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Abstract: In this paper the fixed point theorems for commute c-fuzzy metric set satisfying the generalized Lipschitzconditions
are obtained, without appealing to continuity formappings in the setting of fuzzy metric spaces over the Banach algebra.
Furthermore, we notonly get the existence of the fixed point but also get the uniqueness.These results greatly improve and
generalize several well-knowncomparable results in the literature.
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I. INTRODUCTION

Fuzzy set theory was introduced by the Electrical Engineer L . A. Zadeh in 1965. In 2002, Lii, introduced the concept of
converse commuting functions and proved the fixed point theorems for converse commuting functions. Various authors have
proved generalized fixed point theorems for multi valued converse commuting mappings in the setting of metric spaces.
Some related examples are also discussed. In this paper the fixed point theorems for commute c-fuzzy metric set satisfying the
generalized Lipschitz conditions are proved, in the setting of fuzzy metric spaces over the Banach algebra. Furthermore, the
unigueness of the fixed point also proved . Our main results improve and generalize some importantknown results in the
literature. In addition, we introduced c-fuzzy metric set and also proved the existence of the fixed point it,the main results are
indeedreal improvements and generalizations of the correspondingresults in the literature.

Il. PRELIMINARIES

Definition 1: A binary operations: [0,1] x [0.1] — [0,1] is continuous t — norm if * satisfies the following conditions:
i a*b=bxa, ax(bxc)=(axb)*c foralla,b,c €[0,1]
ii.  *iscontinuous
iii. axl=aforallace][01]
iv. axb <cx*d,whenever a<candb <d, a,b,c,d €][0,1].

Definition 2: The triplet (X, M,=) is said to be a fuzzy metric space if X is an arbitrary set, = is a continuous t —normand M
is a fuzzy set on X2 x [0, o) satisfying the following:

(M1). M(x,y,t) >0

(M2). M(x,y,t) = 1if and only if x =y.

(M3). M(x,y,t) = M(y, x, t).

(M4). M(x,z,t +s) = M(x,y,t) * M(y, z,5).

(M5).M(x,y,): [0,) — [0,1]is left continuous for all x,y,z € X and s,t > 0.

Example 1.(Induced fuzzy metric space) Let (X,d)be a metric space and a *b = ab for all a,b € [0,1]and let M, be
fuzzy set on X2 x [0, co)defined as follows: M, (x,y,t) = then (x, M,,*) is a fuzzy metric space. We call this fuzzy

t+d(x,y)
metric induced by a metric d.

Example 2: Let X = N. Define a *b = max{0,a + b — 1} for alla,b € [0,1]and let M be a fuzzy seton X? X [0, 0)
as follows:
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x
-, ifx<y
M(x,y,t) = ;
Z i <
< if y<x

for all x,y € X. Then (X, M,x)is a fuzzy metric space.

Definition 3: Let (X, M,*) be a fuzzy metric space. A sequence {x,}in X is said to be convergent to x if for each £ > 0 and
each t > 0 then there existsn, € N such that M(x,,x,t) > 1—¢ foralln > n,.

Definition 4: A sequence {x,} in X is said to be Cauchy if for each £¢>0 and t> 0 then there
existsn, € N such that M(x,,x,,,t) >1—¢ forall n,m > n,.

Definition 5: A fuzzy metric space is said to be complete if in which every Cauchy sequence is convergent.
Prepositionl:In a fuzzy metric space(X, M,*) ifaxa>a foralla € [0,1], thena * b = min{a, b} foralla,b €
[0,1].Let(X, M,*)be a fuzzy metric space with the condition lim,_,, M(x,y,t) = 1 forall x,y € X.

Definition 6:Let A,B : X — X and ABx = BAx then x € X is called a commuting point of A, B.

Definition7:Let (X, M,x)be a fuzzy metric space. Functions A,B : X — Xare said to be converse commuting if ABx =
BAximplies Ax = Bx.

Definition 8
Let A be a real Banach algebra; that is, Ais a real Banach space in which an operation of multiplication is defined, subject to
the following properties: for all x, y, z€A, ae R,
(1) x(yz) = (xy)z;
@) x(y+z)=xy+xzand (x +y)z=xz + yz,
3) a(xy) = (ax)y = x(ay);
(4) lxyl < lxllyl.
In this paper, we shall assume that the Banach algebra A has a unit such that ex = xe = x for all x€A. An element
x€A is said to be invertible ifthere is an inverse element y€A such that
xy = yx = e. The inverse of x is denoted by x .
Proposition 2.Let A be a real Banach algebra with a unit e and x € A.If the spectral radius r(x) of x is less than 1, that is

(%) = 10gno0llx™|| /7 = infl|x™]|/n < 1, then e — x is invertible. Actually (e —x)™* = Y2, x'.

Definition9. Let (X, M, *) be a fuzzy metric space. Then M is called c- fuzzy set on X2><[QOC9 satisfying the following:
W)=

M(x,y,t)

1 1 1
@(; - 1)< (5 i 1)+ (- e 1)forall x, y, zeX.
(3) Foreach xexXandn>1, if( - 1) < u for someu =u, € X, then

- 1) > Ofor all x, yeX.

M (x,yn,t)

(M(xly 5 1) < uwhenever{y,} is a sequence in X converging to a pointy € X.
(4) For all c eA withc = 0, there exists e €A,such that
1 . 1
(M(Z’x’t) - 1) <eand (M(Z’y’t) - 1) < elmply(M(x'y't) - 1) <c
M is also called a c-fuzzy metric on X.

Lemma 1 [9]Let Abea Banach algebra with a unit e. If x, y€A, and x commutes with y, then
rx+y)<r@+@rE)<r@r) oo %

Lemma 2[11]. Let A be a Banach algebra with a unit e and let k be a vector in AIf 0 <r(k) <1, then we have r((e — k) %) <
(1= r(k) ™

Lemma 3 [4].Let (X, M, *) be a fuzzy metric space and Mbe a c-fuzzy metric on X. Let {x,, } be a sequence in X. Suppose that
{a.} and {B~} are two sequences in X converging to 0.

—1)So¢nand( )SBH, theny = z.

1
( M(xp,y,t) M(Xp,z,t)
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Lemma 4[6].Let A be a Banach algebra with a unit e and X be a c-fuzzy metric space in A. Letu,a,8 € X hold a <
Band u <au. Ifr(f) < 1,thenu = 0.

I11. MAIN RESULTS

Theorem 1.Let (X, M, *) be a complete fuzzy metric space over Banach algebra A. Let M be a
c-fuzzy metric on X. Suppose the mapping M satisfies generalized Lipschitz conditions:

(M (fi,fy,t) - 1) s« (M(xl,y,t) - 1) + B(M(x,lfx,t) - 1) ty (M(X,lfy,t) - 1) +38 (M(fi,y,t) - 1) """""" (1
1 1 1 1 1
(M (fy,fx,t) - 1) S (M(y,x,t) - 1) + B(M(fx,x,t) - 1) Ty (M(fy,x,,t) - 1) +8 (M(y,fx,t) - 1) et (2)

for all x, yeX, where a,B,y,6 € X are generalized Lipschitz constants with
r(c + B+ y+ 28) < 1—r(y). If ycommuteswitha + B + y + 286, then f has a unique fixed point.
Proof.Suppose x,is an arbitrary point in Xand set x, = fxn—1 = f"xo.

(M (Xn, 1x1 0 1) B <M(fxn_11,ficn, o8 1>

_a(m—l)+ B

(M(xn W - 1) * V(M WG - 1) +9 (M(fxn_ll,xn, 0 1)
1 1
=a ( M (xp_1, %, t) B 1) + B (M(xn 1, Xn» t) ) (M (xp— 1,xn+1, t) 1) +o (M(xn, Xn, t) B 1)
1 1
=a ( M(x,_q, %5, t) a 1) + B (M(xn 1,xn, t) ) {<M (%1, %, t) 1) + <M (Xn) Xps1,t) - 1>}
o\ e~ )
M(xn' xn—l' t) M(xn—li xn' t)
Whichimplies

Q-N(o—-1) < @++7+8) (-———-1) + 6(-————1) i (3)

M (xn, Xn+1.t) M(Xp—1,%n,t) M (xn—1,%n,t)

By (1) and (2) we obtain

<M(xn+11, 5 - (M(fxn,;»in_l,t)_l)

= “(M(xn_ll,x,i, 5= 1)+ # (g 1 TN 1)+ (5 a8 1)+ <M(xn,1;xn_1, 5
sa ( M(xn_ll,xn, t) B 1) + B (M(xn i’ X, t) ) (M (xp— 1,xn+1, t) 1) +o (M()in, Xp, t) - 1)
G Temmeann RE) R Cemvemys Skd R4 (7 covempors d R 7 ey b))
+

1
1 (e e A ey )
M(xn 1 Xn, t) M(xn:xn 1't)
Whichimplies

-9 (o——=-1) < @+L+7+) (m—1)+6(;—1) ................... (4)

M (Xn4+1.Xn,t) M(xnXn-1t)

Thus, the sum of (3) and (4) gives follows

IA

1
i (G RO M remermp i)
M (xn' Xn+1s t) M (xn+1' xn'l t) 1
< @+p+r+20)|(r——p-1) + (s - 1]
( ﬁ Y ) M(xn—l'xn: t) M(xn:xn—lt t)
1 1
NOW we set Un = [(M (en Xn+1,t) a 1) + (M (*n+12xn,t) a
Then,(1 — Yu, =2 (@+L+y+20)u,_, v (5)

Sincer(y) < r(y) + r(e+ B +y+25) < 1,then, by Proposmon 1

(1 — y)is invertible. Furthermore, (1 — y)™1 = X2,v"

LetR= (1 —y) Y (a+ B +vy+25). Asycommuteswitha + 8 +y + 26,
it follows that(1 — y) ™t (@ + B +y +28) = E2ov)(@+ B +v + 25)

- (a+ﬁ+y+25)(zyi>

i=0
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= (@a+B+y+25)1 — ). (6)
that isto say (1 — y)~‘commutes with (a + B +y + 26).
Then by Lemma 1 and Lemma 2, we obtain

r(R) =r((1 — ) Ha+pB+y+28)
<r(1 =Y Hr@+p+y+268)

< (1 — r(]/))_1 r(a+ B +y+26)
1
— (1——r()/)) ra+B+y+28)< 1, N ¢\

Which means that (1 — R)™* = (Z2,RYand ||R*|| - 0asn — oo.
By multiplying in both sides of (5) by (1 — )1, we get

1
L __1)=u
<M(xnﬂxn+1: t) "
SA -y Na+B+y+28)u,y

Let m>n > 1. We infer

IA

1 1 1
1) (= 1) o (= 1)
(M(xn' Xn+1 t) M (xn+1' Xn+2, t) M(xm—lﬁ Xm» t)
< (R"+ R™' + - +R™ Ny,
<1+ R+ +R™" )Ry,

(i1

<(X2o RHOR™Mu, = (1 — R) "Ry
owing to [[(1 — R)"'R™uq,|| = 0 (n — o), it leads to (1 — R) "Rrug — 0 (n — ).
= {x,} is a Cauchy sequence in (X, M, *).
Since X is complete, there exists u€X such that x, = fx,_; — uas n — oo.
- .. - _ 71 n
By Definition, we obtain (M i 1)5(1 R) "Rrug............... (9)

Now, we show that fu = u. Substituting x = x,-3, y = u in (1), we get

(M(xn,lfu, ) 1) - (M(fxn_ll, fut) 1)

<<(3igmran ) Al 1) (M(—lft) 1)+ (s )

= a(M(xni,u, t) B 1) + B (M(xn_ll,xn,t) B 1) + y(M (xp_1, fu,t) B 1) +o (M(xn,1 u, t) B 1)
1 1 1
=@ [(M(xn_l,xn, t) B 1) + <1M(xn,u, t) B 1)] + '81<M(xn_1,xn, t) B 1) .
Tty [(M(xn_l,xn, t) B 1) + (M(xn,fu, t) B 1)] +o <M(xn, u, t) B 1)

which implies that

1 1 1
) [——1) =< - E—
a-n (M(xn,fu, t) 1) < (@+p+p) (M(xn_l, Xp, t) 1) +(@+9) (M(xnu, t) )
Sincer(y) < 1, (1 — y) isinvertible. So, it follows immediately from (8) and (9) that

1 » 1 1
(M(xn,fu, t) B 1) =@ -7 [(a tEEY) (M(xn_l,xn, t) 1) +(@+9) (M(xnu, t) 1)]

<A -t at+B+YIR" My + (@+8)(1 — R)TTR™ )

SA - ta+B+y) + (@a+8)1 — BRIy (10)

Seta, = (1 — R)"R™uzand
Bo =1 =y) '@+ B+y) + (@+8)(1 = R)'RIR"Hu,.

Asr(R) < land R™ — 0 (n —»), we know an, S — 0 (n — 0).Thus, by (9), (10), and

Lemma 3, we get that fu = u.In the following we shall show the fixed point is unique.

- 1) = 0. Making full use of (1),we get

Firstly, we have to prove (M(uut)

(m‘l) B (W*) 1 1 1
e R I Vrrerw o Sakd IRk (rrerw iy skl Il reomerss e
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_ 1

=(@+B+7+0) (M i 1) .................... (11)
Inviewofa+ B8 +y+d<a+B+y+25r(a+B+y+26)<1-r(y)<1,and
Lemma 4, we have( - 1) = 0. Secondly, if there is another fixed point v.

M (u,u,t)

Then by (1), we get

(m_l)Z(W_l> 1 1 1
S“WGEB”)+MMEEB;Q+MM§RB_Q+“ﬁ@EE_Q

S“®é%5‘9+ﬁWG%B‘Q+V@GIB‘Q+5@i%B‘Q

which establishes that
L 1)< ) L1 12
(M ) ) X (a+y+9) (M ) ) .......... (12)
Sincea+y+d=<a+p+y+25and r(a+L+y+25)<1—r(y) < 1,itfollows immediately from Lemma 1.4
that(———1) = 0.

M(w,u,t)

1
M(u,v,t)

Similar to the above proof, it is not difficult to obtain that (

Thus, u = v, this concludes the theorem.
Corollary 1.Let (X, M, *) be a complete fuzzy metric space over Banach algebra A. Let M be a c-fuzzy metric on X. Suppose
the mapping M satisfies generalized Lipchitz conditions:

(s Y= Giyo 1) *imas ) ¥ Gieeso 1)+ Gy 1)

Actually, by (2), we also have that ( —1)< (@+y+8) (50—=—1)

Mu,v,t) -
1
M(u,v,t) - 1) = 0.

(ﬁ@%E_QS“@@%B_O+BW@%B_Q+YW®%5’O+S®6EE_Q

for all x, yeX, where o, B,v,8 € RTand satisfies « + 3 + y + 26< 1. Then,

f has a unique fixed point.

Proof. By taking r(a) = o,r(B) = B, r(y) = yandr(8) = § for each o, 8,y, 5 € R*in above theorem, we obtain the
desired result.
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