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Abstract -Classical and Bayesian estimation of the unknown parametric functions for power generalized Weibull distribution
under progressive Type Il censoring scheme are undertaken in the present paper. Newton Raphson iterative procedure is used
for computation of maximum likelihood estimates which are not obtained in closed form. Asymptotic and bootstrap confidence
intervals are also obtained. Squared error and general entropy loss functions are considered for Bayes estimation under the
assumption of two independent gamma priors. The approximate Bayes estimates are obtained using Tierney-Kadane
approximation. Alternatively, Metropolis Hastings algorithm is run under Gibbs sampler environment to generate Bayes
estimates. Computed Bayes estimates are compared with the classical maximum likelihood estimates based a simulated data
and a real data set.

Keywords: Progressive Type Il censoring scheme, Boot-p and Boot-t intervals, Tierney and Kadane method, Markov Chain

Monte Carlo.

I. INTRODUCTION

Censored data is a common feature in life-testing and
survival studies. Type | (time) censoring involves
termination of a life-test experiment at a prescribed time T,
Type Il (failure) censoring is the one where the life testing
experiment will be terminated when a prespecified number
of failures r, r < n is observed and hybrid censoring is a
mixture of these two schemes such that the experiment is
terminated at min (T, r), whichever occurs earlier. Review of
work on the various lifetime distributions carried out under
these two censorings schemes is summarized in [1] . A
serious drawback of these schemes is that other experimental
units cannot be removed from the experiment before the
final termination point of the experiment, which could be
cost and time intensive. [2] Introduced a more general
censoring scheme known as progressive Type |1 censoring in
which intermittent removal of the experimental units is
allowed during the experiment. The progressive Type Il
censoring scheme is briefly described as follows: Out of n

life-test units, randomly selected I out of n-1 surviving
units are withdrawn from the life-test at the first observed

failure time,I, out of N—I,—2 surviving units are
withdrawn from the experiment at the time of occurrence of
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the second failure. Continuing thus, at the time of the final
m" (1 < m < n) failure, the remaining surviving units r,
with r =n-m-r-r,—..-r,_, are withdrawn from the
experiment. The observed sample is referred to as
progressive Type Il censored sample of size m. This scheme
maintains optimum balance between experimental time and
effective sample size used in the trials. Type Il censoring

scheme is a particular case of this scheme with
L=r=..=r_,=0r =n-m and the complete
sampling corresponds to the case when
L="r..=r_=r =0.[3] provide the likelihood

function under progressive Type Il right censored sample

X;1 Xy ,ey Xy @S Under

f(9=CT T f(x)L—F ()T

where, C=n(n—r, -)(n—r,—r, - 2)...
w(n=r—..—r

. —M+1) is constant.

The power generalized Weibull distribution (PGWD) is an
extension of the Weibull distribution which was first
proposed by [4] as a lifetime distribution to accommodate

non-monotone hazard rates in addition to constant and
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monotone hazard pattern. Goodness of fit [5] and an
application to cancer data [6] for PGWD have already been
discussed in literature. More recently [7] have undertaken
the Bayesian analysis of PGWD under Type Il censoring.

Any estimation procedure involves loss due to estimation
as invariably some gap remains between the true value and
the estimator. A good estimator is characterized by the
least mean squared errors (MSEs). Squared Error Loss
Function (SELF) is symmetrical and associates equal
importance to the losses due to overestimation and
underestimation of equal magnitude. General Entropy Loss
Function (GELF) given by [8] which is asymmetric and
useful for the situations where it is worse to underestimate
(or overestimate) the potentiality of an event than to
overestimate (underestimate) the unknown parameters.
Tierney and Kadane (T-K) method [9] and Markov Chain
Monte Carlo (MCMC) technique are suitable for giving
fairly approximate solution to complex posterior
distribution functions. MCMC procedure is adaptable and
compliant for the purpose of data generation and
subsequent parameter estimation (see, [10] and [11] for
instance).

The rest of this paper is organized as follows. The maximum
likelihood estimators of the parameters are presented in
Section 2. Section 3 is devoted to determination of the
interval estimation for the unknown parametric function.
Bayes estimation and construction of credible intervals using
the T-K and MCMC techniques are undertaken in Section 4.
Numerical examples are presented in Section 5. A real data
set based analysis is presented in Section 6 to illustrate the
methods of inference developed in the paper. Finally,
concluding remarks are made in Section 7.

Il. THE POWER GENERALIZED WEIBULL
DISTRIBUTION

A random variable X follows PGWD with shape parameters
a>0,8>0 and scale parameter A >0 , if its
probability density function (pdf) is given by

s el

ai’
1
a

B
xexp| 1 1+G) x>0, A 450 (@1

A is the scale parameter while shape parameters are « and S
. Fig. 1 shows the plot of PGWD(e, B, 4) for various values
of a when £ = 3 is fixed. It is seen that as « is increased the
density curve flattens out and spreads over wider interval
exhibiting larger variance.
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Fig. 1: pdf of the PGWD (o, f5) for g = 3.

2.1 Some Distributional Properties
Mean (M)

1
a

E(t)=IR(t)dt=IeXp 1—[1+GTJ dt (2.2)

s
t
By using the substitution y = (Zj , equation (2.2) reduces

to (2.3) as under,
L= %j y(l—ﬂ)/ﬂ exp (1_ (]_+ y)”“}jy (2.3)
0

Which converges for & >1 thus implying a finite expected
lifetime for PGWD.

Median Time to System Failure (Me)

Since mean time to system failure does not assume closed
form for PGWD, we therefore consider the median time to
system failure (MTSF) given by

Me = MTSF = 4 (1 + log 2)* —1)"” (2.4)

Mode (Mo)
Mode of PGWD is the solution of the following non-linear
equation

a(ﬂ—l)—[jjﬂ ot /’[“[“@TWJ o @9

Table 1: Mean, Median and Mode of PGWD for different
values of o and 8

1 1 1 2 2 2 3 3 3

a
S 2 25| 3 2 25| 3 2 125|383
M 17 | 17|17 (32|28 |26 55|42 |36
72 | 75 | 8 | 72 | 59 | 38 | 61 | 79 | 48

Me | 16 | 1.7 | 1.7 |27 | 25|24 139 |34]|31
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65 | 27 | 7 |33 |67 | 63 |26 | 31| 36

Mo | 08 | 11|12 |11 |13 |15 |12 |15 17
63 | 08 | 72 | 27 | 89 | 48 | 87 | 59 | 14

The numerical values of mean, median and mode are given
in Table 1 and it is observed that Mode < Median < Mean.
Thus from Table 1 and Figure 1, PGWD is seen to be a
positively skewed distribution.

2.2 Reliability Characteristics
Reliability function and failure rate function of PGWD are
respectively given by (2.6) and (2.7).

1

B\a
R(t) = exp 1—[1+(% J 120,0,6>0 (2.6)

1

Lt By (1Y)
h(t)_R(t)_a/”Lﬂt l+(/1j]

t>0,a,4>0 @.7)

06
1

04

{
03

t
Fig. 2: R(t) of the PGWD (a, p) for p=3.

h(t)

t
Fig. 3: h(t) of the PGWD (a, p) for f=3
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1. MAXIMUM LIKELIHOOD ESTIMATION

X

Type 11 censored sample of size m from a sample of size n

smnrees Xpmn 1S @ progressive

Suppose that X

Imn?

taken from (2.1) by removing I, random units, at each

respective failure i for i = 1, 2,..., m, for the test. The
likelihood function based on the progressive Type Il
censored sample is given by

f (Xl:m:n ' X2:m:n [} Xm:m:n) =C H in:m (Xi:m:n)
i=1

X [1_ FXI:m:n (Xi:m:n )]ri
Where,
C=nih-r,-)(n-r,—r,-2)...(n—r,—....—1,, —M+1)

[24 i=1

I(a,ﬂ‘x)zc mﬂﬂmﬂl:lxiﬂl H[l-{);] J

m il %
x exp Z(n +1) 1—{1+(%) J (1)

Now, the log likelihood function is given by,
logl =logC +mlog S —mloga —mglog A

+(p —l)iZ:: log x; + (i _ljiZ:: Iog(1+ (ﬁjﬂ}

m B
+>(r +1)|1- 1+(%) (3.2)
i=1

MLE of « is obtained as solution of the first partial
derivatives of (3.2) with respect to o which is given as,

m ﬂ m
ma + Y log 1+(5J =>(r +1)
i=1 2’ i=1
lla

B yej
X X.
1+ logl 1+ —+ =0 3.3
{J % *(;J 43

MLE of g is provided by the solution of the first partial
derivatives of equation (3.2) with respect to S given by,

m u 1
5" mlog( 1) + Zlog(xi)+(;—1j

i=1
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(X “ X; X al
S0 el o (%)

i ) ] é’l
—éZ(rﬁl)(%j Iog(%} 1+[%j =0 (34)

(3.3) and (3.4) cannot be solved analytically. Therefore, we
use Newton Raphson (N-R) iteration method to obtain &
and 3.

Remark 1: MLEs of the reliability and hazard rate, at a
given time t are given respectively by

i\a
R(t) = exp 1—(1+[%) J 1t>0 (3.5)

and
1
N |
A AV
'Bh - 1+[£j >0 (3.6)
ar’ A

IV. INTERVAL ESTIMATIONS

h(t) =

The exact distribution of Maximum Likelihood Estimates
(MLE) for the unknown parameters a and g cannot be
obtained explicitly. Therefore, we evaluate Asymptotic
Confidence Interval (ACI) and Bootstrap Confidence
Intervals (BCI) for « and £ in the following subsections.

4.1 Asymptotic Confidence intervals

The asymptotic variances and covariance of the MLEs for
the unknown parameters o and S are given by the elements
of Fisher’s information matrix. The large sample approach is

to assume that the MLEs ( &, ) are approximately bivariate
normal with mean (a, ) and covariance matrix 1(¢), where

I(¢) is the inverse of the observed information matrix
defined as

_d%logl  &%logl |
. A | el oaof3 (4.1)
Io(a’ )_ _d%logl  &’logll
o o o8 .

respective

( B) N (e )1 (a ﬂ)) and  the
100[1_§j o5 AClare given by
2

Avar(@) » g+ Zs2n var(/3)

axz,,
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where, var(a) and var(,é) are the elements on the main

diagonal of the covariance matrix Io(d,ﬂA) and Z,, is the
percentile of the standard normal distribution with right-tail
probability < .

2

In order to find the approximate estimates of the variance of

ﬁ(’[) and ﬁ(t) delta method (see [12], [13] ) is chosen.
Let Glz(i(t) i(t)j and G, = (éh(t) 6h(t)J

oa ' OB oa ' op

where OR() OR() oh(t) and Sh(t) are the first
oa = 8B ' O op

derivatives of the R(t) and h(t) with respect to the parameters

o and f, respectively. The approximate asymptotic variances

of R(t) and h(t) are given respectively by
Var(R(t)) = [G] 1,G ] and Var(h(t)) = [G] 1,G, ]

where |, is given by (3.1) and G, is the transpose of G,, I

= 1, 2. These results yield the approximate confidence
intervals for R(t) and h(t) respectively as

R(t) £ Z,,,+/var(R(t)) and RA(t)+Z,,,~/var(h(t))

4.2 Bootstrap confidence intervals

Bootstrap is a computationally intensive method based on
the concept of resampling from an observed data set which
are applicable without theoretical assumption of normality
([14], [15]). Computational steps for estimation of
confidence intervals of the unknown quantities are presented
as under,

Boot-p Confidence Interval Algorithm
1. Generate a bootstrap sample X;,Xs,...... X using

) ST, ST X,and compute the estimate 6 of the

parameter & (in our case, 6 could be a or ) using the
bootstrap sample.
2. Repeat step 1, N times.

3. Suppose that F,(x)=P(@" <x) is the cumulative
distribution function of §”. Then, define éBoot_p(x) = Ifl’l(x)

for a given x. The approximate 100(1-5)% confidence

interval for @ is given by(éB . p(éj éB . p(l_éj]
00t— 2 4 00t— 2
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Boot-t Confidence Interval Algorithm

1. Generate the sample X, X,, , X, from equation

(2.1) and compute the estimate of the unknown parametric
function 4.

2. Draw a bootstrap sample X, X, ,...... , X, using 0.

Then compute the estimate §* and \7(@*) and compute the

T statistics, T+ _ o -6
3. Repeat step 2, N times.
4. Let F,(x)=P(T " <x) be cumulative distribution

function of T~ Define 4, . (x)=6+N(07)E2(x) for

a given x. The approximate 100(1-¢ )% confidence
interval for @ is given by,

[éBoott (éj’ éBoot—t (1 - éjj
2 2

V. BAYESIAN ESTIMATION

Gamma distribution can accommodate variety of shapes
depending upon parameter values. This flexibility makes
them suitable candidate for priors. We consider two
independent gamma priors for « and 8 as gamma (y, o) and
gamma (|, #) respectively, as under

o

Y

L exp(— ca>0,v,0>0,
r(a)a Xp(-ya) ; a>0,7,0

g(a) =

0(8) =L priexp(—up) i >0, un>0
I'(n)

The joint prior density is thus given by

o(ar. B) = =L o (—ya — piP);

INCHING))
o, >0, o,n,y,14>0 (5.1)

Based on the likelihood function (4.1) of the observed

sample and the joint prior (5.1), the joint posterior density of

the unknown parameters o and f given the data is obtained
as (5.2)

ﬂm+7]—1e—(7a+/¢ﬂ) m

w2 e 4|

i=1 i=1
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1
a

m B
xexp| D (r +1)| 1- 1+(%) (5.2)
i=1

Since I(«, ,B| X) is analytically intractable, therefore T-K

method is used to obtain estimates.

5.1 Tierney and Kadane Approximation
T-K method approximates posterior expectation of a

parametric function W (e, f7) that is expressible as a ratio
of two integrals. Let

W= E(W(a, A)X) = [ [wler, (@, | ¥ derdp

“eno‘;(aﬁ)da dg
= 53
[[em“Pdadp e
where,
~[1e. Alx)+ pler. B)]
S(a, B)= - ,
Sula. B)= 5(a,ﬁ)+long(a’ﬂ) (5.4)

Here |(a,,B|X)

pla, B)=log g(a, ) such that g(a,p) represents the

joint prior distribution. An application of T-K approximation
suggests that equation (5.3) is given as,

zgv exp [n { 5*(0}5*’135* )_ 5(0;5,136)}] (5.5)

Here, |Z| and ‘Z:V‘ denote the determinant of negative

denotes the log-likelihood and

\7\-[:

inverse Hessians of (e, ) and 57, («x, 8)- Writing
S(a, B) :%[mlog,b’—mloga—mﬁlog/i

+ologA+nlog u—log(I'o) —log(T"77)
+(c-Dloga+(n—-1log S — A — uf3

(813 Jog, +(§‘1j§'°g[l+(%jﬁ]

1
a

" x Y
+iZ:l:(ri +1)1- 1+(7j

Taking derivatives,
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%:_M%j%_mlog(zwilog(xi)

RoSHIREE)
eals] ()

Likewise, the corresponding second-order derivatives are
obtained as

75 (o- 1>m+2'09[“( jﬁ]

‘%Z::(ri +1)[1+ (%Jﬂ](ij
« Iog[1+ (%)ﬁ]llog(u (%)ﬂ} 2a]

0%5 0%5

dadf oadp
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Thus, we obtain |Z| as

0%5 068
|z|=[

025 8% }1
oa’ op?

da df 8B da
In order to compute ‘Z:V‘ we first compute the following
expressions:

05" 05 W,

o

da  da nw(a,p)

05" _o5 W,

EY:; aﬁ nw(a, )

05" _ a%5 1| (e, fW,, — (W,)*
oa?® da?® n Wi, B}

0’5" _ 9% +1{W(a,ﬁ)wﬁﬂ -~ (Wﬁ)z}
8B%> oB% n Wi, )}

= + 3
dadp ofda W(a, B)
It is thus seen that
058" 8°5" %" %5 |
oa? op* oadp dfoa

Finally, we consider the parametric estimation under SELF
and GELF. In order to compute Bayes estimates of «, 5, R(t)

and h(t) under SELF, we takeW(ct, B) =, Wa, )=
wW(e, B)=R(t)and W(a, B)=h(t). Accordingly the

function &, (0!,,3) (see equation (5.4)) becomes

0% % 1{W(a,ﬁ)waﬁ—wawﬂ}
n J

*

wl =

log o

5. (@, p)=5(a, ﬂ)+

5y(a, B)=6(a, ,B)+ log B

and
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1
a

5ier, )= (e, )+ 1‘[1+Gﬂ

5h*t(a’ﬁ):5(a’ﬂ) 7|09 'i t’ 1(14'[;) Ja

under GELF, g > 0 represents overestimation (&'BGZT,

B BG,T

underestimation (@psr, Beor+ Resr:Nesr). To study

~ ~

RBGZT,hBGZT) and g < 0 represents

the behaviour of our proposed estimators we take q = 2 and -
2 to represent the two situations. We compute Bayes

estimators of w(e, 8)=a ™%, Wa, )= W(e, B)=R (1)
and W(a, f)=h"(t), where vi(q, ﬂ)=(Ew(a,,;)({W(0" ﬂ)}fq))fllq

and accordingly the function 5;(a,ﬂ) becomes
5wmz%ﬂ)kmm

5;(ex, )= (e, )~ Tog( )

Snla. )= (e )~ [1-

Sl p) = 5(cr, B) - —log

ﬁ tﬁ_l(l_'_ (tj Ja
ai’ A

The desired Bayes estimators of the parameters o, g, R(t) and
h(t) under SELF are found to be

o[ bt s 09
e
n{a;@f,,.ﬁf>—a~<d(,.,ﬁé.>}1} ©9

= Lo
RBST (t) = { ‘Z‘

and
mz{ 2 exp[n{a;@,@‘»-5(@,@;)}]} 59)

Similarly, the desired Bayes estimators of the unknown
parameters a, £, R(t) and h(t) under GELF are found to be
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-

{a:(az&.,ﬁf)-a(czg,a)}]}2

(5.10)

5o p.)-6a,, ;@)}]} (5.11)

sor (1) = { ‘Z‘ n{&; (0?5* ,,BAOJ )— 5(025”8:)_ )}]} (5.12)
and
- S 2 |
haer () _{ ‘ ‘2‘ { ht( :B ) (0!,5 ﬁa)}]} (5 13)

5.2 Markov Chain Monte Carlo Technique
The conditional posterior distributions of the parameters «
and S are respectively given by

m+'7—1 -up
e

{3 )

1
m B\a
xexp| Y- (1 +1) 1—[1+(%j J dg (5.14)
i=1
IBmw]—l —up © e—ya
I1
(ﬂ| X a) ﬁ« ! Kam—0'+l
m m o
feiiesf
i=1 i=1l l
1
n « V)
xexp| Y (r; +1) 1—(1+(7'J J da (5.15)
i=1l

We apply Metropolis-Hastings (M-H) algorithm [16] under
Gibbs sampler environment, to generate sample from the full
conditional of a and g given by (5.14) and (5.15),
respectively. To simulate Bayes estimator the following
iterative algorithm is proposed.
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Step 1: Start with an initial guess value
W, :(Ocovﬂo)E 0.

Step 2: Seti=1.

Step 3: Generate a candidate point o and g form the
a’ ~N(G17%(¢) and
B ~N(B,17(#)) and a point u from U(0, 1). Then

) a”
a(|+1) — o
a

respective  proposal distributions

with probability x, (", & ® if x, <u
with probabilityl—«, (", a® if x, > u

and
50 _ B with probability x, (8", B )if x, <u
“1BY with probabilityl- x, (57, 87 )if x, > u
Where the respective M-H acceptance probabilities are
Kl(a ,a(')):min ‘ ,1+and
Hlia(-)‘)_(’ﬂ(-) )
(5 )

Kz(ﬂ*,ﬂ(i)):min Hz(ﬂ(i)‘)_(,a(i))'l
Step 4: Seti =i+l

Step 5: Repeating the steps 2-4, N times, where N is a very
large number, to obtain the sample observations

0¥ 0@ . o™ :(a(l’,ﬂ“’), (a(z),ﬂm)“”(a(m,ﬂ(m)

Rapid convergence of the generated sequence is facilitated
by choosing appropriate starting values. Influence of the
initial value is removed by dropping the first M simulated
variates. Then the corresponding selected samples are ¢, g,

» R(t) and h(t), i=M+1,..,
which represent approximate posterior sample based on

SELF and GELF, the Bayes estimates of the unknown
parameters «a, 8, R(t) and h(t) function under SELF are given

by,

N, for sufficiently large N,

Y

(24 = a;
BSMC = N _ M L

~ 1 i

s = ﬂi
PN -M AR

—~ 1 N

Reswe = N—M |=%:R ®)

and
hBSMC = Zh t)

i=M+1
Also, the approximate Bayes estimates for o, £, R(t) and
h(t), under GELF are given by
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Ageme =

=M +1

N -a
-~ 1 )2
Beomc = N—M Zﬂq] ,

i=M+1

-q

~ 1 N 2
Reome = N—M ZR q(t)j
i=M+1

and

~ 1 N " 2
hBGMC = N_M i:MZlhi

q > 0 represents overestimation (g, ., 4,
2 2

mc’ RBGZMC ! hBGZMC )

and g < 0 represents underestimation (& ¢ + Bec e * Racue
1 1 1’

, ﬁBG we)- To study the empirical behaviour of our proposed
estimators we take g = 2 and -2 to represent the two
situations.

5.3 Bayesian Intervals

Credible intervals and HPD intervals are obtained by
following [17] based on samples generated from the full
conditionals of the parametric functions.

Bayesian Credible Intervals (BCI)
0] Order the sample observations generated through
M-H algorithm,

Oy <y S S vy and fiy < By S-S By

(i) Subsequently 100(1—5)% BCI for o and f are
determined as,

Highest Posterior Density (HPD) Intervals

Empirical HPD interval estimation for the unknown
parametric function is undertaken based on [18] algorithm.
(i) Based on the obtained ordered values, we compute

the 100(1—&)% credible intervals with their
respective lengths such that
0 =t gagap = and 87 =gy = Ao
where, | :1,2,...,§(N -M).
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(i) Search for the credible intervals having smallest
length, 1“ =min(d*)and ¥ =min(d/). The

smallest length credible interval is the required
HPD interval for the unknown parameters o and £.

VI. SIMULATION STUDY

Numerical illustrations of the theoretical contributions are
aimed at comparison of proposed Bayes estimates of the
unknown parameters a and S. A random sample of size n
from PGWD with parameters a = 1.1, f =24 and A =5
(known) is generated. Choose m = 10, 20 for n = 20; m = 10,
15, 20, 30 for n = 30 and m = 20, 30, 40, 40 for n = 50.
Progressive Type 1l censored samples are accordingly
extracted under these censoring schemes (see, Table 1). The
associated MLEs are computed using N-R iteration method.
For Bayesian study, we consider the arbitrary values of
under MCMC shows superior performance compared with
the rest of the six estimates. Broadly, MCMC based
estimates have least MSEs and MLEs have highest. With the

Vol. 5(6), Dec 2018, ISSN: 2348-4519

hyper parameters as y = ¢ = 2 and = 4 = 4. MSEs and
Bayes estimates of unknown parameters are derived with
respect to two different loss functions, namely SELF and
GELF using T-K method and MCMC technique under
progressive Type Il censoring scheme. 5000 replications for
progressive Type Il censored samples of size m from a
sample of size n are drawn. In each case, Bayes estimates
with respect to the loss functions SELF and GELF are
computed for distinct combinations of (n,m). Finally, the
computed estimates obtained under different samples are
compared on the basis of their MSEs. MLEs, Bayes
estimates and their respective MSEs for the unknown
parameters a, £, reliability function R(t); - ; and hazard
function h(t); - s are presented for various (n,m) censoring
schemes in Tables 2-5. MLEs compete quite well with the
corresponding Bayes estimates. However, GELF1 estimate

increase in effective sample sizes m, the MSEs of all the
proposed estimates tend to decrease.

Table 1: Progressive Censoring Schemes (CS) used in the simulation study

n m | Censoring Scheme CS
10,0,0,0,0,0,0,0,0,0 CS[1]
10 2,2,2,2,2,0,0,0,0,0 CS[2]
20 0,0,0,0,0,2,2,2,2,2 CS[3]
0,00000,0,0,0,10 CS[4]
20 |0000,0000000000000000 CS[5]
10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 CS[6]
20 2,2,2,2,2,0,000000,0,000,0,0,0,0 C9[7]
0,000000000000002,2,22,2 CS[8]
0,00,0000000000000000,10 CS[9]
30 5,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 CS[10]
- 0,00000000000110000000000,3 CS[11]
1,00,0000000000000000000022 CS[12]
0,00000000000000000000000,5 CS[13]
3 |000000000000000000000000000000 CS[14]
50 20 20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 CS[15]
4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 CS[16]
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00,00000000000000000000000,44,4,44 CS[17]
00,000000000000000000000000000,20 CS[18]
10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 CS[19]

20 2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 CS[20]
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2 CS[21]
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10 CS[22]
00000000000000000000000000000000,00,0,0,

50 CS[23]
0,0000000000000

Table 2: MLEs and Bayes Estimates of Parameter o and their MSEs (in brackets) for various (n, m)

CS Ay Qpgst 22:'eh ) Ape,7 Xsvc Qpc,mc Age,Mc

CS[1] 1.22143 1.25547 1.21862 1.27213 1.12713 1.32614 1.49576

(0.05916) (0.05246) (0.05024) (0.05327) (0.04823) (0.03945) (0.05174)

CS[2] 1.28371 1.30248 1.24369 1.33258 1.13276 1.32485 1.61769

(0.05128) (0.05082) (0.04625) (0.05143) (0.04425) (0.03533) (0.04721)

CSJ3] 1.35746 1.36791 1.28451 1.37257 1.16247 1.50361 1.68653

(0.04626) (0.04716) (0.04201) (0.04825) (0.04136) (0.03082) (0.04243)

CS[4] 1.37961 1.40257 1.32415 1.43250 1.19254 1.09735 1.32587

(0.03725) (0.04128) (0.03624) (0.04252) (0.03625) (0.02764) (0.03976)

CS[5] 1.27136 1.29824 1.24273 1.36964 1.20147 1.17548 1.23461

(0.05243) (0.05106) (0.04128) (0.05296) (0.03647) (0.03102) (0.04127)

CSJ6] 1.21367 1.23746 1.20851 1.25291 1.19364 1.17246 1.23741

(0.04216) (0.04052) (0.03746) (0.04286) (0.03421) (0.03175) (0.03652)

CS[7] 1.23586 1.24285 1.21846 1.26423 1.21073 1.19642 1.26789

(0.04052) (0.03728) (0.03425) (0.04013) (0.03375) (0.03085) (0.03512)

CSJ8] 1.25761 1.26761 1.23871 1.28487 1.22413 1.21536 1.27134

(0.03826) (0.03419) (0.03378) (0.03821) (0.03216) (0.02814) (0.03301)

CS[9] 1.26375 1.29642 1.27645 1.31072 1.23854 1.22743 1.29138

(0.03246) (0.03125) (0.03052) (0.03286) (0.03017) (0.02712) (0.03176)

CS[10] 1.19634 1.22463 1.21423 1.24698 1.19864 1.17246 1.21243

(0.03463) (0.03404) (0.03241) (0.03514) (0.02974) (0.02736) (0.03105)

CS[11] 1.21863 1.24137 1.22761 1.25841 1.20143 1.19365 1.22763

(0.03146) (0.03276) (0.03179) (0.03475) (0.02758) (0.02674) (0.03015)

CS[12] 1.24632 1.26841 1.24694 1.26176 1.22861 1.21761 1.23148

(0.02963) (0.31056) (0.03074) (0.03274) (0.02586) (0.02587) (0.02874)

CS[13] 1.24876 1.27536 1.26854 1.28964 1.23854 1.23894 1.24856

(0.02834) (0.02986) (0.02736) (0.03181) (0.02476) (0.02215) (0.02601)

CS[14] 1.26524 1.28068 1.26524 1.28745 1.23761 1.21842 1.25697

(0.02965) (0.03127) (0.02863) (0.03385) (0.02496) (0.02376) (0.02681)

CS[15] 1.11635 1.12471 1.11094 1.13257 1.11065 1.10581 1.12476

(0.02158) (0.02101) (0.02085) (0.02274) (0.01958) (0.01654) (0.02147)

CS[16] 1.13854 1.12786 1.11875 1.13846 1.11847 1.11257 1.12814
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CS Ay st Xge,1 Ape,T esme Qpe,mc Ag,Mc
(0.02114) (0.02019) (0.01847) (0.02104) (0.01874) (0.01524) (0.02016)

CS[17] 1.14237 1.21854 1.12537 1.14257 1.12436 1.11876 1.13175
(0.01947) (0.01836) (0.01725) (0.01985) (0.01758) (0.01447) (0.01958)

CS[18] 1.14856 1.22746 1.12630 1.14847 1.12846 1.12573 1.13764
(0.01763) (0.01796) (0.01689) (0.01826) (0.01625) (0.01412) (0.01824)

CS[19] 1.10690 1.12476 1.11583 1.13864 1.10584 1.09654 1.12694
(0.01826) (0.01813) (0.01425) (0.02046) (0.01246) (0.01074) (0.01357)

CS[20] 1.11846 1.13846 1.12317 1.14174 1.11584 1.10569 1.12824
(0.01756) (0.01763) (0.01524) (0.01952) (0.01204) (0.00936) (0.01304)

CS[21] 1.12134 1.14261 1.12576 1.14258 1.11179 1.11873 1.12957
(0.01613) (0.01546) (0.01425) (0.01840) (0.01116) (0.00913) (0.01256)

CS[22] 1.12384 1.46810 1.12879 1.14759 1.12753 1.12863 1.13785
(0.01659) (0.01501) (0.01464) (0.01725) (0.01028) (0.00876) (0.01221)

CS[23] 1.12463 1.14865 1.12854 1.15169 1.11463 1.01054 1.13470
(0.01763) (0.01675) (0.01463) (0.01652) (0.01263) (0.01185) (0.01496)

Table 3: MLEs and Bayes Estimates of Parameter $ and their MSEs (in brackets) for various (n, m)
CS ﬂML ﬂBST ﬂBGlT IBBGZT ﬁBSMC ﬁBGlMC ﬁBGZMC
CS[1] 2.11934 2.68053 2.38235 2.79582 2.27841 1.79203 2.47246
(0.07877) (0.07232) (0.06963) (0.07638) (0.07024) (0.06861) (0.07684)
CS[2] 1.66085 1.78284 1.68368 1.82671 1.63468 1.57259 1.86729
(0.08635) (0.08071) (0.07692) (0.08465) (0.07526) (0.07225) (0.08244)
CS[3] 1.52807 1.64672 1.51934 1.76913 1.46927 1.42337 1.54732
(0.09547) (0.09157) (0.08441) (0.09535) (0.08612) (0.081295) (0.08863)
CS[4] 1.34335 1.43507 1.37648 1.62584 1.32667 1.27691 1.59058
(0.11661) (0.09724) (0.09249) (0.10269) (0.09237) (0.08653) (0.09634)
CS[5] 2.10563 2.13674 1.68153 2.62471 1.76584 1.4836 2.37584
(0.06636) (0.06325) (0.05273) (0.06885) (0.05674) (0.04726) (0.06386)
CS[6] 1.58976 1.63258 1.54327 1.67641 1.58245 1.47263 1.63872
(0.05648) (0.05376) (0.04786) (0.05485) (0.05195) (0.04637) (0.05426)
CS[7] 1.38238 1.45763 1.374863 1.55746 1.38254 1.33864 1.48925
(0.06155) (0.05726) (0.05211) (0.05964) (0.05571) (0.05186) (0.05752)
CS[8] 1.30774 1.36852 1.31746 1.43058 1.25631 1.23514 1.33264
(0.06402) (0.06125) (0.05763) (0.06274) (0.05863) (0.05374) (0.05876)
CS[9] 1.19187 1.24662 1.17965 1.27483 1.23854 1.16523 1.27464
(0.06959) (0.06376) (0.05963) (0.06672) (0.06157) (0.05548) (0.06557)
CS[10] 1.47383 1.51328 1.48362 1.56254 1.46852 1.42637 1.53271
(0.06779) (0.06354) (0.05638) (0.06638) (0.05523) (0.05278) (0.05849)
CS11] 1.42562 1.46674 1.43265 1.52137 1.41639 1.37654 1.48365
(0.06942) (0.06614) (0.05854) (0.06824) (0.05857) (0.05625) (0.06217)
CS[12] 1.39675 1.40527 1.34506 1.44583 1.38504 1.32476 1.40587
(0.07334) (0.06942) (0.06352) (0.07168) (0.06425) (0.06118) (0.06785)
CS[13] 1.35258 1.37135 1.29562 1.42637 1.34675 1.26849 1.37692
(0.07732) (0.07421) (0.06786) (0.07652) (0.06962) (0.06569) (0.07153)
S[14] 1.34332 1.38157 1.48367 1.59258 1.38351 1.48236 1.59158
(0.05723) (0.04252) (0.04076) (0.05381) (0.04252) (0.04276) (0.05281)
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CS[15] 1.34336 1.39654 1.32856 1.47364 1.37078 1.28631 1.44257
(0.04660) (0.04352) (0.04063) (0.04581) (0.04126) (0.03765) (0.04695)
CS[16] 1.12456 1.23254 1.19374 1.31594 1.20638 1.16825 1.26769
(0.05176) (0.04624) (0.04317) (0.04776) (0.04652) (0.04214) (0.04725)
CS[17] 1.05199 1.14342 1.12451 1.15694 1.13589 1.10846 1.16385
(0.05713) (0.05248) (0.04682) (0.05520) (0.04812) (0.04563) (0.05162)
CS[18] 1.24438 1.27635 1.23492 1.32869 1.24654 1.21367 1.33587
(0.05905) (0.05561) (0.05168) (0.05832) (0.05321) (0.04752) (0.05695)
CS[19] 1.19187 1.24716 1.18364 1.31857 1.21624 1.14829 1.23761
(0.04959) (0.04321) (0.04158) (0.04732) (0.04527) (0.04185) (0.05119)
CS[20] 1.12456 1.17254 1.13612 1.23673 1.13251 1.12574 1.20458
(0.05574) (0.04755) (0.04472) (0.05325) (0.04876) (0.04691) (0.05475)
CS[21] 1.14554 1.20861 1.16583 1.27812 1.18653 1.15792 1.21691
(0.05876) (0.05456) (0.04773) (0.05753) (0.05124) (0.04967) (0.05723)
CS[22] 1.08622 1.12935 1.10692 1.24236 1.12276 1.10364 1.15743
(0.06314) (0.05873) (0.05472) (0.06192) (0.05381) (0.05036) (0.05868)
CS[23] 1.08627 1.12671 1.10546 1.17365 1.1224 1.09584 1.25761
(0.05589) (0.04725) (0.04365) (0.05172) (0.04436) (0.04063) (0.04764)
Table 4: MLEs and Bayes Estimates of Reliability Function R(t)=; and their MSEs (in brackets) for various (n, m)
CS RML RBST RBGJ RBGZT RBSMC RBGlMC I:QBGZMC
CS[1] 0.42134 0.42768 0.41036 0.43258 0.38562 0.36574 0.39854
(0.03257) (0.03148) (0.02985) (0.03252) (0.02746) (0.02514) (0.02963)
CS[2] 0.42657 0.43156 0.42160 0.43764 0.39584 0.37153 0.41237
(0.03124) (0.03014) (0.02814) (0.03146) (0.02642) (0.02476) (0.02685)
CS[3] 0.43257 0.44581 0.43257 0.44175 0.40127 0.38416 0.42165
(0.02985) (0.02814) (0.02716) (0.02958) (0.02425) (0.02214) (0.02349)
CS[4] 0.44713 0.45213 0.43856 0.44823 0.42138 0.39158 0.43571
(0.02736) (0.02416) (0.02358) (0.02714) (0.02310) (0.02107) (0.02214)
CS[5] 0.43257 0.44861 0.43571 0.46275 0.41573 0.40564 0.43287
(0.02763) (0.02647) (0.02413) (0.02786) (0.02137) (0.01986) (0.02198)
CS[6] 0.41238 0.42865 0.40136 0.43524 0.39584 0.37196 0.40197
(0.02854) (0.02745) (0.02574) (0.02846) (0.02316) (0.02214) (0.02416)
CS[7] 0.41758 0.43168 0.41263 0.44518 0.40698 0.38165 0.41856
(0.02759) (0.02673) (0.02496) (0.02794) (0.02247) (0.02143) (0.02371)
CS[8] 0.42637 0.43856 0.42168 0.44879 0.41693 0.38675 0.42749
(0.02685) (0.02496) (0.02374) (0.02649) (0.02108) (0.02101) (0.02269)
CS[9] 0.43254 0.45138 0.42859 0.45563 0.42691 0.39572 0.43854
(0.02476) (0.02384) (0.02168) (0.02574) (0.01905) (0.01957) (0.02109)
CS[10] 0.41846 0.43527 0.41095 0.44257 0.40967 0.38467 0.41632
(0.02925) (0.02714) (0.02574) (0.02852) (0.02385) (0.02143) (0.02486)
CS[11] 0.42179 0.44861 0.41685 0.45248 0.41257 0.39854 0.42163
(0.02814) (0.02692) (0.02463) (0.02714) (0.02109) (0.01985) (0.02376)
CS[12] 0.42864 0.45138 0.42861 0.44263 0.42864 0.40528 0.42286
(0.02746) (0.02486) (0.02384) (0.02574) (0.02285) (0.01865) (0.02106)
CS[13] 0.43254 0.45894 0.43158 0.42965 0.43852 0.42857 0.42746
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(0.02549) (0.02372) (0.02269) (0.02413) (0.02164) (0.01764) (0.02085)
CS[14] 0.42842 0.43291 0.41697 0.44216 0.40163 0.38463 0.42136
(0.02769) (0.02651) (0.02413) (0.02714) (0.02374) (0.02174) (0.02485)
CS[15] 0.38473 0.41583 0.40254 0.43864 0.39854 0.37416 0.41857
(0.02184) (0.01985) (0.01724) (0.02196) (0.01658) (0.01413) (0.01825)
CS[16] 0.39571 0.42563 0.41132 0.44213 0.40864 0.38435 0.43125
(0.02015) (0.01826) (0.01695) (0.02045) (0.01523) (0.01317) (0.01726)
CS[17] 0.40367 0.43852 0.41867 0.44969 0.41856 0.41096 0.43852
(0.01846) (0.01769) (0.01618) (0.01958) (0.01426) (0.01395) (0.01625)
CS[18] 0.42138 0.44864 0.42857 0.45125 0.42857 0.43842 0.44246
(0.01763) (0.01689) (0.01526) (0.01846) (0.01475) (0.01284) (0.01592)
CS[19] 0.39746 0.41238 0.36254 0.43257 0.35864 0.33746 0.38254
(0.02219) (0.02075) (0.01856) (0.02274) (0.01625) (0.01426) (0.01863)
CS[20] 0.41238 0.43854 0.38461 0.44163 0.36842 0.34851 0.39584
(0.02136) (0.01863) (0.01746) (0.02141) (0.01541) (0.01316) (0.01726)
CS[21] 0.42864 0.45231 0.39254 0.44673 0.38263 0.35864 0.41263
(0.02015) (0.01765) (0.01674) (0.02014) (0.01598) (0.01256) (0.01523)
CS[22] 0.43068 0.45769 0.41357 0.46258 0.41368 0.37851 0.42854
(0.01987) (0.01703) (0.01536) (0.01856) (0.01466) (0.01196) (0.01486)
CS[23] 0.42863 0.43257 0.41267 0.44257 0.41213 0.38462 0.42137
(0.02126) (0.02114) (0.02019) (0.02286) (0.01981) (0.01874) (0.02087)

Table 5: MLEs and Bayes Estimates of Hazard rate Function h(t).=s and their MSEs (in brackets) for various (n, m)

~n

~

~

~

~

CS hy. hBST hBGlT hBGZT hBSMC haemc hBGZMC
CS[1] 0.26432 0.31357 0.27363 0.38648 0.28514 0.24675 0.34527
(0.00989) (0.00862) (0.00716) (0.01052) (0.00732) (0.00628) (0.00814)
CS[2] 0.17108 0.23673 0.21563 0.26574 0.25675 0.19356 0.29486
(0.01266) (0.01025) (0.00842) (0.01264) (0.00868) (0.00746) (0.00953)
CS[3] 0.13966 0.18546 0.17472 0.24752 0.18576 0.16782 0.26386
(0.01457) (0.01227) (0.00972) (0.01331) (0.00934) (0.00871) (0.01032)
CS[4] 0.12545 0.21778 0.21324 0.25586 0.15337 0.1356 0.22458
(0.01764) (0.01322) (0.01016) (0.01563) (0.01064) (0.00946) (0.01243)
CS[5] 0.28779 0.32531 0.27654 0.35763 0.28457 0.23536 0.31764
(0.00763) (0.00645) (0.00606) (0.00735) (0.00627) (0.00573) (0.00694)
CS[6] 0.23863 0.28736 0.24826 0.33657 0.26657 0.22636 0.27383
(0.01165) (0.00943) (0.00823) (0.01074) (0.00854) (0.00676) (0.00975)
CS[7] 0.17959 0.19357 0.17567 0.23568 0.18564 0.14347 0.21471
(0.01325) (0.01157) (0.00956) (0.01287) (0.00924) (0.00835) (0.01257)
CS[8] 0.15619 0.16334 0.14348 0.19354 0.13642 0.12452 0.16258
(0.01643) (0.01462) (0.01175) (0.01635) (0.01134) (0.00986) (0.01376)
C9[9] 0.11595 0.12867 0.11467 0.15538 0.11368 0.09328 0.14748
(0.01937) (0.01648) (0.01376) (0.01821) (0.01486) (0.01147) (0.01568)
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CS[10] 0.20681 0.25753 0.22718 0.32358 0.23743 0.19245 0.26574
(0.01245) (0.01076) (0.00895) (0.01183) (0.00972) (0.00893) (0.01047)
CS[11] 0.19253 0.23643 0.18366 0.27563 0.21367 0.15937 0.23258
(0.01436) (0.01252) (0.01027) (0.01357) (0.01168) (0.00926) (0.01249)
CS[12] 0.17964 0.18537 0.15749 0.24376 0.16543 0.13644 0.21547
(0.01725) (0.01534) (0.01345) (0.01667) (0.01341) (0.01173) (0.01463)
CS[13] 0.16859 0.17684 0.12856 0.19534 0.14163 0.12746 0.16921
(0.01904) (0.01678) (0.01470) (0.01843) (0.01513) (0.01367) (0.01768)
CS[14] 0.16753 0.18645 0.12836 0.24548 0.17463 0.10645 0.21768
(0.01467) (0.01257) (0.01064) (0.01343) (0.01146) (0.00976) (0.01268)
CS[15] 0.23868 0.26943 0.22672 0.28735 0.22415 0.18657 0.24758
(0.01247) (0.01156) (0.00926) (0.01286) (0.01076) (0.00874) (0.01175)
CS[16] 0.20659 0.24675 0.19575 0.25968 0.18734 0.16494 0.22849
(0.01452) (0.01273) (0.01046) (0.01369) (0.01164) (0.00977) (0.01293)
CS[17] 0.17327 0.21834 0.15941 0.23764 0.16943 0.13825 0.18294
(0.01647) (0.01418) (0.01264) (0.01484) (0.01332) (0.01167) (0.01387)
CS[18] 0.14249 0.19047 0.12764 0.20342 0.13941 0.11532 0.17596
(0.01769) (0.01579) (0.01483) (0.01631) (0.01463) (0.01391) (0.01485)
CS[19] 0.20774 0.25861 0.22652 0.28632 0.21892 0.17684 0.23582
(0.01185) (0.00954) (0.00793) (0.01084) (0.00863) (0.00776) (0.00985)
CS[20] 0.18974 0.22435 0.20365 0.24745 0.19675 0.14483 0.21368
(0.01365) (0.01025) (0.00827) (0.01236) (0.00964) (0.00885) (0.01147)
CS[21] 0.17867 0.18674 0.17541 0.21547 0.15264 0.12879 0.18726
(0.01478) (0.01291) (0.01149) (0.01381) (0.01205) (0.01176) (0.01489)
CS[22] 0.15305 0.15879 0.13943 0.18964 0.13761 0.11975 0.16992
(0.01573) (0.01387) (0.01276) (0.01478) (0.01316) (0.01234) (0.01407)
CS[23] 0.18929 0.23346 0.19745 0.27523 0.20479 0.14917 0.24751
(0.01468) (0.01207) (0.01096) (0.01357) (0.01153) (0.00964) (0.01253)
VIl. REAL DATA STUDY
The following data from [19] report repair times (in hours) for 46 failures of an airborne communications receiver.
Table 6: Real data on repair times (in hours) for 46 failures
0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7
0.7 0.8 0.8 1.0 1.0 1.0 1.0 11 1.3 15
15 15 15 2.0 2.0 2.2 2.5 2.7 3.0 3.0
3.3 3.3 4.0 4.0 45 4.7 5.0 5.4 54 7.0
7.5 8.8 9.0 10.3 22.0 24.5

Fig. 4 shows an empirical fit to PGWD. Two alternative popular lifetime models, namely Weibull and gamma are also fitted to
the selected data sets.
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Fig. 4: Fitted Distribution Functions for Real data

Extracted Type progressive Il censored samples extracted
from real data of Table 6 are presented in Table 7. MLEs and
Bayes estimates of unknown parameters o, £, reliability and
hazard rate functions with two loss functions (SELF and
GELF) under T-K and MCMC methods are given in the
Tables 8-11. The ACI, Boot-p, Boot-t Cls, BCI and HPD for
the parametric estimates are presented in the Tables 12 and
13. GELF under MCMC is found to be the best estimate in
terms of minimum MSEs, for all the parametric functions. It
is observed that Boot-p intervals are mostly shorter as

compared to Boot-t intervals for all the four parametric
functions. The ACI s compete quite well with Boot-t
intervals. However, these two interval estimates are
incomparable across all censored samples in a similar way.
As for some instances ACls have shorter average length and
in some cases, the opposite is true. HPD intervals are superior
to all other interval estimates as they exhibit shortest average
length. The average length of all confidence intervals tends to
decrease with the increase in effective sample sizes m

Table 7: Progressive Censoring Schemes (C-S) for Real Data

n m Censoring Scheme C-S
30 12222200000000000000000722200000 C-S[1]
3 |0000000000220000000000007222000000000 C-S[2]
40 |2,000000000000000000000022000000000000,0, C-S[3]
46
0,0
46 1|0000000000000000000000000000000000000,0, C-S[4]
0,0,0,00,0,0,0,
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Table 8: Estimated Values of Parameter o for different Progressive Type 11 Censoring Scheme for Real data

T-K method MCMC technique
s MLEs GELF GELF
SELF SELF
GELF1 GELF2 GELF1 GELF2
C-9[1] 2.8547 2.8124 2.4512 2.8645 2.8227 2.4654 2.8245
C-9[2] 2.0353 2.0125 1.8954 2.1214 2.0225 1.8854 2.1451
C-S[3] 1.8584 1.8458 1.8102 1.9754 1.8624 1.8265 2.1210
C-S[4] 1.4993 1.4954 1.4521 1.5214 1.4921 1.4754 1.5621
*GELF1- underestimation and GELF2- overestimation
Table 9: Estimated Values of Parameter S for different Progressive Type Il Censoring Scheme for Real data
T-K method MCMC technique
CS MLEs SELF GELF SELF GELF
GELF1 GELF2 GELF1 GELF2
C-S[1] 1.6761 1.6645 1.5954 1.6954 1.6595 1.5854 1.6901
C-S[2] 1.3742 1.3721 1.3452 1.4212 1.3820 1.3485 1.4385
C-S[3] 1.2329 1.2254 1.1954 1.2513 1.2301 1.2041 1.2425
C-S[4] 1.0918 1.0911 1.0754 1.1125 1.1025 1.0821 1.1114

*GELF1- underestimation and GELF2- overestimation

Table 10: Estimated Values of Reliability Function R(t) for different Progressive Type 1l Censoring Scheme for Real data

cs T-K method MCMC technique
GELF GELF
MLEs SELF GELF1 GELF2 SELF GELF1 GELF2
C-9[1] 0.4345 0.4340 0.4012 0.4521 0.4315 0.4125 0.4496
C-S[2] 0.3332 0.3312 0.3102 0.3485 0.3294 0.3162 0.3456
C-S[3] 0.3213 0.3200 0.3025 0.3314 0.3301 0.3056 0.3312
C-S[4] 0.2462 0.2412 0.2354 0.2612 0.2545 0.2317 0.2598

*GELF1- underestimation and GELF2- overestimation

Table 11: Estimated Values of Hazard rate Function h(t) for different Progressive Type Il Censoring Scheme for Real data

T-K method MCMC technique
CS MLEs GELF GELF
SELF SELF

GELF1 GELF2 GELF1 GELF2
C-9[1] 0.1772 0.1759 0.1412 0.1954 0.1759 0.1454 0.2088
C-S[2] 0.2208 0.2189 0.2014 0.2419 0.2189 0.2045 0.2432
C-9[3] 0.2141 0.2230 0.2031 0.2436 0.2230 0.1987 0.2387
C-S[4] 0.2557 0.2542 0.2345 0.2781 0.2542 0.2401 0.2710

*GELF1- underestimation and GELF2- overestimation
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CS ACI Boot-p Boot-t BCI HPD
C-S[1] (1.8485, (1.8945, (1.8012, (2.165, (2.254,
3.8609) 3.5422) 4.0126) 3.3421) 3.3025)
C-S[2] (1.3951, (1.4215, (1.3821, (1.5421, (1.8242,
2.6755) 2.452) 2.9085) 2.3122) 2.2125)
(1.3053, (1.3215, (1.2941, (1.2205,
C-S[3] 2.4114) 2.2651) 2.5412) 1.4325) (12154, 1.5521)
C-S[4] (1.0949, (1.1295, (1.1121, (1.2402, (1.3002,
1.9036) 1.7854) 1.7912) 1.6942) 1.6442)
Table 13: Confidence Intervals for Parameter g for Real data
CS ACI Boot-p Boot-t BCI HPD
C-S[1] (1.1198, (1.2001, (1.1021, (1.3121, (1.4212,
2.2325) 2.0252) 2.2426) 1.9854) 1.8540)
Cc-S[2] (0.9429, (0.9625, (0.9541, (0.9985, (1.0125,
1.8055) 1.7855) 1.8124) 1.6592) 1.6503)
C-S[3] (0.8580, (0.8812, (0.9021, (0.9521, (0.9851,
1.6078) 1.5954) 1.6950) 1.5251) 1.4850)
C-S[4] (0.7784, (0.7541, (0.7654, (0.8521, (0.9125,
1.4051) 1.354) 1.4211) 1.2540) 1.2425)

VIIl. CONCLUDING REMARKS

In this paper, classical and Bayesian estimators of the
unknown parameters, reliability and hazard functions of
PGWD assuming progressive Type Il censoring scheme
are studied. It is observed from Tables 2-5 that Bayesian
procedure provides more precise parametric estimates as
measured by MSEs in comparison to the classical
estimators. In the Bayes case, the estimators are obtained
under SELF and GELF assuming two independent gamma
priors by using T-K and MCMC approaches. Theoretical
results are illustrated for a simulated data set. Real data
based study reinforces the simulation study findings.
Proposed estimates are then compared numerically and it
is observed that the Bayes estimates under MCMC
approach provide highest precision results which are
followed by T-K based approximations. It is seen that as
the effective sample sizes increase, MSEs of estimates
based on progressive Type Il censored data decrease for all
the considered censoring scenarios. Thus, improved
estimates are obtained when sample size is appreciable.
The discussed methodology provides an alternative PGWD
model which exhibits flexible hazard rates for data
analysis under life testing situations and can be
recommended for use in medical, engineering and areas

© 2018, IISRMSS All Rights Reserved

beyond where life-testing experiments are regularly
conducted under time and cost constraints.
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