
m € M satisfy aRam = 0 we have am =0,

Definition 3.4: Let M be a left R -module. We say that
M satisfies condition QR-Il if it satisfies the following
equivalent conditions.
(i) For elements @ € R and m € M | the condition
afaRm = 0 implies aflm = 0.
(ii) For elements @ € R and m € M | the condition
aftafm = 0 implies am = 0.

We note that following easily verifiable fact: The classes of
modules satisfying either of the conditions QR-1 and QR-II
over a ring are closed under direct products, submodules and
direct sums.

Proposition 3.5: If a module M satisfies QR-I, then M
satisfies QR-II.

Proof: Assume that QR-I holds for M and that for some
elementa € R and m € M we have aRaflm = 0. Then we
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certainly have aRflam = 0 yielding am = 0. Hence QR-II
holds for M.
The following result is a characterization of semiprime
rings using the QR-I and QR-I1 conditions.
Proposition 3.6: The following conditions are equivalent.
(i) The left E-module & satisfies QR-II.
(i) The condition aRaRb = 0 implies al =0,
(iii) The condition aRaRb =0 implies
aRbh = 0.
(iv) The ring R is semiprime.
(v) The left R-module R satisfies QR-I.

Proof: (i) = (iv) Suppose that aRa = 0. Then aflaR1l = 0.
By using the given condition we have aR1 = 0, showing that
R is semiprime. (iv) = (i) let aRaRbE =0 . Since
bRa = RaR, we have abRab = aRaRb = 0, which implies
since R is semiprime alr =0, (iii) = (ii) Assume that for
element a,b ER we have aRaRb=10 Then
abRab = alRaRb = 0, Therefore 1RabRal =0 yielding
Rab =0 and hence ab =0 . (ii) = (iii) Assume that
aRbRb =0 holds. Let £ = K. We have ath = aRb and Rat <
R.Hence atbRath = aRbRb =0 yielding atbRathR.1. =
0 Hence ath =0 . (iii) = (iv) let a.b e R satisfies
aRbRb = 0. Now (RaRb)* = RaRbRaRb = RaRbRb = 0
implies that (RaRb)* = 0. Since R is semiprime we have
RaRb =0 which yields aRaRb = 0. Then by condition (i)
we have afth = 0,

(v) = (i) holds as a special case of proposition 3.5.

(iv) = (v) Suppose that aRab =0 holds for elements
a, b € K. Then abRab = aRab = 0 yields as the ring £ is
semiprime, ab =0,

In the following results we relates the “QR’
conditions with modules and rings satisfying other
conditions.

Proposition 3.7: Rigid modules satisfy QR-I

Proof: Let left-module M be a rigid module. Let a £ & and
m € M satisfy aRam =0 . This condition implies
a~m = 0. By the rigidity of M we have am = 0. Hence M
satisfies QR-I.

Corollary 3.8: Reduced modules satisfy QR-I.

Example 3.9: Let R be a non-reduced, semiprime ring, for
example, the matrix ring M. (K} over a field K. Then,
regarded as a left module over itself, R satisfies QR-I(by
proposition 3.6), but is non-reduced.

Proposition 3.10: Cyclically semiprime modules satisfy QR-
I
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Proof: Suppose that for elements a e R andme M | a
cyclically semiprime module, we have aRfam =0 and
am =0 .Now there exist
g € (Rm)"  satisfying [(em)glam =0 Since
almg)am € aRam = 0.We arrive at a contradiction. Hence
am = 0.

Definition 3.11: A ring R is left (right) weakly regular if
every left(right) ideal is idempotent, equivalently, if for every
x € R we have x € RxRx (x € xRxR). It is weakly regular if
it is both left and right weakly regular.

Remark 3.12: Von Neumann regular rings as well as quasi-
simple rings are left and right weakly regular.

Proposition 3.13: B is left weakly regular if and only if
every left R-module satisfies QR-I.

Proof: (=) The condition aRam = 0 certainly implies
RaRam = 0. Since R is left weakly regular we have
= (Ra)*. So we have Ram = 0 and therefore am = 0.
(=) For ae R , consider the left £ - module
M = R/RaRa.As aRal = 0in M, we have al =0
yielding o € RaRa. Therefore R is left weakly regular.

The following well-known result is a consequence of
proposition 3.6 and 3.13.

Corollary 3.14: If R is left weakly regular then it is
semiprime.

Remark 3.15:If the ring R is right weakly regular we have
afl = aflaR for each a € R. It follows from definition 3.4
that every left Z-module satisfies QR-II.

Example 3.16: It was shown by Andruszkiewicz and
Puczylowski (see the last paragraph of [8]) that the weakly
regular condition is not left-right symmetric. Let R be a right
weakly regular ring(with an identify element) which is not
left weakly regular so that there exists an element & £ R such
that RbRE += R, Then by proof of the ’if” implication in
proposition 3.13 the left R-module M = R /RbRE does not
satisfy QR-l. However, since R is right weakly regular, by
remark 3.15M satisfies QR-II. Thus the condition QR-I is
strictly stronger than the condition QR-II.

Proposition 3.17: Modules satisfying QR-Il are linearly
quasi-Armendariz.

Proof: Suppose that (a + BX)R(m + nX) = 0.

Then aftm = 0 = kRn and atn + btm = Oforall £t € R,

We assert bitm = 0 = aRn, proving that M is linearly quasi-
Armendariz. Suppose if possible,bsm = 0 for some s € R.
Now if bRbRm # 0, then we have bsbum # 0 for some
u e R. Now aun + bwmn =0 implies bwm = — aun, so
0 # bsaun € BAn = 0, which is a contradiction. Hence

© 2018, IJSRMSS All Rights Reserved

Vol. 5(6), Dec 2018, ISSN: 2348-4519

bRbRm = 0, yielding BRm =0, Similarly, we can show
afln =0,
Corollary 3.18: Modules which satisfy QR-I are linearly
quasi-Armendariz.
Proposition 3.19: Cyclically semiprime modules are linearly
quasi-Armendariz.
Corollary 3.20: Semiprime modules are linearly quasi-
Armendariz.
Corollary 3.21: Semiprime
Armendariz .
Corollary 3.22: Prime rings are linearly quasi-Armendariz .
Qusetion: Are all cyclically semiprime modules ps-quasi-
Armendariz? Next we consider simple, semisimple and
semiprimitive modules.
Proposition 3.23: Simple modules satisfy condition QR-I.
Proof: Suppose that for an element @ € R and m € M we
have affam =0 and eam =0 . As M = Ram , yielding
0 = R{aRam) = RaRam = RaM =M as0 = am =alM,a
contradiction. So M satisfies condition QR-I.
Corollary 3.24: Semisimple Modules (more generally,
semiprimitive modules) satisfy condition QR-I.
Proof:Semisimple modules(more generally, semiprimitive
modules) are submodules of direct products of some families
of simple modules.
It is easy to see that free modules over semiprime rings
satisfy QR-I condition. In fact, more generally we have the
following result.
Proposition 3.25: Flat modules over semiprime rings satisfy
condition QR-I.
Proof: Let M be a flat module over the semiprime ring E.
Let m € M satisfy aRaRm = 0. Now, let & be an R -
epimorphism #: F — M | where F is free. We denote the
kernel of 8 by K. Let x € F satisfy 8(x) =m and let
r.teR Then [Blaratx) = aratf(x) = aratm =0
Therefore aratx € K. Since M is flat, by well known
proposition in ([15], Corollary 11.4 in Chapter 1) there exists
anR-homomorphism y: F — K satisfying y{arat) = aratx.
Since F is free andy{x).x & F then we write x = (x;) and
y() =m0y where  p(ylx)).x; R Now
araty (x) = aratx  implies arat(y(x) —x) =0 and
therefore  arat (p.-'[}"ix] - (x,-]}) =0 in R. Hence
aRaR (p.-{}’(x] - 'i,r.-]}) =0 for all i. Since R is semi-
simple we have aR(p(x) —(x;))=0 that s
aR(y(x) —x) =0 which implies aRy(x) =aRx. Now
aRfm = aR plx) = flaRx) = _.G‘{nR}’{.r]} =
aR (8(y(x))) =ar.0=0
Therefore aftim = 0. Hence M satisfies QR-I
Proposition 3.26: Consider the following conditions for a
ring f.

(i) R is left weakly regular.

(ii) Every left E-module satisfies condition QR-I

(iii) Every left E-module satisfies condition QR-II.

rings are linearly quasi-
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(iv) R is semiprime with regular centre.

Then (i) = (ii) and (ii) = (iii) = (iv) hold.
Proof: (i) = (ii) holds by proposition 3.13, (ii) = (iii)
follows from proposition 3.5 and it is easy to verify (iii) =

(iv).

The following example shows that there exist modules over
semiprime rings with regular centres which do not satisfy the
condition QR-II.

Example 3.27: Consider the domain R =K{X,¥} of
polynomials in noncommutative indeterminants X and ¥
over a field K. The ring R, being a domain, is semiprime and
has the field K as its centre. Let M be a left & -module
R/RXRXE. We have XEXR1 = 0 in M. However XR1 = 0.
This shows that M does not satisfy QR-II.

V. CONCLUSION

By considering power series instead of polynomial, one can
get the notion of ps-quasi-Armendariz modules. It may be
noted that ps-quasi-Armendaiz  modules are quasi-
Armendariz. So a question which arises from our study and
which we have not yet settled is the following.

Are all cyclically semiprime modules ps-quasi-Armendariz?
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