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Abstract— In this paper, the FRAR residual control chart is used to detect the using the given assignable cause shift in the 

process mean, using FRAR chart developed by Poojalakshmi and Venkatesan (2019). Which is the extension of the residual 

ARMA chart of wardell et.al (1994) and illustrated with an example. 
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I.  INTRODUCTION  

 

Statistical Process Control (SPC) methodologies including 

the process Control Charts have been widely used in industry 

for process mean or variability monitoring and quality 

improvement. The majority of statistical process control 

chart techniques including the Shewhart chart, the 

Cumulative Sum (CUSUM) chart, and the Exponentially 

Weighted Moving Average (EWMA) chart, assume that the 

observations are free of autocorrelation. The more interesting 

approaches to SPC for autocorrelated process was proposed 

by Alwan and Roberts (1988).  They are introduced two 

charts, which the referred to as the common –cause control 

chart and special- cause chart. The common cause chart is a 

plot of forecasted values that are determined by fitting the 

correlated process with an autoregressive moving average 

(ARMA) model, according to the procedure developed by 

Box and Jenkins (1976). The Common-Cause chart 

essentially accounts for the systematic variation in the 

process. In most situations in practice where SPC data are 

correlated, the systematic variation in the data is much larger, 

and thus more important with respect to influencing product 

quality, then are special cause effects. The Special- Cause 

chart is a traditional Shewhart chart of the residuals. One of 

the most important properties associated with any SPC chart 

is the run length. The run length is the number of 

observations required to obtain an observation outside of the 

control limits for a given shift in the mean. Run –Length 

distribution permits us to compute the Average Run Length 

(ARL) namely, the average time until an observation falls 

outside the control limits. The Standard Deviation of Run 

Length (SDRL) we normally desire the ARL to be large 

when no assignable cause has occurred and small when one 

has occurred. The SRL gives an indication of run- length 

dispersion. For example, with the standard shewhart control 

chart, in the absence of a shift in the mean, the ARL is about 

370; however, the SDRL is also about 370, so it is possible 

to have observations out of control much sooner or much 

later than expected; even when there is no shift in the mean. 

Use of residual chart has the advantage that it can be applied 

to any autocorrelatd data even if the data from nonstationary 

process. It needs time series modelling efforts. Although the 

residual charts have some advantages by using them for 

autocorrelated processes, there are some problems due to the 

detection capability. 

 

II. RELATED LITERATURE 

 

Many authors have developed the special cause control 

charts, for the correlated data..  Alwan and Roberts (1988) 

propose the use of time series modelling to detect assignable 

causes by plotting estimated residuals of the time series 

model on a standard control chart. A practical limitation on 

such a time series approach is that it requires one to have 

some skill in time series analysis. Wardell et al (1992) 

compare the performance of various control charts of the 

process data of processes modelled as an ARMA (1,1). By 

setting the in-control ARL for the control charts considered, 

the out of control ARL for are analyzed. They observed that 

the  EWMA chart is good at detecting small shifts , and 

perform well for large shifts in the mean when the AR 

parameters are  less than 0 and the MA parameters are 

greater than 0. Harris and Ross (1991) use control charts to 

monitor the residuals of time series models. Wardell et al 

(1994) indicate the regardless of the sign of the 

autocorrelation, positive or negative, the probability of 

detecting a mean shift early by using a residual control chart 

is substantially higher than that of a traditional control chart. 

English (1994) recommends that fixed control limits should 

be used due to their effectiveness in monitoring 

autocorrelated data and case in interpretation. EWMA 

http://www.isroset.org/
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control charts have been frequently recommended for the 

monitoring of correlated observation.  

 

Harris and Ross (1991) state that the EWMA is a flexible 

smoothing approach that provides the theoretical framework 

for dealing with correlated observations. Montgomery and 

Mastrangelo (1991) support the same theory by stressing that 

the use of EWMA is best for process observations that are 

positively autocorrelated at low lags and a process mean that 

does not drift rapidly. However, Wardell et al (1994) show 

that the ARL of the control chart for residuals ids relatively 

smaller when the process is negatively rather than positively 

autocorrelated. The reason behind this finding is that when 

the process is negatively autocorrelated and the shift in 

process mean occurs, the one-step-ahead forecast moves in 

the opposite direction of the shift. This causes the residual to 

be very large, and hence the shift is detected earlier. By 

comparing the ARL of the residual control chart to the ARL 

of the Shewhart chart and EWMA chart, they conclude that 

the residual chart is not necessarily the best chart to use for 

every type of autocorrelated process in some cases, Shewhart 

and EWMA charts are at least as good in terms of the 

resulting ARLs when the process is positively autocorrelated. 

Runger et al (1995) have explored the use of CUSUM 

control chart for monitoring residuals. Tseng and Adams 

(1994) generate in-control ARLs with simulation for EWMA 

forecast errors. They compared the Shewhart, EWMA and 

CUSUM control charts and conclude that the Shewhart 

control chart is preferred for monitoring residuals. Hu and 

Roan (1996) present time series- based control charts and 

investigated their usefulness in detecting mean shifts or 

sporadic spikes for AR(1), ARMA(2,1) and ARMA(1,1) 

models. 

 

 Zhang (1997) showed that the detection capability of a X - 

residual chart was poor for small mean shifts compared to the 

detection capability of the X - chart and EWMA chart. 

Zhang (1998) proposed the EWMAST chart, which is 

constructed by charting the EWMA statistic for stationary 

processes. EWMAST chart apply to general stationary 

process data.. Lu and Reynolds (1999a) showed that the ARL 

behaviour for the EWMA chart of the residual is better for 

large shifts. However, they are suggested using the EWMA 

of the observations because this chart is easier compared to 

EWMA charts of the residual. The full range autoregressive 

model is a family of time series model this model has the 

advantages of completely avoid the problem of order 

determination more details can be found in  venkatesan et al 

(2017).  The FRAR control charts are developed by 

Poojalakshmi and Venkatesan (2019) detect the mean shift of 

the control limits and the FRAR model is very quickly detect 

the shift in control charts.  

 

An outline of this paper, Review of related literature is 

provided in section 2. In section 3. Model descriptions for 

ARL properties of EWMA and ARMA model discussion. In 

section 4. The FRAR residual control chart performance of 

the process model. In section 5. Numerical results and 

compare the EWMA, ARMA, and FRAR residual control 

charts and Conclusion is provided in section.6 

 

III. MODEL DESCRIPTIONS 

 

The average run length is an important characteristics for any 

SPC chart. It is defined as the expectation of the time before 

the control chart gives a false alarm that an in-control process 

has run out-of-control (ARL0). A second important 

characteristic for a SPC chart is the Average Delay Time 

(ARL1). To design of efficient chart the ARL0 should be 

large and the ARL1 should be small, more details can be 

found in Yupaporn Areepong (2013). 

Let  E x
 denote the expectation that the change-point 

occurs in a random observations generated from a 

distribution function  2, ,F x   . At one point of time  

the distribution mean is change from 0 1  ,to     . 

A typical condition imposed on an ARL0 is   

  , E T              (in-control state) 

Where T is given value. For a given distribution function and 

chart, this condition determine the choices of UCL and LCL 

and the typical practical constraint is ARL0 =T. The ARL1 is  

 
Means that change point occurs at  One could expect that a 

sequential control chart has a near optimal performance if its 

ARL1 is close to a minimal value. There are many other 

criteria that could be used for designing optimal SPC charts. 

For any Shewhart control chart, ARL can be expressed as 

           

 
1

one point plots out of control
ARL

P


 

 

ARL properties of EWMA 

There are two main approaches for computing ARL for an 

EWMA sequence. The first approach is based on the fact that 

ARL must satisfy the Fridholm integral equation (see 

Crowder (1987)).  The second approach is based on the 

flexible and relatively easy to use Markov chain approach, 

originally proposed by Brook and Evans in (1972). The most 

popular properties are used Lucas and Saccucci (1998) 

developed the Markov- chain approach. The properties of an 

EWMA control scheme can be approximated using a 

procedure- similar to the described by Brook and Evans 

(1972). They are used second approach to calculate the ARLs 

of EWMA and GMA control schemes. This procedure 

involves dividing the interval between LCL and UCL into 

P=2m+1subintervals of width . 
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Where    / 2UCL LCL p   . When the number of 

subintervals p is sufficiently large the finite approach 

provides an effective method that allows ARL to be 

effectively evaluated. The EWMA statistics ( ) is said to be 

in transient state j at time t if  

j t jH z H     for , , 1,0, 1, ,j m m       . 

Where jH represents the midpoint of the jth subinterval. 

The EWMA statistics is in the absorbing state if 

 ,tz LCL UCL an approximation for ARL is given 

by TARL d Qg  . Where d is the (p, 1) initial probability 

vector,  
1

1Q P


   is the fundamental (p, p) matrix, P is 

the (p, p) transition probability matrix and g=I is a (p, 1) 

vector of 1s. The initial probability vector d contains the 

probability that the statistic starts in a given state.  

 The TPM is P contains the one-step transition 

probabilities. The generic element Pij of P represents the 

probability that the statistic goes from state i to state j in 

one step. This probability can be calculated by, 

   1 1
Φ Φ

j i j i
ij

H H H H
p

   

 

        
       

   

 

 

ARL properties of ARMA  

For EWMA charts, run-length distributions have been 

studied extensively. Several approximation approaches have 

been proposed to analyze the ARL performance. Crowder 

(1987) applied the numerical method to solve an integral 

equation for the approximation. Lucas and Saccucci (1990) 

used a Markov chain model to investigate the ARL values 

and the design strategies. We shall approximate the ARL of 

the ARMA chart on an iid process using the Markov chain 

method. The evaluation of average run length is important 

designing appropriate control charts for monitoring 

stochastic processes. For Markov –type control charts, e.g., 

the EWMA chart and the CUSUM chart, several 

approximation approaches have been developed. One 

example is a Markov chain approximation which replaces the 

continuous control statistic by a descretized version proposed 

in Brook and Evans (1972). 

 

It is easy to see that the distribution of the ARMA (1,1) 

statistic in equation depends on both 
1tZ 

and 1ta   thus tZ  

does not have the Markov property. The random vector 

 
'

,t t tW Z a  is a Markov chain, however, and it can be 

written as  

  1 1t t tW Y W      

where 1   and
'

0 1 1,t t t t
t

a a a a
Y

 

 
 

     
     

     

. To evaluate the ARL for the ARMA Chart with Control 

limits zL we need to set large control limits aL  for ta  

so that the in-control region can be segmented within a two-

dimensional rectangle,    ,z z a aL L L L    

 

Following Lucas and Saccucci (1990) and Runger and 

Prabhu (1996), the in-control region is divided 

into    1 2 1 22 1 2 1M t t m m      subregions of 

width    1 22 2  The control variable  
'

,i i iW Z a is 

said to be in transient state (j) and (i) if 

1 1j i jSZ Z SZ      and 

1 1, 2j k jSa SZ Sa       , for, 1 j M   , where 

jSZ and jSa are the partition points of the region. Then the 

transition probability matrix at each run becomes 

 1

0 1T

R I R

P

 
 


 
 
 

 

 

Where the submatrix R contains the probabilities of going 

from one transient state to another, I is the identity matrix, 

and 1 is a column vector of ones. To simplify the 

calculations, shift magnitudes and control limits are scaled in 

terms of the process standard deviation. When the process 

mean is  , the transition probability matrix can be 

calculated as,  Pr Pr going to |injk k jp S S   

1 1 2

2, 1 1

,
Pr

| ,

k t k k t

k k j t j

SZ Z SZ Sa a

Sa Z SZ a Sa

  

   

       
  

      

 

1 0 0

1, 2 2

Pr{

}

k j t j k

k t k

SZ SZ a Sa SZ

Sa a Sa

    

   

      

     
 

 
More details can be found in Jiang et al (2000). With this 

notation and the same arguments of Lucas and Saccucci 

(1990), both the in-control and out-of -control ARL’s can be 

evaluated as  
1

.TARL p I R


  with the means being 0 

and  , respectively.  
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 Where the control limits for  are chosen 4.0 as  because 

tZ would likely go outside the control limits whenever 

ta exceeds these limits. The result from this implementation 

agree with the simulation results quite well. Table A.1 shows 

the analytical results when .85 Compared with table-2, 

the discrepancies are within 3% of the simulated ARL’s. 

 

 
 

The ARMA chart, the control limits are defined as 

t z zZ L a and t z za L  . The sequence is that their 

grides are inside a circle, whereas our grides are defined in a 

rectangle. More memory space is needed for implementing 

our algorithm. 

 

IV. THE FRAR MODEL 

 

Full Range Autoregressive model is introduced by 

Venkatesan et.al (2017) is a new family of time series 

models, which avoid the problem of order determination and 

explained in the following. FRAR model is defining a family 

of models by a discrete-time stochastic process 

 , 0, 1, 2, 3, ,tX t      called the Full Range 

Autoregressive (FRAR) model, by the difference equation. 

            
   

1

coscos
t t r tr

r

ksin r r
X X e












      

1

r t r t

r

a X e






         

Where  

          
   sinsin cos

r r

k r r
a






 ,  1,2,3,r   

, ,k   and  are real parameters. The region of 

identifiability of the models is given by, 

   , , , , 1, 0, 0,
2

S a k k R a and      


ò ò ò  

and more details can be found in venkatesan et.al (2017).  

Let  be autocorrelated observations, then the residual 

forms FRAR model of tx defined as  t tte x x  .Where 

tx is the prediction of tx at time t. Residual control chart are 

construct based on te depending on the traditional charts 

used. Suppose that we are monitoring an iid process 

1 2, ,e e  , with normality, an in-control mean of 0 and 

variance is 
2
e  For a Shewhart residual chart the 3 upper 

and lower control limits are defined by,  

eUCL e L  ,        and  eLCL e L   

Where e is the center line of the chart with standard 

deviation e  following Lucas and Saccussi (1990) table. 

 

V. NUMERICAL EXAMPLES 

 

The numerical data already used by Jiang et al (2000), is 

proposed to utilize in this paper and also used. In this 



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                Vol. 6(2), Apr 2019, ISSN: 2348-4519 

  © 2019, IJSRMSS All Rights Reserved                                                                                                                                   226 

observation, Poojalakshmi and Venkatesan(2019)  have 

identify that the shift of the FRAR control chart  and  

comparison of EWMA, ARMA and FRAR control chart with 

detecting mean shift and the same parameters. Then in this 

paper, we are find out the residual performance of FRAR 

control chart. Table-1 shows the performance of residual 

charts of EWMA, ARMA and FRAR. Figure-2 the residual 

of FRAR control chart is very sensitive to the falls out-side 

the control limits of shift occurred. When the data fluctuates 

up and down, indicating that the process is not steady. Then 

the FRAR residual control chart more than 4 points falls 

down the same side this type of chart is SCC control chart. 

The control limits are applied in FRAR model. Here the 

target mean is 0 and standard deviation is 0.9362. Following 

the control limits are 3.00 One point plot out-side the 

control limits are ARL in- control average run length and 

more than point plot out-side the control limits are ARL is 

out-of- control average run length. Several points fall outside 

of both the upper and lower control limits, indicating that the 

process is seemingly out of control. The control chart is a 

graph used to study how a process changes over time. Data 

are plotted in time order. A control chart always has a central 

line for the average, an upper line for the upper control limit 

and lower line for the lower control limit. These lines are 

determined from historical data. By comparing current data 

to these lines, you can draw conclusions about whether the 

process variation is consistent (in control) or is unpredictable 

(out of control, affected by special causes of variation). 
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Figure-1: FRAR Residual control chart 

The special-cause control chart for the same data indicating 

that the residuals are within the control limits. It is quite 

possible then that the points outside of the control limits on 

the original individuals chart were outside the limits because 

of systematic or common cause and not due to the occurrence 

of special causes. Thus the more traditional means of 

monitoring quality for this process may have yielded 

misleading results and suggested inappropriate corrective 

action, resulting in higher that necessary process variability. 

Then, 19 observations are generated from each time series 

model. Since the observation 13, is going to out-side the 

control limits and in-control average run length occurred. 

Thos results from the fact that when the shift first occurs 

there is a large discrepancy between the observation and its 

forecasted value, giving a large residual. 

 
Figure-2 The comparison of EWMA, ARMA, FRAR 

Residual Control Charts 

Table-1:Comparison of EWMA, ARMA and FRAR residual charts 

Observation Number Observations EWMA ARMA FRAR 

Residual 

1 1 0.850 0.880 1.000 

2 -0.5 -0.553 -0.572 -0.617 

3 0 -0.045 -0.046 -0.079 

4 -0.8 -0.718 -0.743 -0.853 

5 -0.8 -0.610 -0.632 -0.741 

6 -1.2 -0.859 -0.889 -1.018 

7 1.5 1.565 1.620 1.834 

8 -0.6 -0.455 -0.471 -0.446 

9 1 0.974 1.008 1.136 

10 -0.9 -0.787 -0.815 -0.910 

11 0.95 0.903 0.935 0.996 

12 0.25 0.173 0.179 0.197 

13 2.35 2.481 2.487 3.015 

14 0.45 0.027 0.028 0.066 

15 0.85 0.363 0.376 0.383 

16 1.75 1.074 1.111 1.234 

17 1.15 0.402 0.417 0.499 

18 1.65 0.767 0.794 0.928 

19 0.55 -0.283 -0.293 -0.267 
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VI. CONCLUSION 

 

In this paper we are attempt the residual control chart of 

FRAR model, it is very sensitive to detecting shift in the 

mean of the process occurred the out-of-control points. 

Initially use traditional charts so that every effort is made to 

detect assignable causes for out-of-control points such as 

those in figure-1. There is a very real possibility that the 

autocorrelations are small and the apparent drifts in the 

process average quite large, thus causing the systematic 

behaviour. Future research of our article is on processes in 

which efforts to remove the systematic variation have made 

and autocorrelation remains. 
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