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Abstract—This paper deals with the construction of bivariate frailty models and discusses in general multivariate frailty 

models. Whenever the observations are unmeasurable and not observable then in that case we assume the probability model 

and generating simulated data analysis of these distribution known as frailty distribution is carried out and compared it with 

that of real data. The frailty models have been categorised in to three forms such as discrete frailty models, continuous 

univariate frailty model and multivariate frailty model. In discrete frailty model generally starting from Bernoulli frailty to 

multinomial frailty model. In continuous multivariate frailty models starting from bivariate frailty models were constructed 

such as bi-variate gamma frailty model, bi-variate compound Poisson frailty model, bi-variate log-normal frailty model. 

Further multivariate normal frailty model has been discussed for its properties. 
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I.   INTRODUCTION 

 

Instead of univariate frailty models multivariate frailty 

models are used in many situations. The model for 

association in bivariate life tables and its applications in 

chronic diseases is studied by Clayton, D.G. [2]. The case of 

a bivariate lognormal frailty discussed by Xue and 

Brookmeyer [44] and they introduced a modified 

expectation- maximization algorithm for estimation. Mahe 

and Chevret [20] have taken the models for estimating both 

regression coefficients and correlations. Extensively fair 

literature has been given by Hougaard [11]. Nayak [27], 

Hougaard [10], Whitmore and Lee [39],  Jaisingh, Day, and 

Griffith [14] have discussed many articles on shared frailty 

models in the reliability. Hougaard [11] has introduced 

multivariate frailty model for the dependence of covariates. 

Further Catalina Stefanescu and Bruce W. Turnbull [1] have 

considered correlated failure data for Bayesian methods and 

fitted the models to the data. For finite mixture of stable 

frailty distributions, Nalini Ravishanker and Dipak K. Dey 

[26] have used the model for dependent multivariate survival 

data and they have estimated the parameters of proportional 

hazard model using Markov chain Monte Carlo method by 

using kidney infection data. A multivariate frailty model is 

appropriate for intra cluster depending data. Sahu and Dey 

[36] have considered frailty models for bivariate data using 

bivariate exponential and Weibull distribution. They further 

generated data on diabetic patients for studying retinopathy 

and compared with the actual data. Using reversed hazard 

rate multivariate correlated gamma frailty model have been 

considered by P.G. Sankaran and V.L. Gleeja [33]. Using 

flexible base line hazard, Madhuja Mallick and Nalini 

Ravishanker [19] considered an additive stable frailty model 

for multivariate times to event data. Hanagal [6] has used 

bivariate Weibull regression frailty model which is 

generated by a gamma or positive stable or power variance 

function distribution. Hangal’s assumption was that the 

bivariate survival distribution follows bivatiate Weibull 

distribution. Hanagal [7] introduced bivariate Weibull 

regression model with heterogeneity which is generated by 

Weibull distribution. Taking three base line distributions 

Weibull, generalized exponential and exponential power 

distribution Hanagal et al. [9] proposed Inverse Gaussian 

distribution as frailty distribution. Three different Inverse 

Gaussian shared frailty models proposed by using three base 

line distributions and they perform a simulation study and 

compare the true value of the parameters with the estimated 

value by taking real data given by McGilchrist and Aisbett 

[22] of kidney infection data by using MCMC method. 

Sahu et.al. [35], Hanagal [8], Parekh et al. [30] have defined 

bivariate frailty distributions by using either probability 

measure or conditional distribution and some of them have 

used for kidney diseases or cancer diseases. Kheiri et.al. 

[15], Santos et.al. [37] and Parekh et al.[31] have proposed 

Bayesian frailty models and obtained frailty estimates. 

For Bi-variate frailty Models we use the preliminaries as 

under. 

The hazard function of Cox- model called shared frailty 

model is  

 (     )      (     ) 
    

where    and    are time variables,    is base line hazard 

function,    (         ) is a vector of fixed effect 
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parameters,     (         ) is vector of fixed 

observations and   has frailty distribution with probability 

density function  (   ),  where   is frailty parameter. This 

is known as shared frailty model. 

The survival function,  (     ) is  

 (     )    [{  (  )    (  )} 
   ]   

where   (  ) and   (  ) are cumulative hazard functions of 

   and    respectively, 

   is Laplace transformation of   . 

Conditional survival function is given by 

 (      |  )    (  )
   (  )

  

where   (  ) and    (  )  are marginal survival functions. 

We consider particular multivariate frailty models in the 

following section. 

Section II discusses bivariate Gamma frailty model by 

constructing it. In section III we have obtained moment 

estimator and maximum likelihood estimator of bivariate 

log-normal frailty model. Section IV discusses the 

construction of bivariate compound Poisson frailty model. 

Multivariate normal frailty model with some very important 

characterizations are discussed in section V. section VI is 

devoted for conclusion. 

 

II.   BI-VARIATE GAMMA FRAILTY MODEL 

 

Fisher R.A. [5] suggested that smoking and lung cancer are 

correlated and it causes the genetic factors. Further De Faire 

et al. [4], Marenberg et al. [21] have used genetic study in 

coronary heart disease. Yashin et al. [45, 46] presented 

correlated gamma frailty model and used it as life time 

models. The relation of correlation between frailties and 

lifetimes analyzed by Lindeboom and Van Den Berg [18]. 

Correlated gamma frailty model extended by Paik et al. [28]. 

Yashin and lachine [47, 48, 50, 51, 52], Yashin et al. [49], 

Iachine et al. [13], Petersen [32], lachine [12], Wienke et al. 

[42, 43] have discussed that consistency and asymptotic 

normality of the non-parametric maximum likelihood 

estimator in the multivariate correlated gamma frailty model 

with observed covariates.  

Bi-variate gamma frailty model can be constructed as under 

Let          be some real positive numbers. Set        
   and          .   

Let          be independently gamma distributed random 

variables with     (     )     (     )     (     ). 

Then bivariate gamma frailty variables    and    are given 

as 

   
  

  
       (        )                                     

   
  

  
       (        )                                                

and            (  )  
 

  
    

   (  )  
 

  
  

  
  

the following results can be easily obtained 

(i)      (     )  
  

(     )(     )
 

The correlation coefficient,   between    and    is 

(ii)     
  

√(     )(     )
 

Since          are independently distributed as Gamma 

variates, the range of the correlation coefficient between 

frailties depends on the values of    and   : 

(iii)          {
  

  
 
  

  
} 

If      ,   is always less than 1. 

 

III. BI-VARIATE LOG-NORMAL FRAILTY MODEL 

 

The correlated log-normal frailty model was used first time 

by Xue and Brookmeyer [44] has applied it to mental health 

data to evaluate the health policy effects for inpatient 

psychiatric care. The correlated log-normal frailty model is 

used in two-state mixed renewal process for chronic disease 

by Cook et al. [3] Lee and Lee [16] extended the model to 

allow for heterogeneity in the frailty distribution. Pankratz et 

al. [29] perform genetic analysis on age at onset in breast 

cancer in a large familial cohort using correlated log-normal 

frailty models. 

If (     )
  is distributed as bi-variate normal distribution 

with mean vector (   ) and variance co-variance matrix as 

(
     

     ) and if        (     ) 

Then bivariate log normal frailty (     )
  has bivariate 

lognormal frailty variables with frailty parameters    and   

which can be obtained as under 

 (  )     
  

  ;                                                                        

 (  )        
(   

  ) ;                                                 

    (     )  
      

   
  

         

Log normal frailty model is more flexible than Gamma 

frailty model but Gamma frailty model is easier than log 

normal frailty model in getting maximum likelihood 

equations. However maximum likelihood equations are 

solved by using Markov Chain Monte Carlo (MCMC) 

method. Yashin et al. [46], Wienke et al. [40, 41] have 

obtained maximum likelihood estimators of Gamma frailty 

models whereas McGilchrist [23], Lillard et al. [17], Sastry 

[38] and Ripatti et al. [34] have obtained maximum 

likelihood estimators of lognormal frailty distribution. 

 

IV.    BI-VARIATE COMPOUND POISSON                   

FRAILTY MODAL 

 

Shared frailty model fails to explain the frailty in the 

situation where some individuals like cancer patients may 

survive from cancer. If one of the individuals of the married 

couple has some problem in fertility and thereby they do not 

conceive a child which is known as zero susceptibility, so 

that they may take some time to divorce, which means 

couples have zero susceptibility. In such situations 

correlated compound Poisson frailty distribution is useful. 
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Mogar et al. [24] and Mogar and Aalen [25] considered 

compound Poisson frailty models with a random scale. 

Bivariate compound Poisson frailty model can be obtained 

as the mixture of Poisson variates and such as if        and 

   are real positive numbers and if          are 

independently distributed as compound Poisson variate as 

     (      ),      (      ) and      (      ) then 

the bivariate compound poisson frailty variables    and    

are  

           (         ) 

           (         ) 

Some results about    and    are as under 

(i)            (  )   (  )     

(ii)    (     )    (   )     

The correlation coefficient,   between    and    is 

(iii)    
  

     
 

Gamma and Inverse Gaussian correlated frailty models are 

special cases of this compound Poisson frailty model. 

 

V.  MULTIVARIATE NORMAL FRAILTY MODEL 

 

Let    (          )
 
 have multivariate normal 

distribution with mean vector   (          )
 
 and 

variance-covariance (   ) matrix,   

  (

                       

        
   

             
   

      
     

   

),  

that is     (   ).  

Then some of the important results of this frailty distribution 

are as under 

(i)   ( )    

(ii)  (
 

 
)    

Where   is variance-covariance matrix of sample   , 

  ,…,    having     ( ,  ) , (         )  distribution 

and   ( 
 
  

 
    

 
 )

 

. 

(iii)  The maximum likelihood estimator of   and    are   

and 
 

 
 respectively. 

(iv) If   (
 ( )

 ( )
)
   

 

,   (
 ( )

 ( )
)
   

 

,    (
      

      
) 

where     is     matrix,    ,     is     matrix,     is 

    matrix,     is     matrix then the conditional 

distribution of  ( ) given  ( ) is  -variate normal such as 

 ( )| ( )   ( ( )        
  ( ( )   ( ))       ),  

were                  
       

(v)  ( )        
  ( ( )   ( )) is the regression of  ( ) on  

 ( ) which also gives regression coefficients 

(vi) The variance-covariance matrix       give rise to partial 

and multiple correlation coefficients.  

 

VI.   CONCLUSION 

  

We have discussed various frailty models in this paper. 

When the covariates are not observable or not measurable 

then the model is assumed which is called frailty model. We 

have discussed discrete and continuous multivariate frailty 

models such as Bi-variate gamma frailty model, Bi-variate 

compound Poisson frailty model, Bi-variate log-normal 

frailty model, Multivariate normal frailty model. In many of 

them we have constructed the bivariate frailty models and 

obtained the hazard function, cumulative hazard function 

and survival function of the frailty model. One may 

investigate these multivariate frailty models for simulated 

data and utilize modern techniques in them for future 

inference.  
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