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Abstract— This study presents the MNIM approach, which integrates the El-Kalla polynomial with a new iterative method. The
linear components of delay differential equations (DDEs) are first addressed using the new iterative method, followed by a
secondary iterative process to manage the complexities introduced by nonlinear terms, as detailed in Section 2.3. Essential
definitions and concepts related to DDEs, the iterative methodology, and the El-Kalla polynomial are also discussed. The
effectiveness and reliability of MNIM are demonstrated through three notable test cases, with absolute errors evaluated both
graphically and numerically for different values of the time variable xxx. The findings emphasize MNIM's capability to produce
highly accurate approximations that closely match exact solutions with minimal error. This highlights MNIM's potential as a
powerful and efficient tool for solving nonlinear DDEs. Additionally, the study lays the groundwork for future research,
showcasing the method's potential in addressing complex problems across various scientific and engineering fields where
nonlinear DDEs play a key role in modeling.

Keywords— Delay differential equations; Fractional delay differential equations; El-kalla polynomials; Adomian polynomials.

1. Introduction extended the Adams-Bashforth method to create the
Fractional Adams Method (FAM) for Fractional Differential
This section provides a concise overview of several well- ~ Equations (FDEs). Building on this, Bhalekar and Daftardar-

established methods for solving fractional delay differential ~ Gejii [8] introduced an efficient algorithm using FAM to
equations (FDDES). It also outlines the problem statement,  address FDEs with delay terms. Another notable approach,

research motivation, identified research gap, and the study's ~ the Numerical Predictor-Corrector Method (NPCM), was
aim, objectives, scope, and limitations. developed by Daftardar-Gejji et al. [9] based on the

Daftardar-Gejji and Jafari method (DGJ method) [10-12].

derivatives with time delays. Unlike ordinary derivatives, ~ demonstrating  superior time efficiency compared to
fractional derivatives are non-local, enabling them to account ~ alternative techniques [13]. Kumar and Methi [14] introduced
for memory effects, while time delays incorporate historical ~ & novel approach, the Banach Contraction Method (BCM),
information about prior system states. The integration of ~ Which integrates the BCM algorithm developed by Daftardar-
these features improves the accuracy of models for real-world ~ Gejji and Bhalekar [15] with the New lterative Method
phenomena. FDDESs are applied across various fields, such as ~ (NIM) proposed by Daftardar-Gejji and Jafari [10]. This
physics, chemistry, control systems, electrochemistry, ~ hybrid approach demonstrated greater accuracy and time
bioengineering, and population dynamics [1-5]. In efficiency _than the .Fractlonal Adams Method (FAM) [8] and
bioengineering, fractional derivatives contribute to a better ~ the Numerical Predictor-Corrector Method (NPCM) [13].

understanding of biological tissue dynamics, which is o ) ) -
essential for exploring nuclear magnetic resonance and  Building on this foundation, the current study modifies and

heterogeneous materials in both living and non-living nature of fractional derivatives poses challenges for time
systems. efficiency in numerical simulations, their ability to capture

memory effects in natural phenomena is invaluable. The
To address the computational challenges posed by the non- ~ Primary objective of this research is to develop a
local nature of fractional derivatives, researchers have  Methodology that surpasses existing techniques in precision
developed accurate, efficient, and cost-effective numerical ~ and computational efficiency. The proposed method will
techniques for solving nonlinear FDDEs. Diethelm et al. [6,7] ~ €xhibit rapid convergence, addressing the limitations of
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approaches such as NIM, VIM, FAM, and NPCM, while
significantly reducing simulation time. Additionally, it aims
to offer heightened accuracy, establishing itself as a robust
and efficient solution for solving nonlinear FDDEs.

2. Related Work

The study of solution methodologies for Delay Differential
Equations (DDEs) and their more complex variants,
Fractional Delay Differential Equations (FDDESs), has seen
significant advancements.

Srivastava [16] introduced the New Variational Iteration
Method (NVIM), a promising technique for deriving
approximate analytical solutions to FDDEs. This method has
been successfully applied to both linear and nonlinear initial
value problems, demonstrating its ability to produce accurate
approximate solutions with relatively few iterations when
compared against exact solutions.

Jhinga and Daftardar-Gejji [17] proposed an innovative
predictor-corrector technique specifically designed for
nonlinear FDDEs. Their comprehensive error analysis and
illustrative examples highlighted its superior accuracy and
time efficiency compared to established numerical
approaches such as the Fractional Adams-Moulton (FAM)
method and the Three-Term Numerical Predictor-Corrector
Method (NPCM). A key finding was the L1-PCM method's
convergence for very small values of the parameter a\alphaa,
where FAM and NPCM methods diverged.

Nemah [18] combined the Mahgoub transform with the
Variational Iteration Method (VIM) to solve nonlinear
FDDEs, addressing unnecessary assumptions in other
algorithms. Their results, summarized in Tables 2 to 4,
demonstrated that this approach closely matched exact
solutions and outperformed methods like the Modified
Adomian Decomposition Method (MADM) and the
Homotopy Analysis Method (HAM) in several scenarios.
These findings underscored the Mahgoub-Variational
Iteration Method's (MVIM) superior efficacy.

El-Kalla et al. [19] explored the application of the Adomian
Decomposition Method (ADM) to nonlinear delay differential
equations (NDDEs) using an enhanced Adomian polynomial
known as the El-Kalla polynomial. The El-Kalla polynomial
offers several advantages:
1. It is recursive and free of derivative terms, simplifying
programming and saving processing time.
2. Solutions derived using it exhibit faster convergence
compared to traditional Adomian polynomials.
3. It facilitates the estimation of the maximum absolute
truncated error of the series solution.

The study analyzed convergence aspects and solved a range
of numerical examples using both standard Adomian and El-
Kalla polynomials, demonstrating significant promise for this
approach in various applications.

Avci [20] introduced a numerical solution method for FDDEs
with Caputo fractional derivatives using a fractional
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integration operational matrix derived from a fractional
Taylor basis. This method transforms the original equation
into a system of algebraic equations, which can be efficiently
solved using computational algorithms. The study provided
an error bound for the approximation and validated the
method through examples, showcasing its accuracy and
practicality.

Anil Kumar [21] employed the Banach Contraction Method
(BCM) to solve FDDEs with proportional delays. The study
included convergence and error analyses, revealing that errors
decrease significantly with additional iterations. BCM avoids
discretization, linearization, and perturbation techniques,
simplifying complex calculations and making implementation
straightforward.

Al-Sawalha et al. [22] addressed pantograph delay differential
equations using the Chebyshev pseudospectral method with
Caputo fractional derivatives. By converting the equations
into algebraic systems, this approach streamlined the solution
process. Convergence was thoroughly analyzed, and accuracy
was validated through examples, showing superior
performance compared to other methods. This technique's
simplicity, efficiency, and broader applicability to linear and
nonlinear FDDEs make it a valuable contribution to the field.

3. Theory/Calculation

In this section should extend, not repeat the information To
understand the core principles of the New lIterative Method
(NIM), it is useful to examine a well-established functional
equation, as explored in the works of Daftardar-Gejji &
Bhalekar (2010), Ramadan & Al-Luhaibi (2015), Moltot &
Deresse (2022), and Ashitha & Ranjini (2020). This approach
starts with analyzing the nonlinear functional equation
introduced by Daftardar-Gejji & Jafari (2006).

y(x) = 9(x)+ N[y(x)] (1)
In this context, N represents the nonlinear operator, and f is a
known function. The goal is to determine a solution, denoted

as Y(X) , which possesses a series representation in the
following format:

y=y. e

The nonlinear operator N can be decomposed as

(50 S En (o o

From Eqgns. (2) and (3), Eqn. (1) is equivalent to

2‘,% =g+ N(y,)+Y N( ioy,-]—N[i_:ij (4)

i1 i- j

We define the recurrence relation:
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Yo=0,
y1:N(y0) (5)

Vo =N(Yo +o+ Y, ) = N(Yy ++ Y, ) m=12,...
Then

(Yy+ot Vo) =N(Y, +. .+ Y, ) m=12,... ..(6)
and
y=9g+> Y. (7
i=0

and the series z Y; absolutely and uniformly converges to a
i=0
solution of Eqgn. (1).

3.2 The El-Kalla polynomial Formula

A =T8-S A ®

where Kn , are the El-kalla polynomials, KO \ E , Kz
f(S,) is the substitution of the summation of dependent
variable in the nonlinear term. For example the El-Kalla
polynomials of the nonlinear term yz(X) and the nonlinear

term y*(X) are shown above

El-Kalla polynomials of y?(X)

A= Yi(x)

A =2, (0,09 + ¥ ()

A, = 29, (0¥, (%) + 2y, (), (X) + ¥ (x) -(9)

A, = 255 (Y500 + 29, (x)5 () + 25, (9Y5() + Y5 ()

A, = 2y,(x)Y, (%) + 24,0 Y4 (X) + 29,0y (X) + 295(X)y, (x) + Y ()

El-Kalla polynomials of y*(X)
A =Y5(x)
A =3,00¥5 (X) +3Y, (x)y; (x) + ¥; (x)

A, =3Y,Ys +6Y,YiY, +3Y,Y7 +3Y,ys + Vs ..(10)

A, =3Y,Ys +6YoY,Ys +3YoYs +3YaY; +6Y,Y,Y; +3Y,ys +3Y,Y: + Vs

3.3 The Proposed New Iterative Method (NIM)

In a prior study, the New Iterative Method (NIM) was used to
approximate solutions for ordinary differential equations. In
this section, we present new algorithms aimed at simplifying
the resolution of Delay Differential Equations (DDEs). To
ensure a clear understanding of these newly developed,
generalized NIM algorithms, we will first explore the
fundamental structure of Delay Differential Equations
(DDEs).
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y" () + Py ]+ N[y(x—t)]= f(x) .
n=12.3,...

y =5, i=012,..
where y(”)(x) is the derivative of y of order n, P is the

(1)
..(12)

linear bounded operator, N is a nonlinear bounded operator,
f (x) is a given continuous function, and y = Y(X) .

In this section, the general form of the n"-order DDE Egn.
(11) with the initial value Eqn. (12) is treated using the
suggested method MNIM.

Next, by isolating the term associated with the derivative, we
get

Yy () = f ()~ Ply()]-N[y(x~1)] (13)
Applying the J" on both sides of Eqgn. (13), we get

3" (0= P(y())- N(y(x—1))]
RUOkS

1

i=0 i!

Let's consider dividing this equation into two separate parts as
follows:

y(x) = N(y(x)) +9(x)

where

N(y(x)) = 3"[f () = P(y() - N(y(x-1))] (6)
In typical cases, N serves as the nonlinear operator; however,
when dealing with the DDE, it is employed with linear
functions. Additionally, "g" represents a known function,
defined as:

9 = > y"(0)

In our quest for a solution to Egn. (11), we seek a
representation in the form of a series:

y(x) = (14)

..(15)

X a7)
i!

y() =2 i (%) (18)
i=0
The operator N can be decomposed into the following
(E
© ®© i=0
N(Zyi(x—t)]:N(yo)+Z : 3 19).
i=0 i=1 =
g
j=0
From Eqns. (11), (17) and Eqn. (18)
(5
) o i=0
D=9 N+ (20).
i=0 i=1 =
()
j=0
25
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The El-Kalla polynomials and the classical NIM, in
conjunction with the characteristics of fractional integral and
fractional derivative, are integrated to derive the recurrence

relation presented above:
i

;
i X
%o =900 =2y O, (21)
i=0 :
y; =3"[F ()= P(y,(x) - N(y,(x-1))] (22
{YZ = N(YO+'Y1)_N(YU):
I"[=P(y, () = N(yo (x =)= P(y, ()) = N(y, (x = )] = 3" [y, (x - )] -(23)
Y3:N(yu+-Y1+-yz)_(YO+-y1):
la "[=P(ys ()= N(yo (x=1)) = P(y; ()= N(y, (x 1)) ~(24)
= P(y,(9) = N(y,(x= )] - 3"[yo (x—t) + y, (x - 1)]

We define the recurrence relation from the systems of Eqn.
(20) as follows:

w=mw=2¢W®%,

y, =3"[f(x) = P(y, () — Ny, (x - )]
Y, = ‘]n[_P(yl (X))_ N(y1 (X - t))]

Yy, =J3"[-P(y, (X)) = N(y,(x = t))] ...(25)

;/n+1 =J§;{N(J§; yj]— N[J:yJJ} i>3,

Therefore, in truncated series form, the approximate
analytical solution of the DDE Eqgn. (11) is given by

k
YO =Im >y, =Y+ Y+, + Y5+ (23)
n=0

34 Suitable  Algorithm  for
Differential Equation

In this section, we introduce a suitable algorithm for solving
Fractional Delay Differential Equations using the proposed
New Iterative Method (NIM). Consider the following
Fractional Delay Differential Equations:

Fractional Delay

{D“y(x) L0+ Ny -] =900, x>0, )

y =5, i=012....
where L is a linear operator, N , represent a nonlinear
operator, g(X)

fractional derivative of order with m—1< o —m. To solve
Eqn. (27) by means of the proposed modification of the NIM,

we apply the operator J |, the inverse of the operator D, to
both sides of Eqn. (27) as follows:

is the source term, and D“ is the Caputo
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CC L m X e Y= Ny(x-1)
Y(X)—gy (0) T +J Lg(x) .(28)

Let's consider dividing this equation into two separate parts as
follows:

Y00 =N+ 3y

where

N(y(x)) = J“[9(x) - Ly(x) = Ny(x-1)] (30)
In our quest for a solution to Egn. (29), we seek a
representation in the form of a series:

y(x) = Z Y (%)

The operator N can be decomposed into the following

(3o )% )

- i—1
—N yj
j=0

From Eqgns. (29), (31) and Eqn. (32)
N(Z Yi j -
i=0

(29)

(31)

(31).

0 -1

2.V =Zy“)(0)’;—;+N(yo)+i

i=0 i=0 i=1

(32)

=
7\
M
<
N—

We define the recurrence relation:
r ) Xi
Yo =2y O
i=0 .

y; =3[9 (%) — Ly, (X) — Ny, (x —1)]

(34)

(35)

Yo = N(Yo +Y;) = N(Y,)

=J“[g(X) — Lyo(X) = Ny, (x—t) = Ly, (X)
— Ny, (x—1)]

—J7[9(x) — Ly, (X) = Ny, (x —t)] =
J“[-Ly, (x) — Ny, (x —t)]

(36)
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Yo = N(Yo + Y1+ Y,) =N(yo + ;) =
J7I9(x) — Ly, (x) = Nyo (x —t) - Ly, (x) -
Ny, (X=1) = Ly, (x) = Ny, (x = 1)] 37)
=3[9 (%) — Ly, (%) = Ny, (x) -
Ly, (X) = Ny,(x=1)] =
J7[=Ly, (x) = Ny, (x - 1)]
Yo =NVo+Y1+Y, +Y3) =Ny, +Y,
+Y;) =
J7I909 — Ly, (¥) = Ny, (x = 1) -
Ly, (X) = Ny;(¥) =Ly, (X) - (39).
Ny, (X =) —Ly;(x) = Ny, (x — 1]
—J°[9() —Ly, () =Ny, (x-1) - Ly,
(¥) =Ny, (x=1) =Ly, (X) =Ny, (x - 1)] =
J[-Ly5 () = Ny, (x - 1)]
Then k-term series. solution will be in the form
YX)=Yo+Yi+Y, +Ys+ Y+ Y5+ (39)

From above Eqns., we can deduce the following:
r ) Xi
Yo =2y O,
i=0 :

Y, =J3[9(x) — Ly, (x) = Ny, (x— )]
Y, = J“[=Ly,(X) = Ny, (x—t)] ...(40)
Y3 = J a[_l—yz(x) - Nyz (X _t)]

ym+1 = JDC[_ Lym(x)_ Nym(x_t)]7 m=>3
4. Experimental Method/Procedure/Design

This section focuses on evaluating the performance and
accuracy of the proposed approach presented in Section 2.3,
particularly for solving differential-delay equations (DDEs)
of integer order. Two nonlinear DDEs and one linear DDE
are used in this segment to demonstrate the effectiveness and
validity of the Modified New lterative Method (MNIM).

4.1 Nonlinear Delay Differential Equations (NDDES)
Example 1 [refer to Srivastava (2020)]: Consider the
following first-order nonlinear DDE:

y'(x)=1- 2y2(§j,o <x<1 y0)=0. (41
The analytical solution is given by Y(X) = sin( x)
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Based on Eqn. (14), Eqgn. (41) can be approximately written
as follows:

y(x) = J{l— 2y(§ﬂ SYOE @

The following recurrence relation is derived from Section 2.3:

00 =Xy = x

4 48 2304 4| 120 8064

GG e«

X
2(5] T 120 8064 3840 1032192

2 4 6 2 5 7
X X X X X X
=—2J{———+ ——}

x x2 x° Y (x x*Y
S| | AT B AR I
2 48 3840 1032192 2 48
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s 1315 1861217
M =x=px 5040”120*

64117 B__ 811 1

408094035148800 © 326998425600
1 3l
1062664199886151693758358595882188800 "
+ 1 )c29
200325022479978312885475265740800
B 14029 2
2083660861517231320180010778624000 "
46639 xzs
T 3913374410544 7855242240000
45289 23

15

2742391916199936000

9

362880

35411 21

o

4774405161212398786314240000

338999 19 45990949

11322699987064977358848000 "

17

T 101095535598794440704000

23869779238604242944000

) 1 AN 1 B 67 Jy 6l J

7990652436480 12881756160 3406233600 23224320
1 J

TN

3 2
{3
n=0 n=0

B ! Jl

1062664199886151693758358595882188800

+ 1 ng
200325022479978312885475265740800

) 14029 7
2083660861517231320180010778624000 °

i 46639 2
13913333744105444178552422400000 -

45289 e 35411 )

47744051 61212398786314240000 11322699987064977358848000
_ 338999 pt 45990949 N
101095535598794440704000 23869779238604242944000

B 1518017 x15 32437 x13 B 349 x”
2742391916199936000 408094035148800 65399685120
I 9
TI440

Now, in vision of Eqgn. (39), the solution of Example 1 is

y(x)=yo+3/14'y2+y3+3/4+

.(43)

Table 1: Four-term approximate solution using MNIM and its comparison
with the exact solution of Example 1 for different time variable values, along

with the corresponding absolute error

E =y, —exact]

Vol.11, Issue.6, Dec. 2024

0.06 0.059064 0.05996401 0
0.07 0.069943 0.06994285 0
0.08 0.079915 0.07991469 1.38778E-17
0.09 0.089879 0.08987855 1.38778E-17
0.1 0.099833 0.09983342 1.38778E-17
0.12 -
0.1 -
0.08 -
Y(>).06 -
0.04 - —EXAC
1 T
0.02 -
0 qI | L LI | T T LI | L L T T T T 1
= o | g n oW N g
© 9 Q © Qo Qo g
o D O O O O o o O
X

Figure 1: Solution plots for Example 1 obtained using MNIM,

compared with the exact solutions

Table 2: Four-term approximate solution using MNIM compared with the
eight-term approximate solution from SIM and the exact solution of Example

1 for various time variable values.

X EXACT MNIM Error of MNIM
0.01 0.01 0.00999983 0

0.02 0.019999 0.01999867 0

0.03 0.029996 0.0299955 3.46945E-18
0.04 0.039989 0.03998933 0

0.05 0.049979 0.04997917 6.93889E-18

© 2024, 1JSRMSS All Rights Reserved

X EXACT MNIM SIM Error of Error
MNIM SIM
0.01 0.01 0.009999833  0.00999975 0.000000000 8.33333E-
08
0.02 0.019999 0.019998667 0.019998 0.000000000 6.66667E-
07
0.03 0.029996 0.0299955 0.02999325 3.46945E-18  2.25E-06
0.04 0.039989 0.039989334  0.039984001  0.000000000 5.33333E-
06
0.05 0.049979 0.049979169 0.049968753  6.93889E-18 1.04167E-
05
0.06 0.059964 0.059964006 0.059946006  0.000000000 1.8E-05
0.07 0.069943 0.069942847  0.069914264  0.000000000 2.85833E-
05
0.08 0.079915 0.079914694 0.079872027 1.38778E-17 4.26667E-
05
0.09 0.089879 0.089878549 0.089817799  1.38778E-17 6.075E-05
0.1 0.099833  0.099833417 0.099750083  1.38778E-17  8.33333E-
05
0.12 4
0.1 -
0.08 -
. ——EXACT
Yixp -
] MNIM
0.04 -
1 SIM
0.02 -
OI'I'I'I'I'I'I'I'I'I
0.01 0.03 U.OE 0.07 0.09

Figure 2: Solution plots for Example 1 obtained using MNIM, compared

with SIM and the exact solutions.
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Example 2 [see Moltot & Deresse (2022)]: Consider the
following nonlinear second-order DDE:

y"(x) = yz(g} x>0,

y(0)=1y'(0) =1.

The analytical solution is given by

y(x) =€’

By applying the fractional integral to both sides of Eqn. (44),

and considering Eqn. (14), Eqn. (44) can be approximately
expressed as follows:

(44)

X
y(x):1+x+J{y2(Eﬂ (45)
The following recurrence relation is derived from Section 2.3:
Yo(X) =1+X

oy oy oo

¥ X x
AR
2 6 48

ol :(gj}g

48

Ez) Hzﬂ
( J

8 48 768

+
48 120 768 32256
X8 X9 XlO
+ +
73728 1327104 53084160
(X} (XY %Y
X 2 2 2 2
Yol = |= + -+ +
2 48 120 768 32256
8 9 10
X X X
B G G
+ +

73728 1327104 53084160
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x4 x° x® 10x’
+ + +
768 3840 49152 8257536
X 8 X 9 X 10
+ + +
18874368 679477248 5435818000 O

Now, in vision of Eqn. (39), the solution of Example 2 is
YO)=Yo+Yi+Y, +

IR Y S I T I w0, I 9, 1 3
I T R T TR T

S, e, 1

s Tt Tt

Table 3: Two-term approximate solution using MNIM, compared with the
exact solution of Example 2 for various time variable values, along with the
absolute error.

=]y, —exact
X EXACT MNIM ERROR
0.01 1.01005 1.01005 2.22E-16
0.02 1.020201 1.020201 5.55E-15
0.03 1.030455 1.030455 6.44E-14
0.04 1.040811 1.040811 3.63E-13
0.05 1.051271 1.051271 1.39E-12
0.06 1.061837 1.061837 417E-12
0.07 1.072508 1.072508 1.06E-11
0.08 1.083287 1.083287 2.37E-11
0.09 1.094174 1.094174 4.83E-11
0.1 1.105171 1.105171 9.13E-11

1.15 -

1.1 -
Y005 7 ——EXACT

1 MNIM
0.95 1T T 17T T 17T T 17T T 17 17 17T 17T 17T 17T 1T T1T7]
58833885883
C! C! D C! C} C! o O o
X

Figure 3: Solution plots for Example 2 obtained using MNIM, compared
with the exact solutions.

4.2 Linear Delay Differential Equations (LDDES)
Example 3 [see Mohyud-din & Yildirim (2010)]: Consider
the second-order LDDE:

y"(X) :%y(x)+ y(gj—xz +20<x<1,  (47)

y(0)=0,y'(0) =0.
The analytical solution is given by y(X) = x*

In view of Egn. (14), the Eqgn. (47) is approximately
expressed as follows:
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(3]

L | (48)
X i X

x2 ___,_2 U)o
12 = y ) i!

y(x)=J?

We deduce the following recurrence relation from section 2.3

x* , x*

N Oy XL 2 _
X) = 0) —+X" ——=x"—-—
Yo(X) Zoy 0 % o

y(_j[_j@__

2 2 12 4 192

2| 3 X\
Y. (x)=1J [Z Yo(X) + Y, (Ej} =

13 e, 1 o4
5760 T2 "

X
2= 13 6 1 4
yl(zj 368640 © T 192 "

_ 91 8 13 ¢
X)=_
Y2 (%) 2049120 * T 5760 ©

X
2= 91 8 13 6
yz[zj 754974720 © T 368640

Y, =- 17563 x1o 91 x8
367947724800 2949120
Now, in vision of Eqn. (39), the solution of Example 1 is

y(X):y0+y1+y2+y3+'":

po L B s g 91 g B 6 1B6 u
27 570" 127 2949120 3760~ 67947724800
9 3

TR

() =x2 _ 17563 x]()
67947724800
..(49)

Table 4: Three-term approximate solution using MNIM, compared with
VIM, ADM, and the exact solution of Example 3 for various time variable
values.
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X EXACT MNIM (n=3) VIM (n=8) ADM (n=7)
001 00001  0.0001 9.9999E-05 1E-04
0.02 0.0004  0.0004 0.00039999  0.0004
0.03 0.0009  0.0009 0.00089993  0.0009
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0.04 0.0016  0.0016 0.00159979 0.0016

0.05 0.0025  0.0025 0.00249948 0.0025

0.06 0.0036  0.0036 0.00359892  0.0036

0.07 0.0049  0.0049 0.004898  0.0049

0.08 0.0064  0.0064 0.00639659 0.0064

0.09 0.0081  0.0081 0.00809453  0.0081

01 001 0.01 0.00999167 0.01
0.012 -

0.01 -
0.008 -

Y(X).006 - —— EXACT
0.004 - MNIM (n=3)
0.002 - VIM (n=8)

0 =+ ADM (n=7)
0.01 0.03 0.05 0.07 0.09
X

Figure 4: Solution plots for Example 3 obtained using MNIM, compared
with ADM, VIM, and the exact solutions.

5. Results and Discussion

Graphs are essential for visualizing physical structures and
practical applications. In this section, the obtained solutions
are analyzed and presented using figures and tables. Figures 1
to 4 illustrate comparisons between the approximate solutions
generated by the proposed method and the exact solutions for
Examples 1 to 3 across various values of the time variable
xxX. These figures highlight the effectiveness of the MNIM
approach as a mathematical tool, with the solutions produced
by this method closely matching the exact solutions.

Figures 1 through 4 feature 2D graphs depicting the
approximate solutions for Examples 1, 2, and 3, alongside
those obtained using ADM and VIM, providing a
comparative analysis of the precision and efficiency of
MNIM. The corresponding absolute error values are also
presented to validate its accuracy. Furthermore, Tables 1 to 4
provide a detailed comparison of the approximate and exact
solutions for Examples 1 to 3, including their absolute errors
at different values of xxx. The results confirm that the
solutions produced by the proposed method are highly
accurate, with minimal errors compared to ADM, VIM, and
the exact solutions.

6. Conclusion and Future Scope

This study presents MNIM, a method that combines the El-
Kalla polynomial with the New lIterative Method (NIM).
Initially, NIM addresses the linear component of DDEs, and
to manage the complexity introduced by nonlinear terms, a
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post-treatment NIM is applied, as described in Section 2.3.
We introduce the key definitions and terminology related to
DDEs, the new iterative approach, and the El-Kalla
polynomial. The validity and consistency of MNIM have
been demonstrated through the analysis of three significant
problems. Absolute errors for all examples are both
graphically and numerically presented across different time
variable values. The results clearly show that MNIM provides
highly accurate approximations that closely match the exact
solutions with minimal error. As a result, MNIM proves to be
an effective tool, improving accuracy and efficiency in
solving nonlinear DDEs. This research represents a step
forward in exploring the potential of this method to address
complex problems across various scientific and engineering
disciplines, especially as nonlinear DDEs continue to gain
prominence in modeling real-world systems.
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