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Abstract- In this paper, we proposes a new SEIRS model with vital dynamics and a saturated incidence rate. We find 

equilibrium point, basic reproduction number and stability of the system. 
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I. Introduction 

To study the spread and control of infectious diseases we developed mathematical model. Mathematical model have been 

played a key role in policy making, including health economic aspects, emergency planning and risk assessment and 

optimizing various detections. Van den Driessche and Watmough [1] discussed reproduction number and sub-threshold 

endemic equilibria for compartmental models of disease transmission. 

Several researchers proposed SEIR models with various incidence rates [2-6]. Xinli Wang [7] studies an SIRS epidemic model 

with Vital Dynamics and a Ratio Dependent Saturation incidence rate. Trawicki [8] studies deterministic SEIRS epidemic 

model for modeling Vital Dynamics, Vaccination, and Temporary Immunity. 

In this paper, we use SEIRS epidemic model with vital dynamics and a saturated incidence rate 
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, where K is the 

proportionality constant and α is used to measure the effect of psychology. The existence of various types of equilibrium and 

stability results are discussed. 
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Description of parameters 

Parameter Name 

S Susceptible individuals 

E Exposed individuals 

I Infectious individuals 

R Recovered individuals 

A Birth rate 
  Death rate 

  Transmission rate 

(recovered to susceptible) 

  Transmission rate 

(exposed to infected) 
  Recovered rate 

Mathematically the SEIRS model is expressed as a system of 

ordinary differential equations given as: 

 

With population: 

S(t)+E(t)+I(t)+R(t)=N(t)                               (2)  Or  
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where  
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is the incidence rate at which the susceptible S becomes infected I by a disease. 

The population N is governed by the ordinary differential equation: 
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With time varying population N(t). 

Instead of solving the ordinary differential equation system (1) with known population N from (4), the transformations: 
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Are applied to the system in (1), where s,e,I,r denote the fraction of the number of individuals in classes S,E,I,R with 

population N. 

Now, the transformed system is formulated as: 
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Now, s+e+i+r =1 

r =1-s-e-i 

or 
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Eliminate r and yield the simplified subsystem 
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II. Local stability 

From the transformed subsystem in (3), the local stability is analyzed to determined the DFE 

DFE=(s,e,i)=(S
*
,0,0) and endemic equilibrium ),,(),,(

*
** iesiesX EE    

The equilibrium point are computed by setting 0,0,0 
dt

di

dt

de

dt

ds
and solving for s,e and i in (3) to compute the two 

equilibrium points from the equilibrium points, the jacobian matrix J is calculated from: 
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And evaluate at the equilibrium points to decide on the local stability which is directly determined from the eigen value of :

0)(  IXJ                                                                      (5) 

Based on the eigen values of (5) ,the linearized system will be stable or unstable for the transformed subsystem in (3) 

III.   Disease free equilibrium  

)0,0,1()0,0,(),,( *  sies  

At the DFE (1,0,0) the jacobian matrix J(x)is given as: 



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                Vol. 5(4), Aug 2018, ISSN: 2348-4519 

  © 2018, IJSRMSS All Rights Reserved                                                                                                                                    303 

























)(0

0)(0

)(

)(
_







A

A

A

Xj DFE
 

With eigen values   

0)(
_

 IXJ DFE   

0

)(0

0)(0

)(















A

A

A

 

)(),(),( 321   AAA  

All the eigen values of the jacobian evaluated at the equilibrium point contain negative real part so the system is stable. 

  

IV. Endemic equilibrium 

From the transformed subsystem in (3), we have  

 

 

 

Which only makes physical sense if  
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The epidemic condition 0R is given as: 
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At endemic equilibrium, the jacobian matrix is given by: 

J(X)=
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Which is expanded as: 
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Then by Routh Hurwitz criteria, if 32131 0,0 aaaandaifa   then the polynomial is locally stable. 

V. Conclusions 

In this paper we developed and implemented a new SEIRS model. The studies shows that the system is stable for disease free 

equilibrium and we also proved that the system, for endemic equilibrium is locally stable by using Routh Hurwitz criteria. 
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