

International Journal of Scientific Research in _____ Mathematical and Statistical Sciences Volume-6, Issue-1, pp.307-310, February (2019) DOI: https://doi.org/10.26438/ijsrmss/v6i1.307310 Survey Paper

E-ISSN: 2348-4519

HIGHER ORDER L_p -DERIVATIVE, L_p -CONTINUITY AND L_p -BOUNDEDNESS OF COMPLEX VALUED FUNCTION

T. K. Garai

Department of Mathematics, Bolpur College, Bolpur-731204, Birbhum, West Bengal,

*Corresponding Author: tg70841@gmail.com, Tel.: +919434543368

Available online at: www.isroset.org

Received 12/Feb/2019, Accepted: 23/Feb/2019, Online: 28/Feb/2019

Abstract—Higher order Lp-derivative of Complex valued functions is defined. It is shown that this derivative is more general than ordinary derivative. Also Lp-Continuity and Lp-boundedness is studied for these type of functions and it is proved that L_p -continuity and L_p -boundedness are more general than the ordinary continuity and ordinary boundedness.

Keywords- Lp-derivative, Lp-Continuous, Lp-boundedness..

I. INTRODUCTION

Let μ be Lebesgue measure on real number space R and C be the set of all complex numbers. If $f: R \to C$ is measurable, define for $1 \le p < \infty$,

$$\left\|f\right\|_{p} = \left\{ \int_{R} |f|^{p} d\mu \right\}^{\frac{1}{p}}$$

Let Lp denote the space of all such f for which $||f||_p < \infty$. Let $f \in Lp$ in some neighborhood of a point $x \in R$. If there is a polynomial $P(t) = P_x(t)$ of degree at most k whose coefficients are in C and $t \in R$ such that

$$\left\{\frac{1}{h}\int_{0}^{h}|f(x+t) - P(t)|^{p} dt\right\}^{\frac{1}{p}} = o(h^{k}) \text{ as } h \to 0$$
(1)

then f is said to have a k-th Lp-derivative at x of order k and if $\frac{\alpha_k}{k!}$ is the coefficient of t^k in P(t) then α_k is called the

k -th Lp-derivative of f at x and is denoted by $f_{(k),p}(x)$. Similar to the definition of Lp-derivative for real valued functions. In [1] Calderon and Zygmund introduced Lp-derivative to study elliptic partial differential equation. In [2] Evans studied the properties of Lp-derivative and the relation with Peano derivative for real valued functions. Recently S.N.Mukhopadhyay presented Lp-derivative and its interrelations with other generalized derivative in his book "Higher Order

Derivative" [3]. Here in this short article I have studied the generality of Lp-derivative for complex valued functions. Also Lp-

continuity and Lp-boundedness is presented in same line.

It can be shown that if $f_{(k),p}(x)$ exists then it is unique and that all the previous derivative $f_{(i),p}(x), 0 \le i \le k-1$, also exists. Also if the ordinary derivative $f^{(k)}(x)$ exists at x then $f_{(k),p}(x)$ exists at x and $f^{(k)}(x) = f_{(k),p}(x)$.(It can

proved using the same technique as it is used in [3] for real valued function.

In this paper there are four sections in which Section-I deal with the introduction of the total work, the definition of L-p derivative of complex valued functions and some preliminary ideas. In Section-II the generality of L_p -derivative of complex valued function is shown. In Section-III we define the L_p -continuity and L_p -boundedness of complex valued function and also the generality is shown. In Section-IV we conclude about its future aspects.

II. GENERALITY OF L_P-DERIVATIVE IN C

Here we are giving an example to show that L_P-derivative for complex valued function is more general than the ordinary derivative.

Example 2.1 Let

$$f(x) = \begin{cases} x^3 e^{ix^{-2}} & \text{if } , x \neq 0\\ 0 & \text{if } , x = 0 \end{cases}$$

Then f'(0) = 0 and for $x \neq 0$ $f'(x) = 3x^2 e^{ix^{-2}} - 2ie^{ix^{-2}}$ and so f'(x) exists everywhere. But f''(0) does not exists,

for if
$$x_n = \frac{1}{\sqrt{2n\pi}}$$
 then $e^{ix^{-2}} = e^{i2n\pi} = 1$ and so $f'(x_n) - f'(0) = 3\frac{1}{2n\pi} \cdot 1 - 2i \cdot 1$. Hence,
$$\frac{f'(x_n) - f'(0)}{x_n - 0} = \sqrt{2n\pi} (\frac{3}{2n\pi} - 2i) = \frac{3}{\sqrt{2n\pi}} - 2i\sqrt{2n\pi}$$

does not tends to finite limit as $n \to \infty$, so f''(0) does not exists. But by taking $P(t) = 0.1 - 0.t - 0.t^2$ we get,

$$\left\{\frac{1}{h}\int_{0}^{h}|t^{3}e^{it^{-2}}-0.1-0.t-0.t^{2}|^{p} dt\right\}^{\frac{1}{p}} = \left\{\frac{1}{h}\int_{0}^{h}|t^{3}e^{it^{-2}}|^{p} dt\right\}^{\frac{1}{p}} \le 2\left\{\frac{1}{h}\int_{0}^{h}|t^{3}|^{p} dt\right\}^{\frac{1}{p}}$$
$$= 2\left\{\frac{1}{h}\frac{h^{3p+1}}{3p+1}\right\}^{\frac{1}{p}}(\text{taking } h > 0)$$
$$= \frac{2}{(3p+1)^{\frac{1}{p}}}h^{3} = o(h^{3}) \text{ as } h \to 0$$

So $f_{(2),p}(0)$ exists and $f_{(2),p}(0) = 0$.

III. LP -CONTINUITY AND LP-BOUNDEDNESS:

Suppose $f: R \to C$ is measurable. Then f is said to be Lp-continuous at x if

$$\left\{\frac{1}{h}\int_{0}^{h}|f(x+t)-f(x)|^{p} dt\right\}^{\frac{1}{p}} = o(1) \text{ as } h \to 0.$$
(2)

Clearly if f is continuous at x then f is Lp-continuous at x and if f is Lp-continuous at x then $f(x) = f_{(0),p}(x)$. So if Lp-derivative $f_{(k),p}(x)$ exists then $f_{(0),p}(x)$ exists and then f is Lp-continuous if $f_{(0),p}(x) = f(x)$. In particular f is L₁-continuous at x if and only if x is a Lebesgue point of f. For real valued function f it is known that if $f \in L_p$, $p \ge 0$ then f is Lp-continuous almost everywhere [p-6 [4]].

A function f is said to be Lp-bounded of order k at x if $o(h^k)$ in (1) is replaced by $O(h^k)$ as $h \to 0$. That is f is said to be Lp-bounded of order k at x if,

$$\left\{\frac{1}{h}\int_{0}^{h}|f(x+t) - P(t)|^{p} dt\right\}^{\frac{1}{p}} = O(h^{k}) \text{ as } h \to 0$$
(3)

where $P(t) = P_x(t)$ is a polynomial of degree at most k whose coefficients are in C and $t \in R$.

Clearly if f is Lp-continuous at x, if k = 0 then $P(t) = P(0) = f_{(0),p}$ and so f is Lp-bounded at x of order 0. It is easy to verify that if f is Lp-bounded of order k at x then $f_{(k-1),p}$ exists and hence f is Lp-bounded of order k-1 at x.

(The proof is similar as that of real valued function which is proved in [p-59[3]].

Theorem 3.1. If f is bounded in a neighborhood of x then f is Lp-bounded of order zero.

Proof. Suppose f is bounded at x, then there is M > 0 and $\delta > 0$ such that $f(x+t) \le M$ for $|t| < \delta$. So,

$$\left\{\frac{1}{h}\int_{0}^{h}|f(x+t)-f(x)|^{p} dt\right\}^{\frac{1}{p}} \le 2M = O(1) = O(h^{0}) \text{ as } h \to 0$$

and so f is Lp-bounded at x of order 0.

The following example shows that the converse of the above theorem is not true.

Example 3.2. Let
$$S = \bigcup_{n=1}^{\infty} \left(\frac{1}{n+1}, \frac{1}{n}\right)$$
 and let f be defined as,
$$f(x) = \begin{cases} x^3 e^{ix^{-2}} & \text{if } x \in S \\ ni & \text{if } x = \frac{1}{n}, n = 1, 2, \\ 0 & elsewhere \end{cases}$$

Then f is not bounded in any neighborhood of zero. But as in Example 2.1 we can show that

© 2019, IJSRMSS All Rights Reserved

$$\left\{\frac{1}{h}\int_{0}^{h}|f(x+t)-f(x)|^{p} dt\right\}^{\frac{1}{p}} = O(h^{3}) \text{ as } h \to 0.$$

So f is Lp-bounded of order 3 and hence it is Lp-bounded of order zero.

IV. CONCLUSION and Future Scope

In this paper it is shown Lp-derivative, Lp-continuity and Lp-boundedness of complex valued function is a generalization of the ordinary derivative, continuity and boundedness of complex valued function.

ACKNOWLEDGMENT

The author wish to express his sincere gratitude to Dr.S.Ray, Associate Professor of the department of Mathematics, Siksha Bhavana, Visva-Bharati, for his kind help and suggestions in preparation of this paper.

REFERENCES

[1] A.P.Calderon and A.Zygmund, "Local Properties of Solutions of Elliptic partial differential equations", Studia Math, 20(1961), 171-225.

[2] M.J.Evans, "Lp-derivatives and Approximate Peano Derivative", Trans.Am. Math.Soc, **165**(1972), 381-388.

[3] S.N.Mukhopadhyay, "Higher Order Derivative", Chapman and Hall/CRC, Monographs and Surveys in Pure and Applied Mathematics, 144(2012)

[4] A.Zygmund,"Trignometric Series ". Volume-1, Cambridge University Press, 1959.

AUTHORS PROFILE

T.K.Garai is an Assistant Professor in Mathematics, Department of Mathematics, Bolpur College, Bolpur, West Bengal. He is pursuing Ph.D degree At Visva-Bharati University, West Bengal. He has published seven research paper in reputed national and international journal. He is working as assistant professor since 2005.

