

International Journal of Scientific Research in Mathematical and Statistical Sciences Volume-5, Issue-6, pp.255-258, December (2018) **Research Paper**

E-ISSN: 2348-4519

On Quasi-Reduced Modules

K.H. Singh^{1*}, N. Ansari², M. Dutta³

¹Department of mathematics, North Eastern Regional Institute of Science & Technology, Arunachal Pradesh, India ²Department of mathematics, North Eastern Regional Institute of Science & Technology, Arunachal Pradesh, India ³Department of mathematics, North Eastern Regional Institute of Science & Technology, Arunachal Pradesh, India

**Corresponding Author: heranerist@gmail.com, Tel.:* +919436346673

Available online at: www.isroset.org

Received 12/Oct/2018, Accepted 06/Dec/2018, Online: 31/Dec/2018

Abstract—This paper generalizes the concept of a reduced modules. We introduced the concept of quasi-reduced-I i.e, QR-I and quasi-reduced-II i.e, QR-II in modules and studied some of their properties.

Keywords-Reducedring, Armendarizring, Semi-primerinand Rigidrings

I. INTRODUCTION

This paper deals with some quasi- condition on rings and modules. The term quasi- arises from Hirano's study of a number of concepts which arose from [1]. He defined quasi-Armendariz rings and established a number of interesting properties of these rings as follows:

Definition 1.1: A ring *R* is quasi-Armendariz if whenever polynomials $f(X) = \sum_{i=0}^{m} a_i X^i$ and $f(X) = \sum_{j=0}^{n} b_j X^j$ satisfy f(X) R[X]g(X) = 0 then $a_i R b_i = 0$ for all *i*, *j*.

Quasi-Armendariz modules can be defined analogously. They were studied by Baser [2] and other authors. The definition is as follows:

Definition 1.2: A left R-module *M* is a quasi-Armendariz if whenever two polynomials $f(X) = \sum_{i=0}^{m} a_i X^i \in R[X]$ and $m(X) = \sum_{j=0}^{n} m_j X^j \in M[X]$ satisfy f(X) R[X]m(X) = 0 then $a_i Rm_j = 0$ for *i*, *j*.

In view of these definitions it seems appropriate to call a vanishing condition in which an element a is replaced by the corresponding principal left ideal Ra as a quasi-condition. A few quasi-conditions are defined and studied in this paper. In section II, we have extended various quasi-compatibility condition from [6]. In section III we define and study two quasi-analogues of the reduced module concept.

II. QUASI-COMPATIBILITY

We begin with the following definitions

Definition:2.1 A left R -module M is direct- α quasicompatible(d- α -quasicompatible) whenever $a \in R$ and $m \in M$ satisfying aRm = 0, we have $\alpha(a)Rm = 0$, it is reverse- α -quasicompatible(r- α -quasicompitible) if whenever $a \in R$ and $m \in M$ satisfying $\alpha(a)Rm = 0$, we have aRm = 0.

Definition 2.2: A ring **R** is left d- α -quasicompatible(r- α -quasicompitible) if the left R-module **R** is left d- α -quasicompatible(r- α -quasicompitible).

Proposition 2.3: If a left *R*-module *M* is d- α -compatible then M is left d- α -quasicompatible.

Proof: Let $a \in R$ and $m \in M$ satisfy aRm = 0 that is atm = 0 for all $t \in R$. Since M is d- α -compatible then we have $\alpha(a)(tm) = 0$ for all $t \in R$. Hence it implies $\alpha(a)Rm = 0$.

Remark 2.4: If left *R*-module *M* is α -quasicompatible and semicommutative, then left *R*-module *M* is compatible.

Some results that hold in the compatibility case have straightforward analogues in the quasicompatibility case. We record a few of them.

Proposition 2.5: Let R be a ring and α be an onto endomorphism in R. Then ring R is left r- α -quasicompatible if and only if α is one-to-one and R is right d- α -quasicompatible.

Proof: Assume that R is a left r- α -quasicompatible. Then the condition $\alpha(\alpha)Rb = 0$ implies $\alpha Rb = 0$. This yields, on letting b=1, α is one-to-one. Suppose next that elements a, b of R satisfy $\alpha Rb = 0$, that is $(\alpha t)b = 0$ for all $t \in R$. Then $\alpha(\alpha t)\alpha(b) = 0$ that is $\alpha(\alpha)\alpha(t)\alpha(b) = 0$ for all $t \in R$.

Since α is onto, we have $\alpha(a)s\alpha(b) = 0$ for all $s \in R$. Therefore $\alpha(a)R\alpha(b) = 0$. By r- α -quasi-compatibility of R, we get $aR\alpha(b) = 0$. Next assume that R is right d- α -quasi-compatible and $a, b \in R$ satisfy $\alpha(a)Rb = 0$ implies $\alpha(a)(tb) = 0$ for all $t \in R$. Then $\alpha(a)\alpha(tb) = 0$ holds, implying $\alpha(atb) = 0$. Since α is one-to-one then atb = 0 that is aRb = 0.

Proposition 2.6: A flat module over a left d- α -quasi-compatible is d- α -quasi-compatible.

We remark that the analogue in the reverse α - compatibility case holds.

III. QUASI-REDUCEDNESS

For the definition of quasi-armendariz modules see 1.2. **Definition 3.1**: A left *R* -module M is linearly quasi-Armendariz if whenever two linear polynomials $f(X) = a + bX \in R[X]$ and $m(X) = m + nX \in M[X]$ satisfy f(X)R[X]m(X) = 0 then aRn = 0 and bRm = 0.

Definition 3.2: A left R-module M is ps-Armendariz if whenever two polynomials $f(X) = \sum_{i=0}^{\infty} a_i X^i \in R[[X]]$ and $m(X) = \sum_{j=0}^{\infty} m_j X^j \in M[[X]]$ satisfy f(X) R[[X]]m(X) = 0 then $a_i Rm_i = 0$ for all i, j.

It may be noted that ps-Armendariz modules are quasi-Armendariz and quasi-Armendariz modules are linearly quasi-Armendariz.

We next introduce two definitions which is to be called as quasi-reducedness conditions.

Definition 3.3: Let M be a left R-module. We say that M satisfies condition QR-I if whenever element $a \in R$ and $m \in M$ satisfy aRam = 0 we have am = 0.

Definition 3.4: Let M be a left R-module. We say that M satisfies condition QR-II if it satisfies the following equivalent conditions.

- (i) For elements $a \in R$ and $m \in M$, the condition aRaRm = 0 implies aRm = 0.
- (ii) For elements $a \in R$ and $m \in M$, the condition aRaRm = 0 implies am = 0.

We note that following easily verifiable fact: The classes of modules satisfying either of the conditions QR-I and QR-II over a ring are closed under direct products, submodules and direct sums.

Proposition 3.5: If a module M satisfies QR-I, then M satisfies QR-II.

Proof: Assume that QR-I holds for M and that for some element $a \in R$ and $m \in M$ we have aRaRm = 0. Then we

Vol. 5(6), Dec 2018, ISSN: 2348-4519

certainly have aRam = 0 yielding am = 0. Hence QR-II holds for M.

The following result is a characterization of semiprime rings using the QR-I and QR-II conditions.

- **Proposition 3.6**: The following conditions are equivalent.
 - (i) The left \mathbb{R} -module \mathbb{R} satisfies QR-II.
 - (ii) The condition aRaRb = 0 implies ab = 0.
 - (iii) The condition aRaRb = 0 implies aRb = 0.
 - (iv) The ring R is semiprime.
 - (v) The left R-module R satisfies QR-I.

Proof: (i) \Rightarrow (iv) Suppose that aRa = 0. Then aRaR1 = 0. By using the given condition we have aR1 = 0, showing that **R** is semiprime. (iv) \Rightarrow (i) let aRaRb = 0. Since $bRa \leq RaR$, we have $abRab \leq aRaRb = 0$, which implies since **R** is semiprime ab = 0. (iii) \Rightarrow (ii) Assume that for $a, b \in \mathbb{R}$ we have aRaRb = 0. Then element $abRab \leq aRaRb = 0$. Therefore 1RabRab = 0 yielding Rab = 0 and hence ab = 0. (ii) \Rightarrow (iii) Assume that aRbRb = 0 holds. Let $t \in R$. We have $atb \in aRb$ and $Rat \leq aRb$ R.Hence $atbRatb \leq aRbRb = 0$ yielding atbRatbR.1. 0 Hence atb = 0. (iii) \Rightarrow (iv) let $a, b \in \mathbb{R}$ satisfies aRbRb = 0. Now $(RaRb)^2 = RaRbRaRb \subseteq RaRbRb = 0$ implies that $(RaRb)^2 = 0$. Since R is semiprime we have RaRb = 0 which yields aRaRb = 0. Then by condition (i) we have aRb = 0.

(v) \Rightarrow (i) holds as a special case of proposition **3.5**.

(iv) \Rightarrow (v) Suppose that aRab = 0 holds for elements $a, b \in R$. Then $abRab \le aRab = 0$ yields as the ring R is semiprime, ab = 0.

In the following results we relates the "QR' conditions with modules and rings satisfying other conditions.

Proposition 3.7: Rigid modules satisfy QR-I

Proof: Let left*R*-module *M* be a rigid module. Let $a \in R$ and $m \in M$ satisfy aRam = 0. This condition implies $a^2m = 0$. By the rigidity of *M* we have am = 0. Hence *M* satisfies QR-I.

Corollary 3.8: Reduced modules satisfy QR-I.

Example 3.9: Let R be a non-reduced, semiprime ring, for example, the matrix ring $M_2(K)$ over a field K. Then, regarded as a left module over itself, R satisfies QR-I(by proposition **3.6**), but is non-reduced.

Proposition 3.10: Cyclically semiprime modules satisfy QR-I.

© 2018, IJSRMSS All Rights Reserved

Proof: Suppose that for elements $a \in R$ and $m \in M$, a cyclically semiprime module, we have aRam = 0 and $am \neq 0$.Now there exist $q \in (Rm)^*$ satisfying $[(am)q]am \neq 0$. Since $a(mq)am \in aRam = 0$.We arrive at a contradiction. Hence am = 0.

Definition 3.11: A ring *R* is left (right) weakly regular if every left(right) ideal is idempotent, equivalently, if for every $x \in R$ we have $x \in RxRx (x \in xRxR)$. It is weakly regular if it is both left and right weakly regular.

Remark 3.12: Von Neumann regular rings as well as quasisimple rings are left and right weakly regular.

Proposition 3.13: R is left weakly regular if and only if every left R-module satisfies QR-I.

Proof: (\Rightarrow) The condition aRam = 0 certainly implies RaRam = 0. Since R is left weakly regular we have $= (Ra)^2$. So we have Ram = 0 and therefore am = 0. (\Leftarrow) For $a \in R$, consider the left R - module M = R/RaRa. As aRa1 = 0 in M, we have a1 = 0 violding $a \in RaRa$. Therefore R is left weakly regular.

yielding $a \in RaRa$. Therefore R is left weakly regular.

The following well-known result is a consequence of proposition **3.6** and **3.13**.

Corollary 3.14: If R is left weakly regular then it is semiprime.

Remark 3.15: If the ring *R* is right weakly regular we have aR = aRaR for each $a \in R$. It follows from definition **3.4** that every left *R*-module satisfies QR-II.

Example 3.16: It was shown by Andruszkiewicz and Puczylowski (see the last paragraph of [8]) that the weakly regular condition is not left-right symmetric. Let R be a right weakly regular ring(with an identify element) which is not left weakly regular so that there exists an element $b \in R$ such that $RbRb \neq Rb$. Then by proof of the 'if' implication in proposition 3.13 the left R-module M = R/RbRb does not satisfy QR-I. However, since R is right weakly regular, by remark 3.15M satisfies QR-II. Thus the condition QR-I is strictly stronger than the condition QR-II.

Proposition 3.17: Modules satisfying QR-II are linearly quasi-Armendariz.

Proof: Suppose that (a + bX)R(m + nX) = 0.

Then aRm = 0 = bRn and atn + btm = 0 for all $t \in R$.

We assert bRm = 0 = aRn, proving that M is linearly quasi-Armendariz. Suppose if possible, $bsm \neq 0$ for some $s \in R$. Now if $bRbRm \neq 0$, then we have $bsbum \neq 0$ for some $u \in R$. Now aun + bum = 0 implies bum = -aun, so $0 \neq bsaun \in bRn = 0$, which is a contradiction. Hence bRbRm = 0, yielding bRm = 0. Similarly, we can show aRn = 0.

Corollary 3.18: Modules which satisfy QR-I are linearly quasi-Armendariz.

Proposition 3.19: Cyclically semiprime modules are linearly quasi-Armendariz.

Corollary 3.20: Semiprime modules are linearly quasi-Armendariz.

Corollary 3.21: Semiprime rings are linearly quasi-Armendariz.

Corollary 3.22: Prime rings are linearly quasi-Armendariz.

Qusetion: Are all cyclically semiprime modules ps-quasi-Armendariz? Next we consider simple, semisimple and semiprimitive modules.

Proposition 3.23: Simple modules satisfy condition QR-I.

Proof: Suppose that for an element $a \in R$ and $m \in M$ we have aRam = 0 and $am \neq 0$. As M = Ram, yielding 0 = R(aRam) = RaRam = RaM = M as $0 \neq am \in aM$, a contradiction. So M satisfies condition QR-I.

Corollary 3.24: Semisimple Modules (more generally, semiprimitive modules) satisfy condition QR-I.

Proof:Semisimple modules(more generally, semiprimitive modules) are submodules of direct products of some families of simple modules.

It is easy to see that free modules over semiprime rings satisfy QR-I condition. In fact, more generally we have the following result.

Proposition 3.25: Flat modules over semiprime rings satisfy condition QR-I.

Proof: Let M be a flat module over the semiprime ring R. Let $m \in M$ satisfy aRaRm = 0. Now, let β be an Repimorphism $\beta: F \to M$, where F is free. We denote the kernel of β by K. Let $x \in F$ satisfy $\beta(x) = m$ and let $r, t \in \mathbb{R}$. Then $\beta(aratx) = arat\beta(x) = aratm = 0$. Therefore $aratx \in K$. Since M is flat, by well known proposition in ([15], Corollary 11.4 in Chapter 1) there exists an R-homomorphism $\gamma: F \to K$ satisfying $\gamma(arat) = aratx$. Since F is free and $y(x), x \in F$ then we write $x = (x_i)$ and $\gamma(x) = (p_i(\gamma(x)))$ where $p_i(\gamma(x)), x_i \in \mathbb{R}.$ Now araty(x) = aratx implies arat(y(x) - x) = 0and therefore $arat(p_i(\gamma(x) - (x_i))) = 0$ in R. Hence $aRaR\left(p_i(\gamma(x) - (x_i))\right) = 0$ for all *i*. Since *R* is semiwe have $aR(p_i(x) - (x_i)) = 0$ that simple is aR(y(x) - x) = 0 which implies aRy(x) = aRx. Now $aRm = aR \beta(x) = \beta(aRx) = \beta(aR\gamma(x)) =$ $aR\left(\beta(\gamma(x))\right) = aR.0 = 0$

Therefore aRm = 0. Hence M satisfies QR-I

Proposition 3.26: Consider the following conditions for a ring R.

- (i) \mathbf{R} is left weakly regular.
- (ii) Every left \mathbb{R} -module satisfies condition QR-I
- (iii) Every left \mathbb{R} -module satisfies condition QR-II.

Int. J. Sci. Res. in Mathematical and Statistical Sciences

Vol. 5(6), Dec 2018, ISSN: 2348-4519

(iv) \mathbb{R} is semiprime with regular centre.

Then (i) \Leftrightarrow (ii) and (ii) \Rightarrow (iii) \Rightarrow (iv) hold. **Proof**: (i) \Leftrightarrow (ii) holds by proposition **3.13**, (ii) \Rightarrow (iii) follows from proposition **3.5** and it is easy to verify (iii) \Rightarrow (iv).

The following example shows that there exist modules over semiprime rings with regular centres which do not satisfy the condition QR-II.

Example 3.27: Consider the domain $R = K\{X, Y\}$ of polynomials in noncommutative indeterminants X and Y over a field K. The ring R, being a domain, is semiprime and has the field K as its centre. Let M be a left R -module R/RXRXR. We have XRXR1 = 0 in M. However $XR1 \neq 0$. This shows that M does not satisfy QR-II.

V. CONCLUSION

By considering power series instead of polynomial, one can get the notion of ps-quasi-Armendariz modules. It may be noted that ps-quasi-Armendaiz modules are quasi-Armendariz. So a question which arises from our study and which we have not yet settled is the following.

Are all cyclically semiprime modules ps-quasi-Armendariz?

Acknowledgment: The authors would like to thank Prof. M.B Rege for the useful discussion that led to the outcome of this paper.

REFERENCES

- [1] M.B. Rege, S.C. Chhawchharia, "Armendariz rings", Proc. Japan Acad. Ser. A Math. Sci, Vol.31, pp.123-141, 2012.
- [2] M. Baser, "On Armendariz and quasi-Armendariz modules", Note di Mathematica n., Vol.31, pp.123-141, 2012.
- [3] Kh.Hera Singh and A. M Bhuphang, "Semi-commutative and Duo Rings" Advances in Algebra Vol.8, pp. 1-12, 2015.
- [4] Y.Hirano, "Regular modules and V-modules", Hiroshima Math.J., Vol.31, pp.123-141, 2012.
- [5] T.K. Lee, Y.Zhou, "Armendariz and reduced rings", Comm. Algebra, Vol.31, pp.123-141, 2012.
- [6] T.K. Lee, Y.Zhou, "Reduced modules", Lecture Notes in Pure Appl. Math, Vol.31, pp.123-141, 2012.
- [7] Z. Liu, R. Zhao, "On weak Armendariz rings", Comm. Algebra, Vol.31, pp.123-141, 2012.
- [8] R.R. Andruszikiwiecz, E.R. Puczlowski, "Right fully idempotent rings need not be left fully idempotent", Glasgow Math.J, Vol.37, pp.155-157, 1995.
- [9] L. Liang, L. Wang, Z. Liu, "On a generalization of semicommutative rings ", Taiwanese J. of Math, Vol.31, pp.123-141, 2012.
- [10] G. Marks, "On 2-Primal ore Extensions", Comm in Algebra, Vol.31, pp.123-141, 2012.
- [11] G. Marks, R. Mazurek, M. Ziembowski ,"A unified approach to the various generalization of Armendariz ring", Bull.Aust.Math.Soc., Vol.31, pp.123-141, 2012.

- [12] M.B. Rege, A.M. Buhphang, "On reduced modules and rings", International Electronic Journal of Algebra, Vol.31, pp.123-141, 2012.
- [13] F.W. Anderson, K.R.Fuller, "Rings and Catagories of modules", Springer-Verlag, 1974
- [14] A.M. Buhphang, M.B. Rege, "Semi-commutative modules and armendariz modules", Arab J.Math.Sc., Vol.8, pp.53-65, 2002.
- [15] B. Stenstrom, "Rings of Quotients-An Introduction to the Methods of Ring Theory", Springer-Verlag, New York, 1975.