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Abstract: MHD free convection flow of a Jeffrey fluid between vertical plates partially filled with porous medium is 

investigated.  The momentum transfer in the porous medium has been described by the Brinkman extended Darcy model.  The 

fluid flow in the free region is governed by Jeffrey model.  The solution for the problem is obtained using a perturbation method.  

The effects of Darcy number, magnetic parameter and Jeffrey parameter on the velocity field and temperature distributions are 

discussed in detail through graphs. 
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I.INTRODUCTION 

 

Convective flow with heat transfer under the influence of a 

magnetic field and chemical reaction has attracted a 

considerable attention of researchers because of its 

applications in astrophysics, geophysical fluid dynamics, and 

engineering. Possible applications of this type of flow can be 

found in many industries viz. in the chemical industry, 

cooling of nuclear reactors and magnetohydrodynamic 

(MHD) power generators. Free convection flow occurs 

frequently in nature. It occurs mainly due to temperature 

differences. Many transport processes exist in industrial 

applications in which the simultaneous heat and mass transfer 

occur as a result of combined buoyancy effects of diffusion 

of chemical species. Free convection flows in porous media 

with chemical reaction have wide applications in geothermal 

and oil reservoir engineering as well as in chemical reactors 

of porous structure.  

 

Flow mechanism at the fluid/porous interface, was first 

studied by Beavers & Joseph [2] and it was observed that the 

velocity gradient at the interface is proportional to the slip 

velocity. Rudraiah and Nagaraj [12] studied the fully 

developed free-convection flow of a viscous fluid through a 

porous medium bounded by two heated vertical plates. 

Extensive research work has been carried out in recent years 

to study the effects of various solid matrix and fluid flow 

parameters on the free convection in channels partially filled 

by porous materials. Beckermann et al., [3] examined free 

convection flow between a fluid and a porous layer in a 

rectangular enclosure. Singh [15] has studied transient free 

convective flow between two vertical walls for asymmetric 

heating when one of the walls is moving with constant 

velocity. Using Darcy model for momentum transfer, mixed 

convection on a vertical cylinder embedded in a saturated 

porous medium is presented by Ramanaiah et al., [11] while 

momentum transfer based on Brinkman model in a circular 

cylinder is studied by Pop et al., [10]. Vajravelu et al., [19] 

studied combined free and forced convection in an inclined 

channel with permeable boundaries. Sacheti et al., [13] 

extended the Rudraiah and Nagaraj [12] problem in a rotating 

system. Convection effects are investigated in an inclined 

channel with porous substrates at the bounding rigid walls by 

Chauhan and Soni[4]. Hayat and Ali [7] investigated the 

peristaltic motion of a Jeffrey fluid under the effect of a 

magnetic field. Vajravelu et al., [20] discussed the influence 

of heat transfer on peristaltic transport of a Jeffrey fluid in a 

vertical porous stratum. Mahmoud et al., [8] studied the 

effect of porous medium and magnetic field on the peristaltic 

transport of a Jeffrey fluid in an asymmetric channel. Misra 

et al., [9] has investigated a mathematical modeling of blood 

flow in porous vessel having double stenosis in the presence 

of an external magnetic field. Umesh Gupta et al., [18] 

studied free convection flow between vertical plates moving 

in opposite direction and partially filled with porous medium. 

Turkyilmazoglu and Pop [17] have investigated the flow and 

heat transfer of a Jeffrey fluid near the stagnation point on a 

stretching/shrinking sheet with a parallel external flow. 

Devaki et al., [5] have considered the pulsatile flow of a 

Jeffrey fluid in a circular tube lined internally with porous 

material. Akbar et al., [1] has studied the Jeffrey fluid model 

for the peristaltic flow of chime in the small intestine with 

magnetic field. Santhosh and Radha krishnamacharya [14] 

studied a two-fluid model for the flow of Jeffrey fluid in 

tubes of small diameters. Recently Eldabe et al., [6] studied 

the peristaltic motion of non-Newtonian fluid with heat and 

mass transfer through a porous medium in the channel under 

the effect of magnetic field. Sinha [16] studied the 
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magnetohydrodynamic (MHD) boundary layer flow and heat 

transfer of a third order fluid flowing in a channel. 

In this paper, MHD flow and heat transfer of a Jeffrey fluid 

in a vertical channel partially filled with porous medium is 

investigated. The velocity field, the temperature distribution 

and skin friction at the walls are determined. Such a study 

may find important applications in the description of blood 

flow past endothelium layer in an artery and lubricant flow 

past cartilages which are also modeled as porous layers. 

 

II. MATHEMATICAL FORMULATION 

 

Let us consider the fully developed steady laminar MHD free 

convective flow of a Jeffrey fluid between two vertical 

parallel walls partially filled with porous medium and 

partially filled with a clear fluid when one wall is heated and 

other is cooled as shown in Figure 1. The x-axis is taken 

along one of the wall and y -axis normal to it.  The flow in 

the porous medium is 

given by Brink men 

extended Darcy’s law 

whereas the flow in the 

annulus is described by 

Jeffrey model. Where 

fU and pU are the 

velocities of free fluid 

region and porous 

region in the direction 

of x -axis. The 

temperature is also 

considered on the walls 

0y   and y H  as 

( )f c h cT T A T T    and ( )p c h cT T B T T   respectively. 

Under usual Boussinesq approximation, the flow in fluid and 

porous regions is governed by the following equations of 

motion and energy are: 
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Introducing following non-dimensional quantities: 
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In view of the above non-dimensional quantities, the 

basic equations (1) to (4) and the boundary conditions 

equation (5) can be expressed in non-dimensional form, 

dropping bars, as 
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Porous region:
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        In equation (9), the momentum transfer in porous 

domain is described based on Brinkman extended Darcy 

model, where Da is the Darcy number, d the distance of 

interface from the plate, g the acceleration due to gravity, H 

the distance between vertical plates, k the permeability of 

the porous matrix, K the  thermal conductivity, N the 

buoyancy parameter,  the coefficient of thermal expansion, 

 the dynamic viscosity, the kinematic viscosity,  the 

density, the shear stress and   is the temperature. The 

subscripts f represent fluid layer, p the porous layer, h hot 

plate and c the cold plate. 

The boundary and matching conditions (5) in dimensionless 

form are: 



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                               Vol. 5(6), Dec 2018, ISSN: 2348-4519 

  © 2018, IJSRMSS All Rights Reserved                                                                                                                                 338 

0 ; 0 ,

; ,

1 ; 0 ,

; ,

f f

f p

f p

p p

f p

f p

y U A

dU dU
y d U U

dy dy

y U B

d d
y d

dy dy





 
 

   



  



   

  


 (11) 

where, the matching conditions for velocity are due to 

continuity of velocity and shear stress at the interface. The 

continuity of temperature and heat flux at the inter-face has 

been considered as matching conditions for temperature. 

 

III. SOLUTION OF THE PROBLEM 

The governing momentum and energy equations (7) to (10) 

are coupled partial differential equations that cannot be 

solved in closed form. It can be observed that problem is 

non-linear due to viscous and Darcy dissipation terms. This 

problem can be tackled by using a perturbation method as N 

is small in most of the practical problems. Accordingly, we 

assume, for small N, the expansions: 
2
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Substituting (12) in the Equations (7) to (10) gives the 

quantities  0 fU , 0PU , 0 f and 0 p are the solutions for N 

equal to zero i.e., when the viscous and Darcy dissipations 

are neglected whereas 1 fU , 1pU , 1 f , 1p  are perturbed 

quantities relative to 0 fU , 0PU , 0 f and 0 p respectively when 

the viscous and Darcy dissipations are taken into account. 
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The corresponding boundary conditions are  
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Solving the equations (13) to (20) using boundary conditions 

(21) gives the following velocity and temperature 

components 
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IV. SKIN FRICTION 
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Its non-dimensional form, dropping bars 
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V. RATE OF HEAT TRANSFER 

 

Apart from the velocity and temperature distribution in the 

channel, it is important to determine rate of heat transfer 

between the plates and the fluid. The rate of heat transfer 

through the channel wall to the fluid is given by 

0,y y H

dT
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dy
 

 
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The rate of heat transfer in dimensional form can be written 

as 
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Based on the analytical solutions reported above, the rate of 

heat transfer at the walls y =0 and y =1 is given by 
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VI. GRAPHICAL RESULTS AND DISCUSSION: 

 

In this paper, the fully developed steady laminar MHD free 

convective flow of a Jeffrey fluid between two vertical 

parallel walls partially filled with porous medium and 

partially filled with a clear fluid when one wall is heated and 

other is cooled as shown in Figure 1. The governing 

equations having non- linear nature have been solved by 

analytical method. Different types of interfacial conditions 

between a porous medium and fluid layer are analyzed in 

detail. Three primary regions were found likewise, fluid 

region (near wall y=0), interface region and porous region 

(near the wall y=1), for the cases when A=1, B =0 (plate y=0 

is heated and plate y=1 is cooled) and A=0, B=1 (plate y=0 is 

cooled and y=1 is heated).  The effect of Darcy number on 

the flow has been discussed. The effect of Darcy number on 

the flow has been discussed. The variation of velocity and 

temperature with y is calculated, from equations (22), for 

different parameters ,Da M and 1 for different cases and is 

shown in Figures (2)-(11) and Table-1. 

 

The variation of velocity and temperature with y is 

calculated, from equations (13) to (20) and using (21), for 

different parameters M , Da, 
1   for different cases, A=1, 

B=0 and A=0, B=1 and also different width (d=0.3, d=0.5, 

d=0.7)is shown in Figures. The variation of velocity (

f pU orU ) with y is calculated, for different values of 1  in 

the case of 1, 0A B  for 0.3, 0.5, 0.7d d d   is shown 

in Figure2, for fixed 0.1Da  and 0.1M  , we observe that 

the velocity increases with the increasing of 1 ( 0.1,0.5,1) 

.The variation of velocity ( f pU orU )with y is calculated, for 

different values of 1 in the case of 0, 1A B  for 0.3,d 

0.5,d  0.7d  is shown in Figure 5, for fixed 0.1Da  and

0.1M  , we observe that the velocity increases with the 

increasing of
1 ( 0.1,0.5,1)  .The variation of velocity (

f pU orU ) with y is calculated, for different values of Da  in 

the case of 1, 0A B  for 0.3,d  0.5,d  0.7d  is shown in 

Figure 3, for fixed 1 0.1  and 0.1M  , we observe that the 

velocity increases with the increasing of

( 0.1,0.01,0.001)Da  .The variation of velocity ( f pU orU ) 

with y is calculated, for different values of Da  in the case of 

0, 1A B  for 0.3,d  0.5,d  0.7d  is shown in Figure 

6, for fixed 1 0.1  and 0.1M  , we observe that the 

velocity increases with the increasing of Da

( 0.1,0.01,0.001) .The variation of velocity ( f pU orU ) with 

y is calculated, for different values of M in the case of 

1, 0A B  for 0.3, 0.5, 0.7d d d   is shown in Figure 

4, for fixed 1 0.1  and 0.1Da  , we observe that the 

velocity increases with the decreasing of ( 0.1,0.12,0.14)M 

.The variation of velocity ( f pU orU ) with y is calculated, for 

different values of M  in the case of 0, 1A B  for 

0.3, 0.5, 0.7d d d   is shown in Figure 7, for fixed 

1 0.1  and 0.1Da  , we observe that the velocity increases 

with the decreasing of ( 0.1,0.12,0.14)M  .The variation of 

temperature ( f por  ) with y is calculated, for different 

values of 1 in the case of 1, 0A B  for

0.3, 0.5, 0.7d d d   is shown in Figure8,for fixed

0.1Da  and 0.1M  , weobservethat the temperature 

increases with the increasing of 1 ( 0.1,0.5,1)  .The variation 

of temperature ( f por  ) with y is calculated, for different 

values of 1  in the case of 0, 1A B  for 

0.3, 0.5, 0.7d d d    is shown in Figure10, for fixed

0.1Da  and 0.1M  , we observe that the temperature 

increases with the increasing of 1 ( 0.1,0.5,1)  .The variation 

of temperature ( ) with y is calculated, for different values of 

M  in the case of 1, 0A B  for 0.3, 0.5, 0.7d d d    is 

shown in Figure9, for fixed 0.1Da  and 1 0.1  , we 

observe that the temperature increases with the decreasing of

( 0.1,0.12,0.14)M  .The variation of temperature ( f por 

) with y is calculated, for different values of M  in the case 

of 0, 1A B  for 0.3, 0.5, 0.7d d d    is shown in 

Figure9, for fixed 0.1Da  and 1 0.1  , we observe that the 

temperature increases with the decreasing of

( 0.1,0.12,0.14)M  . 
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The values of skin-friction and rate of heat transfer on the 

walls y=0 and y=1are given in TABLE.1. It is clear that skin-

friction increases on the both walls with increasing magnetic 

parameter, non-Newtonian Jeffrey parameter, width d and 

Darcy number. The interchange of temperatures at the walls 

also expresses the same behavior with respect to skin-friction 

on both the walls. Further it is clear that rate of heat transfer 

increases on both the walls with increasing non-Newtonian 

Jeffrey parameter, Darcy number and width d. We infer that 

the increase impermeability, width of the porous layer and 

Darcy number enhances rate of heat transfer in the channel. 

The interchange of temperatures at the walls expresses the 

same behavior with respect to rate of heat transfer on both 

the walls. 

 

TABLE.1: Values of skin-friction  ,f p   and rate of heat 

transfer  ,f pq q for different values of magnetic parameter (M) 

non-Newtonian Jeffrey parameter 1( ) and Darcy parameter Da with 

effect of width of the channel d and interchange of walls 

temperature (A =1, B =0 and A =0, B =1) 

 

M 

 

1  
 

Da 

 

d 

A=1     B=0 

f  p  fq  pq  

 
0.1 

 
0.1 

 
0.1 

0.3 0.749 0.2852 12.835 3.4416 

0.5 1.4877 0.7071 19.363 7.7877 

0.7 2.2932 1.4897 23.721 14.311 

 

0.12 

 

0.5 

 

0.01 
0.3 0.4812 0.0368 7.0851 2.4268 

0.5 1.0241 0.0841 10.922 4.9742 

0.7 1.7482 0.2705 13.498 8.807 

 

0.14 

 

1 

 

0.001 

0.3 0.4182 0.0037 3.8414 1.8544 

0.5 0.8749 0.0068 6.1605 3.3868 

0.7 1.4835 0.0116 7.7285 5.6999 

 

M 

 

1  
 

Da 

 

d 

                      A=0     B=1 

f  p  fq  pq  

 
0.1 

 
0.1 

 
0.1 

0.3 0.5685 0.4424 14.880 1.4495 

0.5 1.2987 0.8615 21.399 5.7999 

0.7 2.1055 1.6475 25.736 12.319 

 

0.12 

 

0.5 

 

0.01 
0.3 0.2626 0.1569 9.1868 0.4447 

0.5 0.7636 0.2036 13.022 3.0074 

0.7 1.4788 0.3897 15.558 6.8392 

 

0.14 

 

1 

 

0.001 

0.3 0.1623 0.0634 5.971 0.1228 

0.5 0.5402 0.0661 8.2939 1.4313 

0.7 1.1197 0.071 9.8208 3.7497 

 
Figure 2: Velocity profiles ( )f pU orU for different values of 1 , with the 

difference of width of the flow region, at walls temperature A=1 and B=0. 

 
Figure 3: Velocity profiles ( )f pU orU for different values of Da , with the 

difference of width of the flow region, at walls temperature A=1 and B=0. 

 

Figure 4: Velocity profiles ( )f pU orU for different values of M , with the 

difference of width of the flow region, at walls temperature A=1 and B=0. 

 

Figure 5: Velocity profiles ( )f pU orU for different values of 1 , with the 

difference of width of the flow region, at walls temperature A=0 and B=1. 

 

Figure 6: Velocity profiles ( )f pU orU for different values of Da , with the 

difference of width of the flow region, at walls temperature A=0 and B=1. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Y

U
f o

r
 U

p

 

 


1
 = 0. 1


1
 = 0. 5


1
 = 1

d = 0. 7

d = 0. 5

d = 0. 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Y

U
f o

r 
U

p

 

 

Da = 0.001

Da = 0.01

Da = 0.1

d = 0. 7

d = 0. 5

d = 0. 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Y

U
f o

r 
U

p

 

 
M = 0. 1

M = 0.12

M = 0.14d = 0. 7

d = 0. 5

d = 0. 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Y

U
f o

r 
U

p

 

 


1
 = 0.1


1
 = 0. 5


1
 = 1

d = 0. 5

d = 0. 7

d = 0. 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Y

U
f o

r 
U

p

 

 

Da = 0. 001

Da = 0. 01

Da = 0. 1

d = 0. 3

d = 0. 5

d = 0. 7



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                               Vol. 5(6), Dec 2018, ISSN: 2348-4519 

  © 2018, IJSRMSS All Rights Reserved                                                                                                                                 341 

 

Figure 7: Velocity profiles ( )f pU orU for different values of M , with the 

difference of width of the flow region, at walls temperature A=0 and B=1. 

 

Figure 8: Temperature profiles ( )f por   for different values of 1  , with 

the difference of width of the flow region,atwalls temperature A=1 and B=0. 

 
Figure 9: Temperature profiles ( )f por   for different valuesof M  , with 

the difference of width of the flow region,at walls temperature A=1 and B=0. 

 

Figure 10: Temperature profiles ( )f por   for different values of 1  , with 

the difference of width of the flow region,at walls temperature A=0 and B=1. 

 

Figure 11: Temperature profiles ( )f por   for different values of M , with 

the difference of width of the flow region,at walls temperature A=0 and B=1. 

 

VII. CONCLUSIONS 

 

Analytical investigate laminar MHD free convective flow of 

a Jeffrey fluid between two vertical parallel walls partially 

filled with porous medium and partially filled with a clear 

fluid when one wall is heated and other is cooled. .  The 

momentum transfer in the porous medium has been described 

by the Brinkman extended Darcy model.  The fluid flow in 

the free region is governed by Jeffrey model.   

 

 The governing equations having non- linear nature have 

been solved by analytical method and different types of 

interfacial conditions between a porous medium and free 

fluid layer are used. 

 We conclude that the velocity increases with increase of

1
, ,Da for the cases when A=1, B =0 (plate y=0 is 

heated and plate y=1 is cooled) and A=0, B=1 (plate y=0 

is cooled and y=1 is heated). 

 It is noticed that the velocity increases with decrease of

M , for the cases when A=1, B =0 (plate y=0 is heated 

and plate y=1 is cooled) and A=0, B=1 (plate y=0 is 

cooled and y=1 is heated). 

 It is obtained that the temperature increases with 

increasing of
1
 and the opposite behavior is observed for 

the parameter value of M for the both the cases when 

A=1, B =0 (plate y=0 is heated and plate y=1 is cooled) 

and A=0, B=1 (plate y=0 is cooled and y=1 is heated). 
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