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Abstract- Data depth is used to measure the depth or outlyingness of a given multivariate sample with respect to its underlying 

distribution. It can be lead to a natural center-outward ordering of sample points. The essence of depth function in multivariate 

analyses is to measure the degree of centrality of point relative to a data set or probability distribution. This work explores data 

depth procedures in order to find the measure of location, namely deepest or center point. Further, the various depth procedures 

are examined under real and simulation environment with the help of R software. The efficiency of various data depth 

procedures have been studied by computing average misclassification error in the context of discriminant analysis with 

numerical illustration. 
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I. INTRODUCTION 

Depth is an integer assigned to be a candidate fit 

relative to a data set. This leads to outside-inward/ centre-

outward ordering of the sample points. The usual order 

statistics is different from the depth order statistics. In usual 

order statistics the data are ordered from the smallest sample 

point to the largest, while the depth order statistics start from 

the middle sample point and move outwards in all directions. 

Data depth is a function of measuring degree of 

centrality of a point relative to a probability distribution. 

Based on the depth functions, a lot of methods of signs and 

ranks, order statistics, quantiles, and outlyingness measures 

could be extended conveniently from their univariate 

counterparts in a unified way [14]. Data depth is a concept 

which plays an important role in many notable fields of 

statistics, namely; data exploration, ordering, asymptotic 

distributions and robust estimation [10]. 

The rest of the paper is organized as follows. Section 

2 briefly summarizes the various data depth procedures. 

Section 3 presents the results obtained from the study based 

on real and simulation environment along with application in 

discriminant analysis. The paper ends with conclusion in the 

last section. 

II. DATA DEPTH PROCEDURES 

Many graphical and quantitative methods are fixed 

for analysing the measures such as location, scale and shape, 

as well as comparing inference methods based on data depth. 

Numerous depth notions have been proposed during the last 

few decades. The celebrated depth procedures, namely 

Mahalanobis Depth [1], Half Space Depth [2], Simplicial 

Depth [4], Simplicial Volume Depth [3], Spatial Depth [11], 

Zonoid Depth [8] and Projection Depth [12], [13] which are 

briefly summarized in this section 

. 

2.1 Half Space Depth 

Tukey (1975) introduced the concept of  half  space  

depth (HSD).  Half  space  

Depth of a point 

 p

ipiinp Rn,...,i);x,.....,x(xS)x,....,x(x  111

relative to a p - dimensional data set nS is defined as the 

minimum number of data points in a closed half space with 

boundary through x . In univariate case, it is easy to see that 

the depth of a point is given by,

   xx,#xx# ii min  the median is the point (or 

points) with maximal depth. In the multivariate case, the 

notation of median can be comprehensive, being the point 

with maximal depth. This multivariate median is called 

Tukey median. The Half Space depth is also called a location 

depth and Tukey depth. 

2.2 Mahalanobis Depth 

Mahalanobis (1936) introduced the concept of 

generalized distance in statistics. In 1975 Mahalanobis 

distance can be used as a measure to calculate the depth of a 

point. Mahalanobis depth (MD) of a point  nSx ℝ
p

 

relative to a p -dimensional data set defined as: 

       1
11


  xxSxxS;xMD

T

n   (1) 

where x  and S  are the mean vector and dispersion matrix 

of   . 
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This function fails by the side of being robust, since 

it is based on non robust measures such as the mean and the 

dispersion matrix. Another disadvantage of this function is 

that it depends on the continuation of second moments. 

2.3 Projection Depth 

Let µ(.) and σ(.) be univariate location and scale 

events, respectively. Then the outlyingness of a point with 

deference to the distribution function F of x defined by (Liu 

1992) 

       

)F,x,u(Qsup)F,x(O
u 1

          (2) 

where,     uu

T F/Fxu)F,x,u(Q   and 
uuFF  is 

the distribution of xuT
.  Let, µ (.) and σ (.) be multivariate 

case used a point of a p-dimensional data set. The projection 

depth (PD) is defined by 

                
)F,x(O

)F,x(DPFu



1

1

 

         (3) 

2.4 Simplicial Depth 

Liu (1990) introduced the concept of Simplicial 

depth (SD). Simplicial depth of a point  nSx ℝ
p

 

relative to a p -dimensional data set Sn defined as the 

number of closed simplex containing x and having 1p

vertices in nS . In bivariate case, the simplicial depth of a 

point x  is the number of triangles through vertices in nS  

and containing x . Simplicial depth is counted as a probability 

that a point lies in a simplex, built on d + 1 data points. 

     d

dFS Rx,X,...,XSxPF,xD  11   
(4) 

Simplicial depth is robust against outliers. Since, if a set of 

sample points is represented by the point of maximum depth, 

then up to a constant fraction of the sample points can be 

arbitrarily corrupted without significantly changing the 

location of the representative point. It is also invariant 

under affine transformations of the plane. However, 

simplicial depth fails to have some other desirable properties 

for robust measures of central tendency. When applied to 

centrally symmetric distributions, it is not necessarily the 

case that there is a unique point of maximum depth in the 

center of the distribution. Also, from the point of maximum 

depth, it is not necessarily the case that the simplicial depth 

decreases monotonically. 

2.5 Simplicial Volume Depth 

Oja (1983) established a depth procedure using the 

concept of simplicial volume (SVD).  Simplicial volume is a 

homotopy invariant of oriented closed associated manifolds 

that was introduced by Gromov (Gromov 1983). Intuitively, 

simplicial volume events are difficult to describe the 

manifold in question in terms of simplices (with real 

coefficients). 

 Let M be an oriented closed associated manifold of 

dimension n. Then the simplicial volume of M (also called 

the Gromov norm of M) is defined as, 

    ;(inf:
11

MCccMM n  
is a 

fundamental cycle of  0M ,                     

where,   ;M(HM n ℝ) is the fundamental class of M  

with real coefficients.  

Oja depth of a point  nSx  ℝ
p

 relative to a p -

dimensional data set Sn is defined as the sum of the volume of 

every closed simplex having a vertex at x and the others in 

any p points of the Sn data set. In the bivariate case, the Oja 

depth of a point x relative to a bivariate data set Sn is the sum 

of the areas of all triangles whose vertices are x, xi, xk with xi 

and xk belonging to Sn.    

 

2.6 Zonoid Depth 

  Koshevoy and Mosler (1996) introduced a notion of 

data depth, called zonoid data depth (ZD). The zonoid data 

depth, depthµ(x), of a point X ℝ
d

 is defined by, 

  
    



 


otherwise.0,

α, somefor  μD xif,μDx:αsup
depth

αα
xμ

                                               (5)               

The data depth of a point x is the maximal height α at which

)(ˆ  Zprojx . Here,  

    





 


  ZD

^
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                       (6)             

where 10  . Further, the depth of x equals zero if x lies 

outside  D  for all α; it equals one if x is the expectation. 

If α > 0,    D  is the set of all points that include data 

depth greater than or equal to α. 

 

2.7 Spatial Depth 

 An implementation of the idea of spatial depth 

(SPD), established by Serfling (2002), which is defined as 

follows: Lt Y be d-dimensional random vectors have 

cumulative distribution function F. Then, the multivariate 

spatial depth of x ℝ
d

 qualified F is defined as, 

      
EE

yxE1yFd)yx(S1F,xSD     

            (7)                                                                                                                                                                                                      

where 
E

.  is the Euclidean norm in ℝ
d

. The spatial depth is 

a depth function that builds ahead the notion of spatial (also 

called geometric) quantiles for multivariate data, considered 

by Chaudhuri (1996) and Koltchinskii (1997), formulated by 

Vardi and Zhang (2000) and Serfling (2002). This Spatial 

depth also called L1-depth. 
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 3. EXPERIMENTAL STUDY 
This section presents the performance of various 

data depth procedures by providing the results of numerical 

illustration which was carried out under real/simulation data 

and by considering with/without outliers.  

Further, various notions of data depth procedures 

have been studied by performing discriminant analysis in a 

real data set. The efficiency of these procedures is compared 

by computing misclassification probabilities.   

 

3.1 Real data 

 For this study, a real data set was considered, 

namely NYC data.  This data set contains two variables, with 

23 observations. The variables are Manpower in percent, and 

percent change in weekly auto thefts. For the given data set, 

the 14
th

 observation is identified as outliers. The deepest point 

is located by using various notions of depth procedures with 

and without outliers and is summarized in the form of table 1 

and is given in appendix.  

From the table 1, it is noticed that Simplicial (SD) 

and Spatial Depth (SPD) provides the same deepest point by 

considering the maximum depth value and also with and 

without outliers. These two methods equally perform well 

and better than the other methods. If the data cleaned (after 

removing outliers) almost all the methods represent the same 

data point as the deepest point (excludes simplicial volume 

depth). 

3.2 Simulation data 

 A simulation study is performed to compare the 

efficiency of the various notions of data depth procedures. 

The data (n=100) are generated normal distribution, mean 

vector, µ= (0, 0) and unit covariance matrix, 2I . The 

various level of contaminations (mean vector, µ= (4, 4) and 

unit covariance matrix,  =1.5 2I  ) such as 0%, 1%, 2%, 

5%, 10% and 20% are considered and the obtained results are 

summarized in the form of  table 2 and is given in appendix 

It is observed that, from the table 2, simplicial and 

spatial depths tolerates certain amount of contaminations and 

gives the same deepest point (measure of location). The other 

depth procedures fail to tolerate, even if the data 

contamination is very low (1%), does not provides the same 

deepest point. It is concluded that the simplicial and spatial 

depth is superior to other depth procedures. 

 

3.3 Application (Discriminant Analysis) 

 This section demonstrates the efficiency of various 

notions of data depth procedures by applying in the 

multivariate technique, Discriminant analysis.  For this, a real 

data set was considered, namely, anorexia data set. The data 

set contains 3 groups, each group two variables with a frame 

of 72 observations. The weight change data for young female 

anorexia patients. There are two variables, one is, prewt 

(weight of patients before study periods, in lbs) and second 

one is, postwt (weight of patients after study periods, in lbs), 

classified the three groups into the Cont (Control), CBT 

(Cognitive behavioral treatment), FT (Family treatment). 

On comparing the average probability of 

misclassification values in the table 3 results given in 

appendix, simplicial and spatial Depth performs better than 

the other methods. Since these two procedures gives low 

misclassification probabilities when compared with other data 

depth procedures. 

4. CONCLUSION 

Measures of location play a vital role in almost all statistical 

data analysis. In this era of big data, it is to be estimated a 

good measure of location to perform any data analysis 

techniques, to understand the data. Many procedures are 

established to estimate the measure of location for the past 

two centuries. Data depth procedures are recent advances in 

statistics to locate a reliable location by considering deepest 

point in a data cloud. In this context, this paper demonstrates 

the various notions of data depth procedures which were 

established recent past. The efficiency of these procedures 

has been studied with application in the context of 

Discriminant analysis along with numerical study. From the 

study, it is suggested that simplicial and spatial depth 

performs equally good when compared with other depth 

procedures. The research communities can get more accuracy 

while using these procedures in order to find the good 

location by identifying the deepest point in a data cloud, 

instead of using conventional measure of location. 
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Appendix               
   Table 1: Measure of location and the associated depth value under various data depth procedures 

 

Methods MD HSD SD SVD SPD ZD PD 

NYC data 

(With Outlier) 

4 

(-5.37,  

 -1.01) 

0.926396 

4 

(-5.37,  

 -1.01) 

0.347826 

9 

(-8.81,  

-0.76) 

0.352908 

7 

(-7.8, 

-0.4) 

0.854811 

9 

(-8.81,  

-0.76) 

0.818959 

4 

(-5.37,  

 -1.01) 

0.835277 

4 

(-5.37, 

 -1.01) 

0.567126 

NYC data 

(Without Outlier) 

9 

(-8.81,   

-0.76) 

0.900567 

9 

(-8.81,  

-0.76) 

0.363636 

9 

(-8.81,  

-0.76) 

0.361688 

5 

(-10.23,  

-0.76) 

0.844151 

9 

(-8.81,  

-0.76) 

0.834897 

9 

(-8.81, 

 -0.76) 

0.815559 

9 

(-8.81,  

-0.76) 

0.617489 
. – Observation number;  ( . ) – Location;  Bold – Depth value 
 

Table 2: Measure of location and the associated depth value under various data depth procedures 
 

Error MD HSD SD SVD SPD ZD PD 

0% 

57 

(0.025383, 

0.027475) 

0.994756 

57 

(0.025383, 

0.027475) 

0.4 

39 

(0.143771, 

 -0.11775) 

0.273649 

91 

(-0.07042,    

-0.43088) 

0.687842 

39 

(0.143771,    

-0.11775) 

0.915621 

57 

(0.025383, 

0.027475) 

0.956976 

39 

(0.143771,   

 -0.11775) 

0.755757 

1% 

48 

(0.596259, 

0.119718) 

0.999663 

68 

(0.689373, 

-0.95584) 

0.41 

39 

0.143771, 

 -0.11775) 

0.274286 

80 

(-0.01253, 

-0.37485) 

0.76151 

39 

(0.143771, 

-0.11775) 

0.920654 

48 

(0.596259, 

0.119718) 

0.992166 

68 

(0.689373, 

-0.95584) 

0.760977 
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2% 

57 

(0.025383, 

0.027475) 

0.995619 

57 

(0.025383, 

0.027475) 

0.42 

39 

(0.143771, 

 -0.11775) 

0.275603 

28 

(-0.05488, 

0.250141) 

0.720274 

39 

(0.143771, 

-0.11775) 

0.932666 

57 

(0.025383, 

0.027475) 

0.980722 

39 

(0.143771, 

 -0.11775) 

0.775323 

5% 

35 

(0.248413, 

0.065288) 

0.988765 

39 

(0.143771, -

0.11775) 

0.44 

39 

(0.143771,  

-0.11775) 

0.276982 

36 

(0.019156, 

0.257338) 

0.739384 

39 

(0.143771,    

-0.11775) 

0.946419 

35 

(0.248413, 

0.065288) 

0.950009 

39 

(0.143771,  

  -0.11775) 

0.832403 

10% 

83 

(0.779584, 

0.713241) 

0.974027 

36 

(0.248413, 

0.065288) 

0.42 

36 

(0.248413,  

0.065288) 

0.276005 

60 

(0.494796, 

0.138053) 

0.753897 

36 

(0.248413, 

0.065288) 

0.947431 

36 

(0.248413, 

0.065288) 

0.905542 

36 

(0.248413, 

0.065288) 

0.812343 

20% 

18 

(0.726751, 

1.151912) 

0.972816 

96 

(-0.01675, 

0.161789) 

0.41 

 

36 

(0.019156, 

0.257338) 

0.271967 

 

35 

(0.248413, 

0.065288) 

0.707513 

 

36 

(0.019156, 

0.257338) 

0.894025 

 

83 

(0.779584, 

0.713241) 

0.900445 

 

36 

(0.019156, 

0.257338) 

0.774119 

 
. – Observation number;  ( . ) – Location;  Bold – Depth value 

 
 

 

Table 3 Computed misclassification probabilities under various data depth procedures 

 

Methods MD HSD SD SVD SPD ZD PD 

With outlier 0.4930 0.4930 0.4507 0.5352 0.4507 0.5070 0.5352 

Without outlier 0.4853 0.4627 0.4328 0.4930 0.4328 0.4853 0.4507 

                                                              


