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Abstract: In this paper, we introduce the concept of upper t-subgroups of a flexible fuzzy soft intersection group (FFSIG) and 

investigate  various structures of flexible fuzzy soft intersection groups related to upper t- subgroups with suitable example.  
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I. INTRODUCTION 

 

The algebraic structures of soft set theory have also been studied extensively. Aktas and Cagman [2] introduced the basic 

concepts of soft groups, soft subgroups, normal soft subgroups and soft homomorphism and discussed their basic properties. 

Feng et.al [5, 6] considered the algebraic structure of semi ring and introduced the notion of soft semi ring. Some basic 

algebraic properties of soft semi ring and some related notions such as soft ideals, idealistic soft semi rings and soft semi ring 

homomorphism were defined and investigated with illustrative examples .Jun [8] applied the notion of soft sets to the theory of 

BCK/BCI- algebras and introduced the notion of soft BCK/ BCI- algebras , soft sub algebras and then derived their basic 

properties.Jun and Park [9] introduced the concept of soft Hilbert algebra, soft Hilbert abysmal algebra , soft Hilbert deductive 

algebra and investigated their properties. Jun [7] also in another paper, introduced the notion of soft p- ideals , p- idealistic soft 

BCI- algebras and discussed their basic properties. Based on the work of [5,6], introduced the basic notions of soft rings as a 

parameterized family of subrings of a ring over a ring with some illustrative examples. The notions of soft subrings, soft ideal 

of a soft ring, idealistic soft rings and soft ring homomorphism were introduced with some corresponding example. They made 

a theoretical study of the algebraic structures of soft sets such as lattice structures and introduced the concept of soft equality 

relation and also discussed its related properties. It was proved that soft equality relation is a congruence relation with respect 

to some operations. In relation to the work of [1] ,introduced some new operations on soft ring such as extended sum, restricted 

sum, extended product, restricted product and established some of their basic properties. Ali et.al[3] defined some algebraic 

structures such as semi groups, semi rings and lattices associated with soft sets and completely described the distributive and 

absorption laws on operations of soft sets. MV- algebras and BCK-algebras associated with soft set, with a fixed set of 

parameters were also studied. Atagun and Sezgin [15,16] introduced and studied some sub-structures such as soft subrings and 

soft ideals of a ring, soft subfield of a field and soft sub module of a module with several illustrative examples. Some related 

properties on operations of restricted intersection, product and sum for these soft sub- structures were established and 

investigated with examples. By introducing the concept of normalistic soft group, normalistic soft group homomorphism and 

establishing that the normalistic soft group isomorphism is an equivalence relation on normalistic soft groups which defined in 

[2]. Jun et.al [9] discussed the notion of positive implicative ideals of BCK-algebras based on soft set theory and their basic 

properties. On flexible fuzzy subgroups with flexible fuzzy order discussed by [17] .In this paper, we introduce the concept of 

upper t-subgroups of a flexible fuzzy soft intersection group (FFSIG) and analyse various structures of flexible fuzzy soft 

intersection groups related some softification of upper t-subgroups. 

 

II. PRELIMINARIES 

 

Definition 2.1[Molodtsov]: A pair (F,A) is called a soft set over U, where F is a mapping given by    F : A→P(U).In other 

words, a soft set over U is a parameterized family of subsets of the universe U.Note that a soft set (F, A) can be denoted by FA. 

http://www.isroset.org/
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In this case, when we define more than one soft set in some subsets A, B, C of parameters E, the soft sets will be denoted by 

FA, FB, FC respectively. On the other case, when we define more than one soft set in a subset A of the set of parameters E, the 

soft sets will be denoted by FA,GA, HA respectively. 

 

Definition 2.2[Molodtsov]:The relative complement of the soft set FA over U is denoted by F
r
A, where F

r
A:A→ P(U) is a 

mapping given as F
r
A(a) =U \FA(a), for all a ∈A. 

 

Definition2.3[Molodtsov]: Let FA and GB be two soft sets over U such that A∩B    . The restricted intersection of FA and GB 

is denoted by FA⋓GB, and is defined as FA⋓GB=(H,C), where C = A∩B and for all c ∈C, H(c) = F(c)∩G(c). 

 

Definition 2.4[Molodtsov] : Let FA and GB be two soft sets over U such that A∩B     The restricted union of FA and GB is 

denoted by FA∪RGB, and is defined as FA∪RGB = (H,C),where C = A∩B and for all c ∈C, H(c) = F(c)∪G(c). 

 

Definition 2.5[Zadeh]:A function „f‟ is defined from a universe X to a closed interval [0, 1] is called a fuzzy set (i,e) a 

mapping   f: X [0,1]. 

 

Definition2.6: Let FA be a soft set over U and Abe a subset of U. Then upper  -inclusion of FA, denoted by   
   , is defined as 

  
   = {x A/F(x)   }. Similarly, 

  
  ={x ∈A | F(x)   }is called the lower   -inclusion of FA. 

 

Definition2.7 [Naim Cagman]:Let U be an initial universe, E be the set of all parameters and A  E. A pair (F, A) is called a 

flexible fuzzy soft set over U where F: A →  ̃(U) is a mapping from A into  ̃(U), where  ̃(U) denotes the collection of all 

subsets of U. 

 

Definition 2.8: Let G be a group  and be a flexible fuzzy soft over X. If for all x,y G  

(i) max{(xy) } ≤  min {(x) (y)} and 

(ii) max{(x
-1

) } ≤ min {(x)},  then the flexible fuzzy soft set   is called a flexible fuzzy soft  int-subgroup of  X  

and denoted by  ⪿ G. 

 

Example 2.9: Let G = Z4 be the set of parameters and U = { 1, -1, i, -i } be the universal set of a flexible fuzzy soft set over U 

is constructed by  

δG (0) = { 1, -1, i, -i }   

δG (1) = δG (3) = { i } 

δG (2) = { 1 ,  i } . Clearly δG is flexible fuzzy soft intersection group over U. Here 

Im (δG) = { {i}, {1,i} , {1.-1,i,-i}}, thus all the upper t-sub groups of δG are δG = Z4,         δG = { 0,2},  δG = 

{0}. 

Now, let define a flexible fuzzy soft set over U such that  

{ 0 } = { 1, -1, i },  { 1 } = hG(3) = {-1}, { 2 } = { -1, i }. 

Obviously,  is a FFSI – group over U. Too and the family of upper t – subgroups of  are = Z4,  = { 

0,2}, 

= { 0 }. It is seen that two FFSI – groups and hG have the same family of upper t-subgroups, however δG is not 

soft equal to . 

 

III. PROPERTIES OF FLEXIBLE FUZZY SOFT INTERSECTION GROUPS 

 

Proposition 3.1: Let SG be the class of FFSI – groups of a group G over U. If define a relation R on SG by δG R ,
then its 

upper t-subgroups on the relation R is an equivalence relation. 

Note 3.2: Example 2.9, it is shown that  and δG may be such that δGR  but δG and need not be soft equal. The 

equivalence relation defined in this proposition 3.1 SG into equivalence classes. 

 Let δG∈SG and | δG | denote the equivalence class contained δG. If the group G is finite, then the number of possible 

distinct upper t-subgroups are finite, as each upper t-subgroups is a subgroup of G in the usual sense. All these remarks lead us 



}{i },1{ i },,1,1{ ii 

G G G

G G G
}1{

G
},1{ i

G
},1,1{ i

G

G

G

G G G
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to the conclusion that the number of possible chains of upper t-subgroups, we have the following that the number of 

equivalence is finite, although SG is an infinite family when U is infinite. 

 

Corollary 3.3: If G is a finite group, then the number of distinct equivalence classes in SG under the definition of equivalence 

relation defined in proposition 3.1 is finite. 

 Moreover, SG can be written as a disjoint Union 

SG = | δG
1
|U | δG

2
 |U| δG

3
|U.........U | δG

k
| where | δG

i
| denotes 1 ≤ i ≤ k on all distinct equivalence classes. Here, again note that | 

δG
i
| has an infinite number of FFSI – groups when U is finite. 

 

Proposition 3.4: Let  and δGbe two FFSI- groups of a finite group G having the identical family of upper t-subgroups and 

the sets Im(δG) and Im( )be ordered by combination.   

If Im( δG) = { to,t1,t2,.....,tm} and Im ( ) = { s0,s1,.....,sn}, then 

(i) m = n 

(ii) δG   =  δG , 0 ≤ i ≤ m, 

(iii) If  x∈G such that δG (x) = ti , then (x ) = si , 0 ≤ i ≤ m. 

Proof: (i) Since  and δG have the identical family of upper   t – subgroups , it follows that m = n. 

(ii) Since t0 ≥ t1 ≥ t2≥ .....≥tm and so ≥ s1 ≥ s2 ≥......≥ sn, by proposition 3.1 that two chains of upper t – subgroups are 

δG ≤ δG ≤δG ≤...........≤δG = G,  

≤  ≤ ≤ ..........≤ = G. 

Since the two upper t- subgroups are identical, it is obvious that 

δG  =   = { e } . 

LetδG = , for some j > 0. 

Suppose that   δG  =  for some j > 1. 

Again  =  for some t 1 ≥ ti. 

It is obvious that  ti t 1. ThusδG =  , so δG = .  

Now =δG δG , so δG  

Note that, δG δG  

Contradicts one another, because the combination are both proper combination, so δG . The rest of the proof 

follows by induction method on i. Finally, it is obtained thatδG = , 0 ≤ i ≤ m. 

Let x∈G such that δG (x) =ti and ( x ) = sj, by previous theorem (ii) ,
δG = , 0 ≤ i ≤ m. Thus x

∈
. Implies 

that  

( x )
= s j such that sj ≥ si. So  ≤ . 

Similarly, by previous theorem (ii) = . 

Therefore, since x 
∈

, x 
∈

 and so, 

δG (x) =t i ≥ t. 

It follows that δG ≤ δG  

However, by theorem (ii) ,δG = and 
δG = . So, 

= 
δG δG = , 

Thus, < , which contradicts the fact that < , if we do not have  =  

G

G

G

ti si
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G
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1
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We know that  = if and only if sj= si . Thus  

δG (x)= ti , and ( x ) = sj = si.   Hence the proof. 

 

Proposition 3.5:Let
δGand  be two FFSI – groups of a finite group G such that their family of upper t – subgroups are 

identical and their image sets are both ordered by combination. Thus 
δG= 

, then
Im(δG)  =Im( ).

 

Proof: LetδG= 
. Then 

Im(δG)  =Im( )
 is obvious. 

Conversely, suppose that Im(δG)  =Im( ).Let Im(δG)  = { to, t1, t2,......,tn } and 

Im ( ) = { so,s1,s2,......,sn } such that t0≥t1≥......≥tnand so≥s1≥s2.....≥sn. 

Let so∈ Im(δG) .Thus so = tαofor some αo. 

Let tαo to. It follows that tαo to. 

Since to is the maximal element of the chain. 

Now, let s1
∈Im(δG)  and sos1 = t α1 for some t1. 

Since  So  S1 , it implies that tαo t α 1  . Similarly, 

tαo  tα1  tα2 ........... tαr ,where s0 = tαo to . 

This means that there does not exist only si
∈Im( ) such that  to = si. 

But the contradicts the fact that Im(δG)  =Im( ) 

 Hence we must have so = to. 

Similarly, one can obtain that si = ti , 0 ≤ i ≤ r. 

By proposition 3.4 (iii),  (li), for all i∈ G. Hence δG  = .  

Hence the proof.  

 

Note3.6: Since all the subgroups of G, in general, do not form a chain. We can conclude that not all subgroups of G are upper 

t-subgroups of a given FFSI-group whose image set form a chain. Therefore, it turns out to be an interesting problem to find 

FFSI-group whose image sets form a chain and which accommodates as many subgroups of G as possible in the chain of upper 

t- subgroups of the FFSI group. 

 

Theorem 3.7 : Any subgroup H of a group G can be realized as an upper t- subgroups of some FFSI – group over U. 

 

Proof: Let δ G be a FFSI – set over U defined by  

 

δG ( x  )    =   t , if x ∈ H 

   =   Ф , if x H .   Then δ G is a FFSI – group over U. 

 

Let a , b ∈ G. 

 

Case (i) : Suppose a ∈ H and b ∈ H , then ab∈ H.  

It follows that max {δ G( ab)} = t and δ G ( a  ) = δ G ( b  ) = t . 

Thus,max { δ G( ab)}  ≤ min { δ G ( a  ), δ G ( b ) } . 

And also if a ∈ H , then so is a 
–1

 , thus δ G ( a  )  = δ G ( a 
–1

 )  = t. 

Case (ii) : Now, suppose a ∈ H and b  H then ab  H. It follows that 

δG ( a  ) = t and δ G ( b  ) = δ G ( ab ) = Ф . 

Therefore,max { δG ( ab)} ≥ min { δ G ( a ),  δ G ( b ) }. 

Furthermore δ G( a ) = δ G ( a
—1

 ) if a ∈H or a H. 

Case (iii) : Now, suppose that a H and b H . Then either a,b∈ H or a,b H. It is easy to show that in any cases, max {δ G ( 

ab)}  ≤  min { δ G ( a ),  δ G ( b ) }. 

And  δG ( a ) = δ G ( a
—1

). 
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Hence δ G  is a FFSI – group over U.Therefore, for this FFSI group, δG  = H. 

 

Note 3.8: It is known that if δG is a FFSI group over U, then δ G ( e  ) ≥ δ G ( x )  for all x ∈G.  

Let δ G (e ) ≥ te. Then it turns out to be an interesting case to investigate the upper tesubgroup of δG of G. Because it x ∈δG

, then δ G( x) ≥ t = δ G ( e ) and it appears that only e ∈δG . But that is not always the case as seen in the following 

example. 

 

Example 3.9: Consider the FFSI – group in theorem 3.7. Assume that H { e } and  H G. It is known that δG is a FFSI – 

group over U and Im (δG) = { Ф , t }. 

Thus , two upper t – subgroups are δG = G and δG  = { x ∈ G / δG(x)≥ t } = H. 

Since e ∈ H, δG(e)= t; but δG = H,  which is not equal to “e”. 

 

Definition 3.10:  Let δG be a FFSI – group over U. Then e-set of δG, denoted by GδG, is defined as GδG= { x ∈ G / δG(x)=δG(e) 

} 

Theorem  3.11: Let δG be a FFSI – group over U. If δG
(e )

 = t e, then δG e = GδG. 

Proof: δG e  = { x∈ G / δG
(x)

 ≥ te }  

  = { x∈ G / δG
(x)

 = te } 

Since te≥  δG
(x)

for all x ∈ G . 

δG e  =  { x∈G / δG
(x)

=δG
(e)

 } = GδG. 

 

Note 3.12: Let δG be a FFSI – group over U and (to,t1,t2,t3,.....,,tn} ∈Im (δG) which satisfying that to ≥ t1 ≥t2≥t3≥......≥ tn. Then the 

family of upper – t – subgroups from a chain , which denoted by C (δG) = δG 0<δG 1<........<δG n . 

 Not to our surprise, only some of the upper t-subgroups of δG form a chain. Since all the subgroups of G, but in 

general, does not form a chain that is, it makes no sense to hope all the upper t – subgroups form a chain. 

 In the connection, see example 2.9,  { 0, 3 }  { 0,2,4} and { 0,2,4 }  ( 0, 3}. 

Of course if the number of the Im (δG) forms a chain, so does the upper t – subgroups of δG . For further detail, refer to the 

following theorem. 

Theorem 3.13: Let G be a finite group.Let δG be a FFSI – group over U , I be an arbitrary finite index set and G (δG ) = { δG

i / i ∈ I, ti
∈Im (δG) }, then we have the followings: 

(i) There exists a unique ie
∈ I such that tie ≥ t i , for all i. 

(ii) GδG= =  

(iii) G   =  

(iv) If the members of Im (δG) forms a chain, so do is G (δG ). 

Proof:  

(i) Since δG
(e)∈Im (δG) , there exists a unique ie

∈ I such that δG
(e)=tie

 . 

We know that δG
(e)

≥δG
(x)

 for all x ∈ G . 

It follows that tie  ≥δG
(x)

, for all x∈G . 

Thus tie  ≥ t i  , for all i∈ I. 

(ii) Since in theorem 3.12 , it is proved that  

GδG= , where 
δG

(e)
 = tie . 

  It is only shows that G = .Since tie ≥ ti for all i∈ I , 

t

et

et et

 

 t
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
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
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GδG ≤ GδG , for all i. 

Thus GδG

. Now let  x

∈

, then x 

∈
, for all i

∈
 I. 

 

IV. CONCLUSION 

 

we  conclude that not all subgroups of G are upper t-subgroups of a given FFSI-group whose image set form a chain. 

Therefore, it turns out to be an interesting problem to find FFSI-group whose image sets form a chain and which 

accommodates as many subgroups of G as possible in the chain of upper t- subgroups of the FFSI group.In this connection ,any 

subgroup H of a subgroup G can be realized as an upper –subgroups of some FFSI-group over U. 

 

V. FUTURE WORK 

 

To extend our work, further research can be done to study the properties of multi- fuzzy soft int-group in other algebraic 

structures such as modules, rings and fields. 
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