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Abstract— This study presents the MNIM approach, which integrates the El-Kalla polynomial with a new iterative method. The 

linear components of delay differential equations (DDEs) are first addressed using the new iterative method, followed by a 

secondary iterative process to manage the complexities introduced by nonlinear terms, as detailed in Section 2.3. Essential 

definitions and concepts related to DDEs, the iterative methodology, and the El-Kalla polynomial are also discussed. The 

effectiveness and reliability of MNIM are demonstrated through three notable test cases, with absolute errors evaluated both 

graphically and numerically for different values of the time variable xxx. The findings emphasize MNIM's capability to produce 

highly accurate approximations that closely match exact solutions with minimal error. This highlights MNIM's potential as a 

powerful and efficient tool for solving nonlinear DDEs. Additionally, the study lays the groundwork for future research, 

showcasing the method's potential in addressing complex problems across various scientific and engineering fields where 

nonlinear DDEs play a key role in modeling. 
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1. Introduction  

This section provides a concise overview of several well-

established methods for solving fractional delay differential 

equations (FDDEs). It also outlines the problem statement, 

research motivation, identified research gap, and the study's 

aim, objectives, scope, and limitations. 

 

FDDEs are a class of equations that combine fractional 

derivatives with time delays. Unlike ordinary derivatives, 

fractional derivatives are non-local, enabling them to account 

for memory effects, while time delays incorporate historical 

information about prior system states. The integration of 

these features improves the accuracy of models for real-world 

phenomena. FDDEs are applied across various fields, such as 

physics, chemistry, control systems, electrochemistry, 

bioengineering, and population dynamics [1–5]. In 

bioengineering, fractional derivatives contribute to a better 

understanding of biological tissue dynamics, which is 

essential for exploring nuclear magnetic resonance and 

magnetic resonance imaging of complex, porous, and 

heterogeneous materials in both living and non-living 

systems. 

 

To address the computational challenges posed by the non-

local nature of fractional derivatives, researchers have 

developed accurate, efficient, and cost-effective numerical 

techniques for solving nonlinear FDDEs. Diethelm et al. [6,7] 

extended the Adams-Bashforth method to create the 

Fractional Adams Method (FAM) for Fractional Differential 

Equations (FDEs). Building on this, Bhalekar and Daftardar-

Gejji [8] introduced an efficient algorithm using FAM to 

address FDEs with delay terms. Another notable approach, 

the Numerical Predictor-Corrector Method (NPCM), was 

developed by Daftardar-Gejji et al. [9] based on the 

Daftardar-Gejji and Jafari method (DGJ method) [10–12]. 

This method was later extended to effectively solve FDDEs, 

demonstrating superior time efficiency compared to 

alternative techniques [13]. Kumar and Methi [14] introduced 

a novel approach, the Banach Contraction Method (BCM), 

which integrates the BCM algorithm developed by Daftardar-

Gejji and Bhalekar [15] with the New Iterative Method 

(NIM) proposed by Daftardar-Gejji and Jafari [10]. This 

hybrid approach demonstrated greater accuracy and time 

efficiency than the Fractional Adams Method (FAM) [8] and 

the Numerical Predictor-Corrector Method (NPCM) [13]. 

 

Building on this foundation, the current study modifies and 

extends NIM to effectively solve FDDEs. While the non-local 

nature of fractional derivatives poses challenges for time 

efficiency in numerical simulations, their ability to capture 

memory effects in natural phenomena is invaluable. The 

primary objective of this research is to develop a 

methodology that surpasses existing techniques in precision 

and computational efficiency. The proposed method will 

exhibit rapid convergence, addressing the limitations of 
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approaches such as NIM, VIM, FAM, and NPCM, while 

significantly reducing simulation time. Additionally, it aims 

to offer heightened accuracy, establishing itself as a robust 

and efficient solution for solving nonlinear FDDEs. 

 

2. Related Work  

The study of solution methodologies for Delay Differential 

Equations (DDEs) and their more complex variants, 

Fractional Delay Differential Equations (FDDEs), has seen 

significant advancements. 

 

Srivastava [16] introduced the New Variational Iteration 

Method (NVIM), a promising technique for deriving 

approximate analytical solutions to FDDEs. This method has 

been successfully applied to both linear and nonlinear initial 

value problems, demonstrating its ability to produce accurate 

approximate solutions with relatively few iterations when 

compared against exact solutions. 

 

Jhinga and Daftardar-Gejji [17] proposed an innovative 

predictor-corrector technique specifically designed for 

nonlinear FDDEs. Their comprehensive error analysis and 

illustrative examples highlighted its superior accuracy and 

time efficiency compared to established numerical 

approaches such as the Fractional Adams-Moulton (FAM) 

method and the Three-Term Numerical Predictor-Corrector 

Method (NPCM). A key finding was the L1-PCM method's 

convergence for very small values of the parameter α\alphaα, 

where FAM and NPCM methods diverged. 

 

Nemah [18] combined the Mahgoub transform with the 

Variational Iteration Method (VIM) to solve nonlinear 

FDDEs, addressing unnecessary assumptions in other 

algorithms. Their results, summarized in Tables 2 to 4, 

demonstrated that this approach closely matched exact 

solutions and outperformed methods like the Modified 

Adomian Decomposition Method (MADM) and the 

Homotopy Analysis Method (HAM) in several scenarios. 

These findings underscored the Mahgoub-Variational 

Iteration Method's (MVIM) superior efficacy. 

 

El-Kalla et al. [19] explored the application of the Adomian 

Decomposition Method (ADM) to nonlinear delay differential 

equations (NDDEs) using an enhanced Adomian polynomial 

known as the El-Kalla polynomial. The El-Kalla polynomial 

offers several advantages: 

1. It is recursive and free of derivative terms, simplifying 

programming and saving processing time. 

2. Solutions derived using it exhibit faster convergence 

compared to traditional Adomian polynomials. 

3. It facilitates the estimation of the maximum absolute 

truncated error of the series solution. 

 

The study analyzed convergence aspects and solved a range 

of numerical examples using both standard Adomian and El-

Kalla polynomials, demonstrating significant promise for this 

approach in various applications. 

Avcı [20] introduced a numerical solution method for FDDEs 

with Caputo fractional derivatives using a fractional 

integration operational matrix derived from a fractional 

Taylor basis. This method transforms the original equation 

into a system of algebraic equations, which can be efficiently 

solved using computational algorithms. The study provided 

an error bound for the approximation and validated the 

method through examples, showcasing its accuracy and 

practicality. 

 

Anil Kumar [21] employed the Banach Contraction Method 

(BCM) to solve FDDEs with proportional delays. The study 

included convergence and error analyses, revealing that errors 

decrease significantly with additional iterations. BCM avoids 

discretization, linearization, and perturbation techniques, 

simplifying complex calculations and making implementation 

straightforward. 

 

Al-Sawalha et al. [22] addressed pantograph delay differential 

equations using the Chebyshev pseudospectral method with 

Caputo fractional derivatives. By converting the equations 

into algebraic systems, this approach streamlined the solution 

process. Convergence was thoroughly analyzed, and accuracy 

was validated through examples, showing superior 

performance compared to other methods. This technique's 

simplicity, efficiency, and broader applicability to linear and 

nonlinear FDDEs make it a valuable contribution to the field. 

 

3. Theory/Calculation 

In this section should extend, not repeat the information To 

understand the core principles of the New Iterative Method 

(NIM), it is useful to examine a well-established functional 

equation, as explored in the works of Daftardar-Gejji & 

Bhalekar (2010), Ramadan & Al-Luhaibi (2015), Moltot & 

Deresse (2022), and Ashitha & Ranjini (2020). This approach 

starts with analyzing the nonlinear functional equation 

introduced by Daftardar-Gejji & Jafari (2006). 

  )]([)()( xyNxgxy 
                

)1...(
                                                                                     

 

In this context, N represents the nonlinear operator, and f is a 

known function. The goal is to determine a solution, denoted 

as )(xy , which possesses a series representation in the 

following format: 
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The nonlinear operator N can be decomposed as 
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From Eqns. (2) and (3), Eqn. (1) is equivalent to 

 

  )4(
1

1

00

0

0

 










 








































i

i

j

j

i

j

j

i

i yNyNyNgy

                                                       
 

We define the recurrence relation: 
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and the series 


0i

iy absolutely and uniformly converges to a 

solution of Eqn. (1). 

 

3.2 The El-Kalla polynomial Formula 
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where nA  , are the El-kalla polynomials, 0A  , 
1A  , 

2A  ,…, 

)( nSf  is the substitution of the summation of dependent 

variable in the nonlinear term. For example the El-Kalla 

polynomials of the nonlinear term )(2 xy  and the nonlinear 

term )(3 xy   are shown above 
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3.3 The Proposed New Iterative Method (NIM) 

In a prior study, the New Iterative Method (NIM) was used to 

approximate solutions for ordinary differential equations. In 

this section, we present new algorithms aimed at simplifying 

the resolution of Delay Differential Equations (DDEs). To 

ensure a clear understanding of these newly developed, 

generalized NIM algorithms, we will first explore the 

fundamental structure of Delay Differential Equations 

(DDEs). 

      )()()()( xftxyNxyPxy n    ,  

,...3,2,1n                                                    )11...(  

  ,...2,1,0,  iy i
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where 
  )(xy n

 is the derivative of y  of order n , P  is the 

linear bounded operator, N  is a nonlinear bounded operator, 

)(xf  is a given continuous function, and )(xyy  . 

In this section, the general form of the 
thn -order DDE Eqn. 

(11) with the initial value Eqn. (12) is treated using the 

suggested method MNIM.  

Next, by isolating the term associated with the derivative, we 

get 
      )13()()()()( txyNxyPxfxy n 

                                                                         

Applying the 
nJ  on both sides of Eqn. (13), we get

 

    

 
)14(

!
)0(

)()()(

)(

0

















r

i

i
i

n

i

x
y

txyNxyPxfJ

xy                                              

Let's consider dividing this equation into two separate parts as 

follows: 
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In typical cases, N serves as the nonlinear operator; however, 

when dealing with the DDE, it is employed with linear 

functions. Additionally, "g" represents a known function, 

defined as: 
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In our quest for a solution to Eqn. (11), we seek a 

representation in the form of a series: 
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The operator N can be decomposed into the following  
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From Eqns. (11), (17) and Eqn. (18)  
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The El-Kalla polynomials and the classical NIM, in 

conjunction with the characteristics of fractional integral and 

fractional derivative, are integrated to derive the recurrence 

relation presented above: 
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  

We define the recurrence relation from the systems of Eqn. 

(20) as follows: 
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Therefore, in truncated series form, the approximate 

analytical solution of the DDE Eqn. (11) is given by 
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3.4 Suitable Algorithm for Fractional Delay 

Differential Equation 

In this section, we introduce a suitable algorithm for solving 

Fractional Delay Differential Equations using the proposed 

New Iterative Method (NIM). Consider the following 

Fractional Delay Differential Equations: 
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where L  is a linear operator, N , represent a nonlinear 

operator, )(xg   is the source term, and 
D  is the Caputo 

fractional derivative of order  with mm  1 . To solve 

Eqn. (27) by means of the proposed modification of the NIM, 

we apply the operator
J , the inverse of the operator

D , to 

both sides of Eqn. (27) as follows: 
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Let's consider dividing this equation into two separate parts as 

follows: 
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In our quest for a solution to Eqn. (29), we seek a 

representation in the form of a series: 
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The operator N can be decomposed into the following 
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From Eqns. (29), (31) and Eqn. (32)  
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We define the recurrence relation: 
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Then k-term series solution will be in the form 
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From above Eqns., we can deduce the following: 
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4. Experimental Method/Procedure/Design 

This section focuses on evaluating the performance and 

accuracy of the proposed approach presented in Section 2.3, 

particularly for solving differential-delay equations (DDEs) 

of integer order. Two nonlinear DDEs and one linear DDE 

are used in this segment to demonstrate the effectiveness and 

validity of the Modified New Iterative Method (MNIM). 

4.1 Nonlinear Delay Differential Equations (NDDEs) 

Example 1 [refer to Srivastava (2020)]: Consider the 

following first-order nonlinear DDE: 
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The analytical solution is given by )sin()( xxy   

Based on Eqn. (14), Eqn. (41) can be approximately written 

as follows: 
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The following recurrence relation is derived from Section 2.3: 
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Now, in vision of Eqn. (39), the solution of Example 1 is 

 ...)( 43210 yyyyyxy                 )43...(
 

Table 1: Four-term approximate solution using MNIM and its comparison 

with the exact solution of Example 1 for different time variable values, along 

with the corresponding absolute error 

 
.4 exactyE   

x EXACT MNIM Error of MNIM  

0.01 0.01 0.00999983 0 

0.02 0.019999 0.01999867 0 

0.03 0.029996 0.0299955 3.46945E-18 

0.04 0.039989 0.03998933 0 

0.05 0.049979 0.04997917 6.93889E-18 

0.06 0.059964 0.05996401 0 

0.07 0.069943 0.06994285 0 

0.08 0.079915 0.07991469 1.38778E-17 

0.09 0.089879 0.08987855 1.38778E-17 

0.1 0.099833 0.09983342 1.38778E-17 

 

 
Figure 1: Solution plots for Example 1 obtained using MNIM, 

compared with the exact solutions 

 
Table 2: Four-term approximate solution using MNIM compared with the 

eight-term approximate solution from SIM and the exact solution of Example 
1 for various time variable values. 

X EXACT MNIM SIM Error of 

MNIM 

Error 

SIM 

0.01 0.01 0.009999833 0.00999975 0.000000000 8.33333E-

08 

0.02 0.019999 0.019998667 0.019998 0.000000000 6.66667E-

07 

0.03 0.029996 0.0299955 0.02999325 3.46945E-18 2.25E-06 

0.04 0.039989 0.039989334 0.039984001 0.000000000 5.33333E-

06 

0.05 0.049979 0.049979169 0.049968753 6.93889E-18 1.04167E-

05 

0.06 0.059964 0.059964006 0.059946006 0.000000000 1.8E-05 

0.07 0.069943 0.069942847 0.069914264 0.000000000 2.85833E-
05 

0.08 0.079915 0.079914694 0.079872027 1.38778E-17 4.26667E-

05 

0.09 0.089879 0.089878549 0.089817799 1.38778E-17 6.075E-05 

0.1 0.099833 0.099833417 0.099750083 1.38778E-17 8.33333E-

05 

 

 
Figure 2: Solution plots for Example 1 obtained using MNIM, compared 

with SIM and the exact solutions. 
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Example 2 [see Moltot & Deresse (2022)]: Consider the 

following nonlinear second-order DDE: 
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The analytical solution is given by  
xexy )(

 
By applying the fractional integral to both sides of Eqn. (44), 

and considering Eqn. (14), Eqn. (44) can be approximately 

expressed as follows: 
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The following recurrence relation is derived from Section 2.3: 
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Now, in vision of Eqn. (39), the solution of Example 2 is 

  
 ...)( 210 yyyxy                                                                                        

  
 

 

Table 3: Two-term approximate solution using MNIM, compared with the 

exact solution of Example 2 for various time variable values, along with the 

absolute error. 

 
.2 exactyE   

x EXACT MNIM ERROR 

0.01 1.01005 1.01005 2.22E-16 

0.02 1.020201 1.020201 5.55E-15 

0.03 1.030455 1.030455 6.44E-14 

0.04 1.040811 1.040811 3.63E-13 

0.05 1.051271 1.051271 1.39E-12 

0.06 1.061837 1.061837 4.17E-12 

0.07 1.072508 1.072508 1.06E-11 

0.08 1.083287 1.083287 2.37E-11 

0.09 1.094174 1.094174 4.83E-11 

0.1 1.105171 1.105171 9.13E-11 

 

 
Figure 3: Solution plots for Example 2 obtained using MNIM, compared 

with the exact solutions. 

 

4.2 Linear Delay Differential Equations (LDDEs) 

Example 3 [see Mohyud-din & Yildirim (2010)]: Consider 

the second-order LDDE: 
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The analytical solution is given by 
2)( xxy   

In view of Eqn. (14), the Eqn. (47) is approximately 

expressed as follows: 
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We deduce the following recurrence relation from section 2.3 
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Now, in vision of Eqn. (39), the solution of Example 1 is 
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Table 4: Three-term approximate solution using MNIM, compared with 

VIM, ADM, and the exact solution of Example 3 for various time variable 
values. 

 x EXACT MNIM (n=3) VIM (n=8) ADM (n=7) 

0.01 0.0001 0.0001 9.9999E-05 1E-04 

0.02 0.0004 0.0004 0.00039999 0.0004 

0.03 0.0009 0.0009 0.00089993 0.0009 

0.04 0.0016 0.0016 0.00159979 0.0016 

0.05 0.0025 0.0025 0.00249948 0.0025 

0.06 0.0036 0.0036 0.00359892 0.0036 

0.07 0.0049 0.0049 0.004898 0.0049 

0.08 0.0064 0.0064 0.00639659 0.0064 

0.09 0.0081 0.0081 0.00809453 0.0081 

0.1 0.01 0.01 0.00999167 0.01 

 

 
Figure 4: Solution plots for Example 3 obtained using MNIM, compared 

with ADM, VIM, and the exact solutions. 

 

5. Results and Discussion 

Graphs are essential for visualizing physical structures and 

practical applications. In this section, the obtained solutions 

are analyzed and presented using figures and tables. Figures 1 

to 4 illustrate comparisons between the approximate solutions 

generated by the proposed method and the exact solutions for 

Examples 1 to 3 across various values of the time variable 

xxx. These figures highlight the effectiveness of the MNIM 

approach as a mathematical tool, with the solutions produced 

by this method closely matching the exact solutions. 

 

Figures 1 through 4 feature 2D graphs depicting the 

approximate solutions for Examples 1, 2, and 3, alongside 

those obtained using ADM and VIM, providing a 

comparative analysis of the precision and efficiency of 

MNIM. The corresponding absolute error values are also 

presented to validate its accuracy. Furthermore, Tables 1 to 4 

provide a detailed comparison of the approximate and exact 

solutions for Examples 1 to 3, including their absolute errors 

at different values of xxx. The results confirm that the 

solutions produced by the proposed method are highly 

accurate, with minimal errors compared to ADM, VIM, and 

the exact solutions. 

 

6. Conclusion and Future Scope  

This study presents MNIM, a method that combines the El-

Kalla polynomial with the New Iterative Method (NIM). 

Initially, NIM addresses the linear component of DDEs, and 

to manage the complexity introduced by nonlinear terms, a 
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post-treatment NIM is applied, as described in Section 2.3. 

We introduce the key definitions and terminology related to 

DDEs, the new iterative approach, and the El-Kalla 

polynomial. The validity and consistency of MNIM have 

been demonstrated through the analysis of three significant 

problems. Absolute errors for all examples are both 

graphically and numerically presented across different time 

variable values. The results clearly show that MNIM provides 

highly accurate approximations that closely match the exact 

solutions with minimal error. As a result, MNIM proves to be 

an effective tool, improving accuracy and efficiency in 

solving nonlinear DDEs. This research represents a step 

forward in exploring the potential of this method to address 

complex problems across various scientific and engineering 

disciplines, especially as nonlinear DDEs continue to gain 

prominence in modeling real-world systems. 
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