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Abstract— —In this work we have developed the study of sequence spaces, by establishing some of the results. We have also 

extended the study by establishing a few results to the case of function space analogous to that for sequence spaces. We also 

construct some suitable sequence and function spaces. In Result and Discussion section , 1st part we have established some of 

the result on the sequence spaces and in 2
nd

 part we have established a few results using the definitions of different limits in 

function spaces. These have done on account of previous work here we refer [Cooke, (1),chapter 10]. 
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I.  INTRODUCTION  

Köthe-Toeplitz,(1) studied sequence and sequence spaces in 

detailed. They introduced the notions of different sequence 

spaces and the dual sequence spaces of the given sequence 

spaces. Later on the study of sequence and sequence spaces 

was made by Allen, (1) who considerably developed and 

generalized by establishing a good number of results 

specially for the dual space of different sequence spaces. A 

few results had also been established for the dual space of the 

dual space of a sequence space. An account of all these can 

be found in  Cooke,(1) chapter 10. Later on Prasad, (1) 

developed the study for function spaces by introducing some 

of the definitions to function spaces analogous to that for 

sequence spaces. A good number of results had been 

established by him. Later on Kumar,(1), studied it and 

developed some of the results for function and function 

spaces. Further, to go ahead in order to advance our study in 

this paper we, in the next section, give in details the 

definitions of different convergences and limits but only for 

sequence and sequence spaces and thereafter we shall 

establish some of the results by making the use of these 

notions of different limits and convergences. After 

establishing some of the results for sequence and sequence 

spaces we shall give the notions of different limits and 

convergence for function and function spaces. Efforts will 

also be made to establish some of the results for function and 

function spaces. In this paper I try to make a comparative 

study of sequence and function spaces by establishing some 

of the results. 

                               Section I gives the introduction of Limits 

in Sequence and Function Spaces, Section II introduces 

about previous work related to the topic by authors, Section 

III yields methodology of the research work. Section IV 

elaborates the definitions c-cgt , p-cgt, c-limit, p-limit, and  

something more .Section V discusses on results as a theorem. 

Section VI concludes the paper with the discussion on the 

work carried out in this paper. 

 

II. RELATED WORK  

The previous research works has been done by the title 

―Convergence in Dual Space‖ and ―Limit in Dual Space‖ . 

Also a paper has accepted by Indian Science Congress 

Association for oral presentation in 2019  Conference at 

L.P.U. Punjab , with the title ―Parametric convergence 

implies projective convergence in the dual space of a 

function space.‖  . 

III. METHODOLOGY 

In this paper the main constituent of research 
methodology is adopted. i.e. Theoretical perspective or 
orientation that guide research and logic of inquiry only. 
Further more I can say that the research work is an 
example of Qualitative research because the research 

http://www.isroset.org/
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paper is comparative study of sequence and function 
spaces.  

IV. DEFINITIONS 

Def-4.1 Co-Ordinate Convergence (Or c-convergent ) : 

Let α be a sequence space.  We now consider a sequence of 

points in α denoted by   x
(1)

,x
(2)

,x
(3)

,……………….x
(n)

,…… 

Where xk
(n)

 be the k
th

 coordinate of x
(n)

. Then the sequence of 

points x
(n)

 is said to be coordinate convergent (c-convergent 

or simply c-cgt ) when          
   

 exists for every k  

Def-4.2 Projective Convergent (p-convergent Or Simply 

p-cgt) : If 𝜙(s)≤β≤α*  and if for sequence x
(n)

in α , the 

sequence  un
´
= ∑   

   
  

 
    converges for every u in β, we 

say that x
(n)

 is projective convergent (p-convergent ) relative 

to β or αβ- convergent. When β=α
*
 ( the dual space of α) , we 

say that x
(n)

 is projective convergent in α or α-convergent. 

Def-4.3 Coordinate Limit (Or c-limit ) : If the         
   

  

exists for every k and is xk then the point x=(xk) is called the 

coordinate limit of x
(n)

and in this case we write C-lim x
(n)

=x. 

Def-4.4 Projective Limit (p-limit ) : A sequence x in α or 

outside α is called the projective limit ( p-limit ) of x
(n)

 in α 

relative to β or αβ-limit x
(n)

, when (i) ∑     
 
    is absolutely 

convergent for every uk in β. That is x is in β
*
 , and  

(ii)       ∑   
   

  
 
    ∑     

 
    for every u in β.When 

β=α*,x is called the projective limit of x
(n)

 in α or α-lim x
(n)

. 

also we refer to Cook, (1) to show that if αβ-limit x
(n)

=x then 

c-limit x
(n)

= x also it follows from(i) that c-limits of αβ-

convergent sequences are considered as possible αβ-limits 

only if they are in β
*
 also by Cooke ,(1) αβ-convergence 

implies coordinate convergence (c-convergence) but the 

converse is false.     

Def-4.5 Normal Sequence Space :  A sequence space α is 

said to be normal if, whenever x is in α and |yk|≤|xk| for every 

k, then y is in α.We now give two results which will be 

useful in establishing results for the proof of which we refer 

to Cooke ,(1). A necessary and sufficient condition for the 

αβ-convergence of x
(n)

 in α is that to every u inβ, and to 

every ϵ>0, there corresponds a positive number N(ϵ,u) such 

that for every p,ℰ≥N,  | ∑   (  
   

   
 ℰ 

)   
      . 

When β is normal, the necessary and sufficient condition that 

x
(n)

 in α should be αβ-convergent is that to every u in β, and 

to every ϵ>0, corresponds a number N(ϵ,u) such that for 

every p,ℰ ≥N  ∑    (  
   

   
 ℰ 

)   
      . 

V. RESULTS AND DISCUSSION 

In this section we establish some of the results firstly for 

sequence spaces and then for function spaces.  Also before 

establishing some results to the case of function spaces we 

will use to give some related definitions to serve as ready 

reference. 

Theorem 5.1 :  A sequence may be αβ-convergent and c-

limit may not satisfy conditions (i) or (ii) or both for αβ-

limit.That is c-limit of αβ-convergent sequence is not 

necessarily αβ-limit. 

Observation : In fact we show this fact by constructing 

following examples. 

Example 1. Let   
   

   

   
   Then ∑    

   
   

    ∑  

   
        

=   

   
     

   
      

   
   +………….. 

Which is a geometric series with common ratio   

   
  <1 as 

r>0.So  x
n
ϵ𝜎r.  we take r such that r is not an even integer. 

Let u be a sequence in 𝜎 Then 

 ∑      
    

      ∑  ∑      
   

   
    

  
    

Now ∑      
   

   
     

=     
       

   
  +     

            
   

  +     
             

   
  

+  …………….. 

=     
 [      

   
              

   
               

   
   …....] 

=     
   [∑            

         
   

  ] 

=     
 [∑            

     

   
        ] 

=     
         [∑        

     

   
   ](  

   
       

[since               ]   

=     
           

   
          (  

   
)
 
       (  

   
)
  

+...} 

=     
           

 
 

             
 

     

        
 

     
     

= 
           

   
           

         
     

   =  
     

   
           

         
     

      

Hence ∑      
   

   
    ∑   

   
     

   
    + 

     
   

           

         
     

     

As n→∞,   

   
   =

 

    
    

   →1, for all k 

    ∑ [    
   

]
 

 
     ∑   

   
 +

     
 

       
        

Which exists for every u in β, provided 1-     ≠0 

  ⇒      ≠1    that is r is not an even integer. 

Thus if r is not an even integer, then x
n
 is 𝜎r𝜎-convergent. 

Since 𝜎≤𝜎 
 =L∞ Now          

   
=       

 

   
  =1 

Hence  c-limit x
(n)

=x  where xk=1  for every k 

In this case ∑        
 
   

r
=∑     

 
   

r
 is not condition (1) is 

not satisfied by c-limit x
(n)

 .Thus x is not 𝜎r𝜎-limit x
(n)

   

Example 2: This example shows the fact that c-limit x
(n)

 does 

not αβ-limit. For let us consider the sequence x
(n)

=e
(n)

 in 𝜎r 

(thus α=𝜎r) Taking β=𝛶(s)
, the space of all cnvergent 

sequences. Let uϵβ⇒uϵ𝛶(s)
 

Then∑      
   

  
   

r
=∑      

   
   

   =  
 [since  

   
=1,  

   
=0 

(p≠n)] Since uϵ𝛶(s)
,           exists and {uk} is bounded. 

Then   ∑      
   

  
   

r
 converges for every u in 𝛶(s)

   

Therefore x
(n)

 is 𝜎r   𝛶
(s)

-convergent  (𝛶(s)
≤𝜎 

 =𝜎∞)     

Also         
   

 =          
   

=0=xk=0,  for all k. Thus c-

lim is zero .Thus  ∑   
   

  
      

But        ∑      
   

   
   =        

  

If we take uk=1 for every k, uϵ𝛶(s)
 but then the above limit is 

not 0 as it is.Thus the condition (ii) is not satisfied. When 
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β=𝜙(S) (𝜙(s)≤α
*
, for any α)  we have the following simple 

result, in case r is not even. 

Theorem 5.2 : α𝜙(s) convergence coincides with c- 

convergence and α𝜙(s)-limit is coextensive with c-limits of 

c-convergent sequences in α, in case r is not an even integer. 

Proof : Let x
(n)

 in α be c-convergent. Let   
   

 xk as n→∞. 

Then c-limit x
(n)

=x.Let uϵ𝜙(s) and uk=0 for k>p. Then 

      ∑ {  
   

  ) 
  

   =      ∑    
   

   
  

   = ∑   
   

  
    

So limit exists for every u in 𝜙(s). Hence x
(n)

 is α𝜙-

convergent. So every c-convergent sequence in α is  α𝜙(s)-

convergent.We know that  α𝜙(s)-convergence implies c-

convergence and so the two convergences coincide. 

Now  ∑    
   

  
    =∑    

   
  

 
    Which converges for all u 

(in 𝜙(s))      ∞ ∑    
   

   
  

   =∑   
   

  
    for every u in 𝛽.   

Thus c-limit of c-convergent sequence in 𝛼 is its 𝛼𝜙(s)-limit. 

Also 𝛼𝜙(s)-limit is c-limit as r is not even.Hence the result is 

proved. 

 

         In order to make a comparative study of sequence and 

function spaces, we extend the results established above to 

the case of function and function spaces.We shall also 

observe that the forms of the results for sequence spaces are 

the same for function space or quite different.As a matter of 

fact we recall here that in the case of sequence spaces we 

deal with integers where as in the case of function spaces we 

deal with continuous variables. Due to this change in 

sequence and function spaces their remains a fair chance of 

change in the form of the results for two spaces. 

                 We now need the definitions of dual space of a 

function space, parametric convergent, projective 

convergent, parametric limit and projective limit for function 

spaces so I am giving here. 

Def-4.6 Dual Space :Let α be a function space then its dual 

space is denoted by α
*
 and is defined the space of all 

functions f such that ⨜ |f(x) g(x) |dx < ∞ for every function g 

in α. Also α
*
 is a function space and α

*
  is the dual space of 

the function space  α only. 

Def-4.7 Perfect Space : A function space α is said to be 

perfect when      α
**

=α. Also L1,L∞, Es,Es are perfect. 

Def-4.8 Parametric Convergent (OR t-Convergent ):  Let 

ft(x) be a family of functions of x defined for all t in [0,∞], 

where t is a parameter. 

If to every 𝟄>0, there corresponds a positive number T(𝟄), 

independent of x, such that,for almost all x≥0,|ft(x)-ft
’
(x) |≤𝟄 

for all t,t
’
≥T(𝟄), then the family ft(x) is said to be parametric 

convergent ( t-convergent).  

Def-4.9 Parametric  Limit (t-limit) : If , to given any 𝟄>0, 

there corresponds a number t(𝟄), independent of x, such that 

for almost all x≥0, |ft(x) –𝝭(x) |≤𝟄 for all t≥T(t), then 𝝭(x) is 

called the parametric limit (t-limit) of ft(x) and we write t-

limit of ft(x)=𝝭(x).   

Here we observe that any function equal to 𝝭(x), for almost 

all x≥0, is also a t-limit of ft(x). 

     Therefore when we say that 𝝭(x) is the parametric limit  

(t-limit ) of  ft(x), we mean that   𝝭(x) is a t-limit of ft(x) and 

all functions  equivalent to  𝝭(x) in [0,∞] are t-limits of ft(x).  

[ A function 𝚹 is said to be equivalent to 𝝭 in [0,∞] when 

𝚹(x)=𝝭(x) almost everywhere in [0,∞] ]. 

Def-4.10 Projective Convergence(or αβ-Convergence or 

p-Convergence : Let  β⊆ α
*
 and Fg(t) =⨜ ft(x) g(x) dx  

Where ft is in α  and  g is in β then  if  Fg(t)  tends to a 

definite finite limit as t-tends to ∞ for every g in β then we 

say that ft  is projective convergent ( or p-convergent)relative 

to β, Also  ft(x) is called αβ-convergent. also  ft(x)  is called 

p-convergent in α or α-convergent when β=α
*
that is when  

β⊇α
*
 [see sharan, (1)] 

Def-4.11 Projective Limit [ p-limit or αβ-limit ]:  A 

function 𝝭, in α or outside α, is called a projective limit (p-

limit) of ft(x) in α relative to β and we write 𝝭(x) =αβ-limit 

of ft(x) when   

(i) ⨜ |g(x) 𝝭(x) |dx <∞ for every g in β, and (ii) lim ⨜ ft(x) 

g(x)dx = ⨜𝝭(x) g(x) dx for every g in β. 

When β=α
*
, 𝝭 is called a projective limit (p-limit ) of ft(x) in 

α and we write 𝝭(x)= α-limit of ft(x). Different αβ-limits of 

ft(x) can differ only in a set of x of measure zero. Hence 

where we say that 𝝭(x) is the αβ-limit of ft(x), we mean that 

𝝭(x) is an αβ-limit of ft(x)and other αβ-limits of ft(x) are 

equivalent to 𝝭(x) .It follows from the definitions that every 

αβ-limit belongs to β
*
. 

Theorem 5.3 :Every parametric convergent family ft(x) in ϒ 

is ϒ-convergent. 

Proof : Let ft be in ϒ and ft is t-convergent in ϒ then,to every 

given ϵ>0,there exists, a positive number T(t), independent of 

x, such that, for almost all x≥0, |ft(x)-ft’(x)≤ϵ ……..(3.11) 

for all t,t’≥T(ϵ) .Now let g(x) be any function in L1. 

Hence    ∫|g(x)|dx<∞ ………………………………(3.12) 

Also g(x) is in L1 implies g(x) is in ϒ
*
 ……(3.13) 

Now since, |∫g(x){ft(x)-ft’(x)}dx| ≤ ∫|g(x)||ft(x)-ft’(x)|dx ≤  

ϵ ∫ |g(x)|dx  [ by (3.11) ] ≤ ϵ k(g) [ by(3.12) ] 

for every t,t’≥T(ϵ), for every ϵ>0, where k(g) is a constant 

depending on g but independent of t in E=[0,∞].Thus  ft(x) is 

ϒϒ
*
-convergent .That is ft(x) is ϒ-convergent.Thus the 

theorem is established. 

Theorem 5.4:   Every t-convergent family ft(x) in α is αL1-

convergent provided α⊇L1. 

Proof : Let ft(x) be a family of functions of x and t be a 

parameter where t is in [0,∞].Let ft in α be t-convergent then, 

To every ϵ>0, there exists a positive number T(ϵ), 

independent of x, such that, for almost all x≥0, 

             |ft(x)-ft’(x) ≤ϵ   ……………………(3.14) 

For all t,t’≥T(ϵ) .Also let g(x) be any function in L1 

Hence ∫|g(x)|dx<∞   …………………………..(3.15) 

Thus by hypothesis g(x)ϵα
*
. 

Now since, |∫g(x){ft(x)-ft’(x)}dx|≤∫|g(x)||ft(x)-ft’(x)|dx 

≤ ϵ∫|g(x)dx [by(3.14)]  ≤ ϵk(g) [by (3.15)] 

For every t,t’≥T(ϵ), for every ϵ>0, where k(g) is a constant 

depending on g but independent of t in E=[0,∞]. 

Thus ft(x) is αL1-convergent.Thus the theorem is proved. 
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Theorem 5.5: Every t-convergent family ft(x) in α is αβ-

convergent provided β⊇L1 

Proof : Let ft(x) in α be a family of functions of x and t be a 

parameter where t is in [0,∞].By hypothesis ft(x) in α is t-

convergent then to every ϵ>0,There exists a positive number 

T(ϵ), independent of x,Such that, for almost all x≥0, 

        |ft(x)-ft’(x)|≤ϵ  …………………………..(3.16) 

    For all t,t’≥T(ϵ) 

Now let g(x)be in L1 then  ∫|g(x)|dx<∞  ……..(3.17) 

Now since, |∫g(x){ft(x)-ft’(x)}dx|≤∫|g(x)||ft(x)-ft’(x)|dx 

≤ϵk(g) by [ (3.16) and (3.17)] 

Constant depending on g but independent of t in E=[o,∞). 

Thus ft(x) is αβ-convergent.Thus the theorem is proved. 

Theorem 5.6: every t-convergent family ft(x) is in α is αβ-

convergent provided β⊆L1 . 

Proof : Let g(x) be in β.Hence g(x) is integral That is       

                 ∫|g(x)|dx<∞  ………………………(3.18) 

Also let ft(x) be a family of functions of x and t be a 

parameter where t is in [0,∞].Since ft(x) is t-convergent so by 

definition to every ϵ>0,there exists a positive number T(ϵ), 

independent of x, such that ,for almost all x≥0, 

                 |ft(x)-ft’(x)|≤ϵ   ………….…………(3.19) 

For all t,t’≥T(ϵ),Now since, |∫g(x){ft(x)-ft’(x)}dx| 

≤∫|g(x)||ft(x)-ft’(x)|dx|≤ϵk(g)  by [(3.18) and (3.19)] 

For every t,t’>T(ϵ), for every ϵ>0, where k(g) is a constant 

depending on g but independent of t in E=[o,∞).  

Thus ft(x) is αβ-convergent .Thus the theorem is proved.  

Thus with the help of a few theorems established above it is 

exhibited that in a vis-à-vis to sequence spaces t-convergent 

necessarily implies projective convergence.We now establish 

a few results to establish a connection between t-limit and p-

limit. 

Theorem 5.7: Let (i) ft in α be αβ-convergent (ii) 𝜓(x) be t-

limit of ft(x) then t-limit is the αβ-limit of ft(x) provided 

β⊆L1 . 

Proof:   Let ft be a family of functions in α.Also let 𝜓(x)=the 

t-limit of ft(x).Then by definition, for a given ϵ>0, there 

exists a positive number T(ϵ), independent of x, such that, for 

almost all x≥0, |ft(x)-𝜓(x)|≤ϵ  ……………………(3.20) 

Again let E=[0,∞].Now ∫|g(x)𝜓(x)|dx For g is in β,ϵ>0;t≥T(ϵ) 

=∫|g(x)||𝜓(x)-ft(x)+ft(x)|dx=∫|g(x)||𝜓(x)-ft(x)|dx+∫|g(x)ft(x)|dx 

<ϵ.k(x)+∞  

Since g is in β so g is in L1 and hence g is integrable  

Also∫|g(x)ft(x)|dx<∞ Since g is in β implies that g is in α
*
. 

Since  α
*⊇β and ftϵα Therefore ∫|g(x)𝜓(x)|dx<∞ …..(3.21) 

Again    |∫ft(x)g(x)dx-∫𝜓(x)g(x)dx|≤∫|g(x)||ft(x)-𝜓(x)|dx 

≤.ϵ.k(x)  by (3.20) 

For since g is in β⊆L1 

Therefore,                  =∫𝜓(x)g(x)dx  …..(3.22) 

Thus by [(3.21) and (3.22)] it follows that 𝜓(x) is an αβ-limit 

of ft(x) 

Theorem 5.8 :Let (i) ft  in α be αβ-convergent(ii) 𝜓(x) be t-

limit of ft(x) then t-limit is the αβ-limit of ft(x) provided 

α
*⊇β⊇L1. 

proof :Let ft(x) be a fimily of functions  of x and t be a 

parameter. Such that t is in [0,∞)=E. Also let t-limit of 

ft(x)=𝜓(x),Then to give any ϵ>0, there exists a positive 

number T(ϵ) independent of x, such that , for almost all x≥0, 

 |ft(x)-𝜓(x)|≤ϵ   …………….(3.23) for all t≥T(ϵ). 

Now choosing any ϵ>0 and any t≥T(ϵ), we have  

∫|g(x)(x)|dx =∫|g(x)||𝜓(x)-ft(x)+ft(x)|dx 

≤∫|g(x)||𝜓(x)-ft(x)|dx+∫|g(x)ft(x)|dx≤ϵ.k(g)+A(g) 

For every g in L1⊆β≤α
*
, where k and A are constants 

depending on g but independent of t in E. 

Thu   ∫|g(x)(x)|dx<∞   ……………..(3.24)  

For every g in L1 and hence in α
*
. 

Also, |∫ft(x)g(x)dx-∫𝜓(x)g(x)dx|≤∫|g(x)||ft(x)-𝜓(x)|dx≤ϵ.k(g)  

For every t≥T(ϵ)and every g in L1 and is true for every ϵ>0. 

Therefore                     𝜓          ….(3.25) 

For every g in L1.Now by   [(3.24) and (3.25)] it follows that 

𝜓(x) is an αβ-limit of ft(x) .That is, t-limit of ft(x) is αβ–limit 

of ft(x).Thus the theorem is established. 

Theorem 5.9 :Let (i) ft(x) in α be α-convergent,(ii) 𝜓(x) be t-

limit of ft(x),(iii) L1 ⊃ α
*
 and (iv) 𝜓(x) be the t-limit of ft(x) 

in α. Then 𝜓(x)= α-limit of ft(x). 

Proof: Let ft(x) in α be a family of functions of x where t is a 

parameter and t is in E=[0,∞].Also let g(x) be any function in 

α
*
.Thus  ∫|g(x)|dx<∞  ……………………(3.26)  

By hypothesis,(x)=t-limit of ft(x),then to give any ϵ>0, there 

exists a positive number T(ϵ) independent of x, such that, for 

almost all x≥0, |ft(x)-𝜓(x)|≤ϵ …(3.27) for all t≥T(ϵ). 

Now choosing any ϵ>0, and any t≥T(ϵ) we have  

 ∫|g(x)(x)|dx = ∫|g(x)||𝜓(x)-ft(x)+ft(x)|dx  

≤ ∫|g(x)||𝜓(x)-ft(x)|dx+∫|g(x)ft(x)|dx ≤ ϵk.(g)+A(g)  [by (3.26) 

and (3.27)and the fact that g is in α
*
] Where k and A are 

constants depending on g but independent of t in E. 

Thus ∫|g(x)(x)|dx < ∞ ………(3.28) for every g in α
*
 

Again by  [(3.26) and (3.27)] |∫ft(x)g(x)dx -∫𝜓(x)g(x)dx| 

≤ ∫|g(x)||ft(x)- 𝜓(x)|dx ≤ ϵ.k(g). For every t≥T(ϵ) and every g 

in α
*
 and is true for every ϵ>0. Therefore, 

                     𝜓                  for every 

g in α
*
.Now with the joint effort of    [(3.28) and (3.29)] it 

follows that 𝜓(x) is an αα
*
-limit of ft(x).That is t-limit of ft(x) 

is α-limit of ft(x).Thus the theorem is established. 

Theorem 5.10 : If (i) α≥𝝓 (ii) β≤L∞ then every function in β
*
 

is αβ-limit of its section. 

Proof:  Let 𝜓(x)ϵβ
*
 and let ft(x)={ 𝜓(x) for 0≤x≤t 0  for x>t 

Then ft(x) is a section of 𝜓(x), and is in 𝝓. But since β≤L∞  

Therefore ft(x)ϵα≥𝝓 .Hence ft(x)ϵ𝝓 .Since  𝜓(x) is in β
*
 then  

      ∫|𝜓(x)g(x)|dx<∞ …………(3.30) for every g in β. Also , 

                  =        𝜓         
 

 
=∫𝜓(x)g(x)dx  

………(3.31).Thus from  [(3.30) and (3.31)] 

𝜓(x) is the αβ-limit of ft(x).Thus the result is proved. 

VI. CONCLUSION   

Thus we find that in the case of function spaces for the 

results through which t-limits are αβ-limits there not 
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necessary for β to be normal as it essential for the case of 

sequence spaces for which we refer to theorem(5.1). 

       Also t-limits are αβ-limits to the cases of function spaces 

whereas this is not possible in the case of sequence spaces. 

      Also in the light of the theorem (5.10) established above 

it is found that the same can be proved in the case of 

sequence space for which we refer to theorem(3.3,II). 
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