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Abstract— The Generalized Zagreb index of a graph   is defined for arbitrary non-negative integer   and   as         

          ∑             
      

       
      

       In this paper, we obtain expressions for generalized Zagreb index of 

Capra operation of cycle    on   vertices, which generalizing the existing results of Sardar et al. (Open J. Math. Sci. 1 (2017) 

44-51). As an application, this result enables us to find first Zagreb index, second Zagreb index and  -index of Capra operation 

of cycle    on   vertices. 
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I.  INTRODUCTION  

Let         be a simple graph with       
vertices and       edges. As usual,   is said to be an order 

and   the size of  . Let       be the degree of vertex   in 

 . We refer to [14] for unexplained terminology and 

notation. A graph invariant is any function on a graph that 

does not depend on a labeling of its vertices. Such quantities 

are also called topological indices. Hundreds of different 

invariants have been employed to date (with unequal 

success) in quantitative structure-activity relationship 

(QSAR) and quantitative structure-property relationship 

(QSPR) studies. In 1972, Gutman and Trinajsti   [13] 

introduced first Zagreb index    and second Zagreb index 

   of a graph   to study the structure-dependency of the 

total  -electron energy ( ), respectively, defined as  

 

      ∑  

      

       

and 

      ∑  

       

            

 

In the same paper, another topological index, 

defined as sum of cube of degrees of vertices of the graph 

was also shown to influence  . However this topological 

index was never again investigated and was left to oblivion, 

except in a recent paper by Furtula and Gutman [11] where 

they named this index as forgotten topological index or  -

index. With this notion, the forgotten topological index is 

defined as  

 

     ∑  

      

        

 

There are widely studied degree based topological 

indices and their polynomials due to their applications in 

chemistry, for details see [1,2,3,7,8,9,11,15,16]. 

 

In 2011, M. Azari and A. Iranmanesh [1] introduced 

the generalized Zagreb index of a connected graph  , based 

on degree of vertices of  . The Generalized Zagreb index of 

  is defined for arbitrary non-negative integer   and   as 

follows:  

 

          ∑  

       

   
      

       
      

       

 

             A mapping is a new drawing of an arbitrary planar 

graph   on the plane. In graph theory, there are many 

different mappings (or drawing); one of them is Capra 

operation. This method enables one to build a new structure 

of a planar graph  . Let   be a cyclic planar graph. Capra 

map operation is achieved as follows:   

(1) insert two vertices on every edge of  ;  

(2) add pendant vertices to the above inserted ones and  

(3) connect the pendant vertices in order         around 

the boundary of a face of  .  

 

 By runing these steps for every face/cycle of  , one 

obtains the Capra-transform       of  , see Figure 1. This 

method was introduced by M.V. Diudea and used in many 

papers [4,5,6,7,8,9,10,12]. 

http://www.isroset.org/
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Figure 1: An example of Capra map operation on the hexagon face. Since 
Capra of planar benzenoid series has a very remarkable structure, we lionize 

it.   

 

For a given Capra operation    on  , we define the 

iteration of    as follows:   

(1)            

(2)                      for    .  

 

 For detailed discussions of the Capra operation, we 

refer the interested reader to [16] and the references cited 

therein. Figures 2 and 3 dipicts the graphs         for 

        and   . 

 

 Figure 2 

 

 
Figure 3 

In [16], authors calculated the generalized Zagreb 

index of Capra operation of cycle    on   vertices. In this 

paper, we obtain expressions for generalized Zagreb index of 

Capra operation of cycle    on   vertices, which 

generalizing the existing results of Sardar et al. [16].  

 

In the next section, we obtain expressions for 

generalized Zagreb index of Capra operation of cycle    on 

  vertices, which generalizing the existing results of Sardar 

et al. (Open J. Math. Sci. 1 (2017) 44-51). As an application, 

this result enables us to find first Zagreb index, second 

Zagreb index and  -index of Capra operation of cycle    on 

  vertices. 

 

II. MAIN RESULTS 
 

Theorem 2.1. Consider the graph           as the 

iterative Capra of   . Then: 

 

(a)        {

         

                            

(b)         {

         
 (               )          

Proof. (a) It is easy to observe that 

       {
                                

                                    

It is well known [16] that 

                         . 

(b) Also,  

       {
                            

                                   

It is well known [16] that 

                     . 

  

Theorem 2.2. Consider the graph           as the 

iterative Capra of   . Then:  

          

{
 
 

 
 
                                

                                    

                    
 

 
     

 

 
         

 

Proof. Let                                     .  

Now the edge set of   can be partition into             , 

             and             . Member of           lies 

on the exterior region of  . Therefore, 
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                    {

        

         
      

   
         

                              {

        
 

 
                

 

Similarly, member of           lies on the exterior region of 

 . Let   
     

 be the number of vertices of degree two in  .  

  
     

         {

         

     
    

 
           

                     {

         
 

 
              

 

Now,  

                        
     

             

                              {

              

   
 

 
          

 

 
                

                              {

         

                  

 

Finally,  
                                                  

                              {

         

            
 

 
     

 

 
         

 

Therefore,  

                 ∑  

       

   
      

       
      

      

     ∑  

          

            ∑  

          

            

      ∑  

          

            

     ∑  

     

       ∑  

     

            ∑  

     

       

         

{
 
 

 
 
                                

                                    

                    
 

 
     

 

 
         

 

 

Corollary 2.3.                  Consider the graph 

          as the iterative Capra of   . Then:  

                                         

                      
            

Following corollaries are obvious from the properties of 

generalized Zagreb index that is 

               ,                 

and                    . 

 

Corollary 2.4. Consider the graph           as the 

iterative Capra of   . Then:  

      {

          

                      

              
 

 
     

 

 
 

        
 

 

Corollary 2.5. Consider the graph           as the 

iterative Capra of   . Then:  

     

{
 

 
          

                       

    (          
 

 
     

 

 
)

        
 

  

Corollary 2.6. Consider the graph           as the 

iterative Capra of   . Then:  

      {

          
                      

   (          
 

 
     

 

 
)

        
 

 

V. CONCLUSION  

In this paper, we obtain expressions for generalized Zagreb 

index of Capra operation of cycle    on   vertices, which 

generalizing the existing results of Sardar et al. (Open J. 

Math. Sci. 1 (2017) 44-51). As an application, this result 

enables us to find first Zagreb index, second Zagreb index and 

 -index of Capra operation of cycle    on   vertices. 
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