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Abstract -Classical and Bayesian estimation of the unknown parametric functions for power generalized Weibull distribution 

under progressive Type II censoring scheme are undertaken in the present paper. Newton Raphson iterative procedure is used 

for computation of maximum likelihood estimates which are not obtained in closed form. Asymptotic and bootstrap confidence 

intervals are also obtained. Squared error and general entropy loss functions are considered for Bayes estimation under the 

assumption of two independent gamma priors. The approximate Bayes estimates are obtained using Tierney-Kadane 

approximation. Alternatively, Metropolis Hastings algorithm is run under Gibbs sampler environment to generate Bayes 

estimates. Computed Bayes estimates are compared with the classical maximum likelihood estimates based a simulated data 

and a real data set.  
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I. INTRODUCTION 

 

Censored data is a common feature in life-testing and 

survival studies. Type I (time) censoring involves 

termination of a life-test experiment at a prescribed time T, 

Type II (failure) censoring is the one where the life testing 

experiment will be terminated when a prespecified number 

of failures r, r ≤ n is observed and hybrid censoring is a 

mixture of these two schemes such that the experiment is 

terminated at min (T, r), whichever occurs earlier. Review of 

work on the various lifetime distributions carried out under 

these two censorings schemes is summarized in [1] . A 

serious drawback of these schemes is that other experimental 

units cannot be removed from the experiment before the 

final termination point of the experiment, which could be 

cost and time intensive. [2] Introduced a more general 

censoring scheme known as progressive Type II censoring in 

which intermittent removal of the experimental units is 

allowed during the experiment. The progressive Type II 

censoring scheme is briefly described as follows: Out of n 

life-test units, randomly selected 1r  out of n-1 surviving 

units are withdrawn from the life-test at the first observed 

failure time, 2r  out of 21  rn  surviving units are 

withdrawn from the experiment at the time of occurrence of 

the second failure. Continuing thus, at the time of the final 

m
th

 (1 ≤ m ≤ n) failure, the remaining surviving units 
mr  

with 
121 ...  mm rrrmnr  are withdrawn from the 

experiment. The observed sample is referred to as 

progressive Type II censored sample of size m. This scheme 

maintains optimum balance between experimental time and 

effective sample size used in the trials. Type II censoring 

scheme is a particular case of this scheme with 

mnrrrr mm   ,0..... 121
 and the complete 

sampling corresponds to the case when 

0..... 121   mm rrrr . [3] provide the likelihood 

function under progressive Type II right censored sample 

mxxx ,...,, 21   as under 

 ir

i

m

i

i xFxfCxf )](1[)()(
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where, )...2)(1( 211  rrnrnnC

)1.......( 11   mrrn m  is constant. 

The power generalized Weibull distribution (PGWD) is an 

extension of the Weibull distribution which was first 

proposed by [4] as a lifetime distribution to accommodate 

non-monotone hazard rates in addition to constant and 
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monotone hazard pattern. Goodness of fit [5] and an 

application to cancer data [6] for PGWD have already been 

discussed in literature. More recently [7] have undertaken 

the Bayesian analysis of PGWD under Type II censoring.  

 

Any estimation procedure involves loss due to estimation 

as invariably some gap remains between the true value and 

the estimator. A good estimator is characterized by the 

least mean squared errors (MSEs). Squared Error Loss 

Function (SELF) is symmetrical and associates equal 

importance to the losses due to overestimation and 

underestimation of equal magnitude. General Entropy Loss 

Function (GELF) given by [8] which is asymmetric and 

useful for the situations where it is worse to underestimate 

(or overestimate) the potentiality of an event than to 

overestimate (underestimate) the unknown parameters. 

Tierney and Kadane (T-K) method [9] and Markov Chain 

Monte Carlo (MCMC) technique are suitable for giving 

fairly approximate solution to complex posterior 

distribution functions. MCMC procedure is adaptable and 

compliant for the purpose of data generation and 

subsequent parameter estimation (see, [10] and [11] for 

instance). 

 

The rest of this paper is organized as follows. The maximum 

likelihood estimators of the parameters are presented in 

Section 2. Section 3 is devoted to determination of the 

interval estimation for the unknown parametric function. 

Bayes estimation and construction of credible intervals using 

the T-K and MCMC techniques are undertaken in Section 4. 

Numerical examples are presented in Section 5. A real data 

set based analysis is presented in Section 6 to illustrate the 

methods of inference developed in the paper. Finally, 

concluding remarks are made in Section 7. 

 
II. THE POWER GENERALIZED WEIBULL 

DISTRIBUTION 

 

A random variable X follows PGWD with shape parameters 

0,0    and scale parameter 0  , if its 

probability density function (pdf) is given by 
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 (2.1) 

λ is the scale parameter while shape parameters are α and β 

. Fig. 1 shows the plot of PGWD(α, β, λ) for various values 

of α when β = 3 is fixed. It is seen that as α is increased the 

density curve flattens out and spreads over wider interval 

exhibiting larger variance. 

 

 

Fig. 1: pdf of the PGWD (α, β) for β = 3. 

2.1 Some Distributional Properties 
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By using the substitution














t
y , equation (2.2) reduces 

to (2.3) as under, 
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Which converges for , thus implying a finite expected 

lifetime for PGWD.  

 

Median Time to System Failure (Me) 

Since mean time to system failure does not assume closed 

form for PGWD, we therefore consider the median time to 

system failure (MTSF) given by 

   


/1

12log1  MTSFMe          (2.4) 

 

Mode (Mo) 

Mode of PGWD is the solution of the following non-linear 

equation 
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Table 1: Mean, Median and Mode of PGWD for different 

 values of α and β 

α  1 1 1 2 2 2 3 3 3 

β  2 2.5 3 2 2.5 3 2 2.5 3 

M 1.7

72 

1.7

75 

1.7

86 

3.2

72 

2.8

59 

2.6

38 

5.5

61 

4.2

79 

3.6

48 

Me 1.6 1.7 1.7 2.7 2.5 2.4 3.9 3.4 3.1
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65 27 7 33 67 63 26 31 36 

Mo 0.8

63 

1.1

08 

1.2

72 

1.1

27 

1.3

89 

1.5

48 

1.2

87 

1.5

59 

1.7

14 

 

The numerical values of mean, median and mode are given 

in Table 1 and it is observed that Mode < Median < Mean. 

Thus from Table 1 and Figure 1, PGWD is seen to be a 

positively skewed distribution. 

 

2.2 Reliability Characteristics 

Reliability function and failure rate function of PGWD are 

respectively given by (2.6) and (2.7).  
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Fig. 2: R(t) of the PGWD (α, β) for β=3.      

 
Fig. 3: h(t) of the PGWD (α, β) for β=3 

 

III. MAXIMUM LIKELIHOOD ESTIMATION 

 

Suppose that nmmnmnm XXX ::::2::1 ,...,,  is a progressive 

Type II censored sample of size m from a sample of size n 

taken from (2.1) by removing ir  random units, at each 

respective failure i for i = 1, 2,…, m, for the test. The 

likelihood function based on the progressive Type II 

censored sample is given by 

)(),...,,( ::
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Now, the log likelihood function is given by, 
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MLE of α is obtained as solution of the first partial 

derivatives of (3.2) with respect to α which is given as, 
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MLE of β is provided by the solution of the first partial 

derivatives of equation (3.2) with respect to β given by, 
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(3.3) and (3.4) cannot be solved analytically. Therefore, we 

use Newton Raphson (N-R) iteration method to obtain ̂  

and ̂ . 

Remark 1: MLEs of the reliability and hazard rate, at a 

given time t are given respectively by 

0;11exp)(
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IV. INTERVAL ESTIMATIONS 

 

The exact distribution of Maximum Likelihood Estimates 

(MLE) for the unknown parameters α and β cannot be 

obtained explicitly. Therefore, we evaluate Asymptotic 

Confidence Interval (ACI) and Bootstrap Confidence 

Intervals (BCI) for α and β in the following subsections. 

 

4.1 Asymptotic Confidence intervals 

The asymptotic variances and covariance of the MLEs for 

the unknown parameters α and β are given by the elements 

of Fisher’s information matrix. The large sample approach is 

to assume that the MLEs (  ˆ,ˆ ) are approximately bivariate 

normal with mean (α, β) and covariance matrix I(ϕ), where 

I(ϕ) is the inverse of the observed information matrix 

defined as 
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  ACI are given by 
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2/  Z  

where, )ˆvar(  and )ˆvar(  are the elements on the main 

diagonal of the covariance matrix   ˆ,ˆ
0I  and 2/Z  is the 

percentile of the standard normal distribution with right-tail 

probability 
2

 . 

In order to find the approximate estimates of the variance of 
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and )(ˆ th delta method (see [12], [13] ) is chosen. 
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 )(th  are the first 

derivatives of the R(t) and h(t) with respect to the parameters 

α and β, respectively. The approximate asymptotic variances 

of )(ˆ tR  and )(ˆ th  are given respectively by 

 
  ˆ,ˆ101))(ˆ(ˆ GIGtRarV T and  

  ˆ,ˆ202))(ˆ(ˆ GIGtharV T

where 0I  is given by (3.1) and 
T

lG  is the transpose of lG , l 

= 1, 2. These results yield the approximate confidence 

intervals for R(t) and h(t) respectively as 

))(ˆvar()(ˆ
2/ tRZtR  and  ))(ˆvar()(ˆ

2/ thZth   

 

4.2 Bootstrap confidence intervals 

Bootstrap is a computationally intensive method based on 

the concept of resampling from an observed data set which 

are applicable without theoretical assumption of normality 

([14], [15]). Computational steps for estimation of 

confidence intervals of the unknown quantities are presented 

as under, 

 

Boot-p Confidence Interval Algorithm  

1. Generate a bootstrap sample 
**

2
*
1 ,......,, mXXX  using 

mXXX ,.......,, 21 and compute the estimate *̂ of the 

parameter θ (in our case, θ could be α or β) using the 

bootstrap sample. 

2. Repeat step 1, N  times. 

3. Suppose that )ˆ()(ˆ *
1 xPxF    is the cumulative 

distribution function of *̂ . Then, define )(ˆ)(ˆ 1
1 xFxpBoot


   

for a given x. The approximate 100(1-  )% confidence 

interval for θ is given by
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Boot-t Confidence Interval Algorithm 

1. Generate the sample 
mXXX ,.......,, 21

 from equation 

(2.1) and compute the estimate of the unknown parametric 

function ̂ . 

2. Draw a bootstrap sample **

2

*

1 ,......,, mXXX  using ̂ . 

Then compute the estimate *̂  and  *ˆˆ V  and compute the 

*T  statistics, 

 *

*
*

ˆˆ

ˆˆ





V
T


  

3. Repeat step 2, N  times. 

4. Let )()(ˆ *

2 xTPxF   be cumulative distribution 

function of *T  Define   )(ˆˆˆˆ)(ˆ 1

2

* xFVxtBoot



    for 

a given x. The approximate 100(1-  )% confidence 

interval for θ is given by, 
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V. BAYESIAN ESTIMATION 

 

Gamma distribution can accommodate variety of shapes 

depending upon parameter values. This flexibility makes 

them suitable candidate for priors. We consider two 

independent gamma priors for α and β as gamma (γ, σ) and 

gamma (µ, η) respectively, as under 
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The joint prior density is thus given by 
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Based on the likelihood function (4.1) of the observed 

sample and the joint prior (5.1), the joint posterior density of 

the unknown parameters α and β given the data is obtained 

as (5.2) 
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Since ),( x  is analytically intractable, therefore T-K 

method is used to obtain estimates. 

 

5.1 Tierney and Kadane Approximation 

T-K method approximates posterior expectation of a 

parametric function ),( w  that is expressible as a ratio 

of two integrals. Let 
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Here ),( xl   denotes the log-likelihood and 

),(log),(  g  such that g(α,β) represents the 

joint prior distribution. An application of T-K approximation 

suggests that equation (5.3) is given as, 
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inverse Hessians of   ,  and   ,*
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Taking derivatives, 



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                               Vol. 5(6), Dec 2018, ISSN: 2348-4519 

  © 2018, IJSRMSS All Rights Reserved                                                                                                                                    367 
































 m

i

ixm

1
2

1log
1)1(











 













































 










i
m

i

i
i

xx
r 1log1)1(

1
/1

1
2

 

and 










 m

i

ixm
m

1

)log()log(
)1(










 
























































m

i

iii xxx

1

1

1
1

1log




 

1
1

1

1log)1(
1











































 




ii

m

i

i
i

xxx
r  

Likewise, the corresponding second-order derivatives are 

obtained as 
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In order to compute 
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w , we first compute the following 

expressions: 

),(

*







 

wn

w










 

),(

*







 

wn

w









  

 







 










2

2

2

2

2

*2

),(

)(),(1











 

w

www

n

 

  









 










2

2

2

2

2

*2

),(

)(),(1











 

w

www

n
 

 







 










2

2*2

),(

),(1











 

w

wwww

n
 

It is thus seen that 
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Finally, we consider the parametric estimation under SELF 

and GELF. In order to compute Bayes estimates of α, β, R(t) 

and h(t) under SELF, we take    ,w ,    ,w , 

  )(, tRw  and   )(, thw  . Accordingly the 

function   ,*

w  (see equation (5.4)) becomes 
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The desired Bayes estimators of the parameters α, β, R(t) and 

h(t) under SELF are found to be 
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Similarly, the desired Bayes estimators of the unknown 

parameters α, β, R(t) and h(t) under GELF are found to be 
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5.2 Markov Chain Monte Carlo Technique 

The conditional posterior distributions of the parameters α 

and β are respectively given by 
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We apply Metropolis-Hastings (M-H) algorithm [16] under 

Gibbs sampler environment, to generate sample from the full 

conditional of α and β given by (5.14) and (5.15), 

respectively. To simulate Bayes estimator the following 

iterative algorithm is proposed. 
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Step 1: Start with an initial guess value 

  )1,0(, 000   . 

Step 2: Set i = 1. 

Step 3: Generate a candidate point *  and *  form the 

respective proposal distributions ))ˆ(,ˆ(~ 1*  IN  and 

))ˆ(,ˆ(~ 1*  IN  and a point u from U(0, 1). Then 
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Where the respective M-H acceptance probabilities are 

 
 
  
















 1,

,

,
min,

)()(

1

)(*

1)(*

1 ii

i

i

x

x




 and 

 
 
  
















 1,

,

,
min,

)()(

2

)(*

2)(*

2 ii

i

i

x

x




  

Step 4: Set i = i+1 

Step 5: Repeating the steps 2-4, N times, where N is a very 

large number, to obtain the sample observations 

 ,,,...,, )1()1()()2()1(  N    )()()2()2( ,,...,, NN   

Rapid convergence of the generated sequence is facilitated 

by choosing appropriate starting values. Influence of the 

initial value is removed by dropping the first M simulated 

variates. Then the corresponding selected samples are 
i , 

i

, )(tRi
 and )(thi

, i = M +1,…, N, for sufficiently large N, 

which represent approximate posterior sample based on 

SELF and GELF, the Bayes estimates of the unknown 

parameters α, β, R(t) and h(t) function under SELF are given 

by, 
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Also, the approximate Bayes estimates for α, β, R(t) and 

h(t), under GELF are given by 
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q > 0 represents overestimation (
MCBG2

~ ,
MCBG2

~
 ,

MCBGR
2

~ ,
MCBGh

2

~ ) 

and q < 0 represents underestimation (
MCBG1

~ ,
MCBG1

~
 ,

MCBGR
1

~

,
MCBGh

1

~ ). To study the empirical behaviour of our proposed 

estimators we take q = 2 and -2 to represent the two 

situations. 

 

5.3 Bayesian Intervals 

Credible intervals and HPD intervals are obtained by 

following [17] based on samples generated from the full 

conditionals of the parametric functions. 

 

Bayesian Credible Intervals (BCI)  

(i)  Order the sample observations generated through 

M-H algorithm, 

 )()2()1( ... MN   and  )()2()1( ... MN   

(ii)  Subsequently  %1100   BCI for α and β are 

determined as, 
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Highest Posterior Density (HPD) Intervals 

Empirical HPD interval estimation for the unknown 

parametric function is undertaken based on [18] algorithm. 

(i) Based on the obtained ordered values, we compute 

the )%1(100   credible intervals with their 

respective lengths such that 

 )()])()1[(( lMNlld  

   and )()])()1[(( lMNlld  

    

      where, )(...,,2,1 MNl   .
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(ii) Search for the credible intervals having smallest 

length, )min( 
ldl  and )min( 

ldl  . The 

smallest length credible interval is the required 

HPD interval for the unknown parameters α and β. 

 

VI. SIMULATION STUDY 

 

Numerical illustrations of the theoretical contributions are 

aimed at comparison of proposed Bayes estimates of the 

unknown parameters α and β. A random sample of size n 

from PGWD with parameters α = 1.1, β = 2.4 and λ = 5 

(known) is generated. Choose m = 10, 20 for n = 20; m = 10, 

15, 20, 30 for n = 30 and m = 20, 30, 40, 40 for n = 50. 

Progressive Type II censored samples are accordingly 

extracted under these censoring schemes (see, Table 1). The 

associated MLEs are computed using N-R iteration method. 

For Bayesian study, we consider the arbitrary values of 

hyper parameters as γ = σ = 2 and η = µ = 4. MSEs and 

Bayes estimates of unknown parameters are derived with 

respect to two different loss functions, namely SELF and 

GELF using T-K method and MCMC technique under 

progressive Type II censoring scheme. 5000 replications for 

progressive Type II censored samples of size m from a 

sample of size n are drawn. In each case,  Bayes estimates 

with respect to the loss functions SELF and GELF are 

computed for distinct combinations of (n,m). Finally, the 

computed estimates obtained under different samples are 

compared on the basis of their MSEs. MLEs, Bayes 

estimates and their respective MSEs for the unknown 

parameters α, β, reliability function R(t)t = 7 and hazard 

function h(t)t = 5 are presented for various (n,m) censoring 

schemes in Tables 2-5. MLEs compete quite well with the 

corresponding Bayes estimates. However, GELF1 estimate

under MCMC shows superior performance compared with 

the rest of the six estimates. Broadly, MCMC based 

estimates have least MSEs and MLEs have highest. With the 

increase in effective sample sizes m, the MSEs of all the 

proposed estimates tend to decrease. 

 

  

 

Table 1: Progressive Censoring Schemes (CS) used in the simulation study 

n m Censoring Scheme CS
 

20 

10 

10, 0, 0, 0, 0, 0, 0, 0, 0, 0 

2, 2, 2, 2, 2, 0, 0, 0, 0, 0 

0, 0, 0, 0, 0, 2, 2, 2, 2, 2 

0, 0, 0, 0, 0, 0, 0, 0, 0, 10 

CS[1] 

CS[2] 

CS[3] 

CS[4] 

20 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 CS[5] 

30 

20 

10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 10 

CS[6] 

CS[7] 

CS[8] 

CS[9] 

25 

5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3 

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5 

CS[10] 

CS[11] 

CS[12] 

CS[13] 

30 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 CS[14] 

50 30 
20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

CS[15] 

CS[16] 
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20 

CS[17] 

CS[18] 

40 

10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,2,2 

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10 

CS[19] 

CS[20] 

CS[21] 

CS[22] 

50 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 
CS[23] 

 

 

 

 

Table 2: MLEs and Bayes Estimates of Parameter α and their MSEs (in brackets) for various (n, m) 

CS 
ML̂  BST~  TBG1

~  TBG2

~  
BSMC~  MCBG1

~  MCBG2

~  

CS[1] 

 

CS[2] 

 

CS[3] 

 

CS[4] 

 

1.22143 

(0.05916) 

1.28371 

(0.05128) 

1.35746 

(0.04626) 

1.37961 

(0.03725) 

1.25547 

(0.05246) 

1.30248 

(0.05082) 

1.36791 

(0.04716) 

1.40257 

(0.04128) 

1.21862 

(0.05024) 

1.24369 

(0.04625) 

1.28451 

(0.04201) 

1.32415 

(0.03624) 

1.27213 

(0.05327) 

1.33258 

(0.05143) 

1.37257 

(0.04825) 

1.43250 

(0.04252) 

1.12713 

(0.04823) 

1.13276 

(0.04425) 

1.16247 

(0.04136) 

1.19254 

(0.03625) 

1.32614 

(0.03945) 

1.32485 

(0.03533) 

1.50361 

(0.03082) 

1.09735 

(0.02764) 

1.49576 

(0.05174) 

1.61769 

(0.04721) 

1.68653 

(0.04243) 

1.32587 

(0.03976) 

CS[5] 1.27136 

(0.05243) 

1.29824 

(0.05106) 

1.24273 

(0.04128) 

1.36964 

(0.05296) 

1.20147 

(0.03647) 

1.17548 

(0.03102) 

1.23461 

(0.04127) 

CS[6] 

 

CS[7] 

 

CS[8] 

 

CS[9] 

1.21367 

(0.04216) 

1.23586 

(0.04052) 

1.25761 

(0.03826) 

1.26375 

(0.03246) 

1.23746 

(0.04052) 

1.24285 

(0.03728) 

1.26761 

(0.03419) 

1.29642 

(0.03125) 

1.20851 

(0.03746) 

1.21846 

(0.03425) 

1.23871 

(0.03378) 

1.27645 

(0.03052) 

1.25291 

(0.04286) 

1.26423 

(0.04013) 

1.28487 

(0.03821) 

1.31072 

(0.03286) 

1.19364 

(0.03421) 

1.21073 

(0.03375) 

1.22413 

(0.03216) 

1.23854 

(0.03017) 

1.17246 

(0.03175) 

1.19642 

(0.03085) 

1.21536 

(0.02814) 

1.22743 

(0.02712) 

1.23741 

(0.03652) 

1.26789 

(0.03512) 

1.27134 

(0.03301) 

1.29138 

(0.03176) 

CS[10] 

 

CS[11] 

 

CS[12] 

 

CS[13] 

1.19634 

(0.03463) 

1.21863 

(0.03146) 

1.24632 

(0.02963) 

1.24876 

(0.02834) 

1.22463 

(0.03404) 

1.24137 

(0.03276) 

1.26841 

(0.31056) 

1.27536 

(0.02986) 

1.21423 

(0.03241) 

1.22761 

(0.03179) 

1.24694 

(0.03074) 

1.26854 

(0.02736) 

1.24698 

(0.03514) 

1.25841 

(0.03475) 

1.26176 

(0.03274) 

1.28964 

(0.03181) 

1.19864 

(0.02974) 

1.20143 

(0.02758) 

1.22861 

(0.02586) 

1.23854 

(0.02476) 

1.17246 

(0.02736) 

1.19365 

(0.02674) 

1.21761 

(0.02587) 

1.23894 

(0.02215) 

1.21243 

(0.03105) 

1.22763 

(0.03015) 

1.23148 

(0.02874) 

1.24856 

(0.02601) 

CS[14] 1.26524 

(0.02965) 

1.28068 

(0.03127) 

1.26524 

(0.02863) 

1.28745 

(0.03385) 

1.23761 

(0.02496) 

1.21842 

(0.02376) 

1.25697 

(0.02681) 

CS[15] 

 

CS[16] 

1.11635 

(0.02158) 

1.13854 

1.12471 

(0.02101) 

1.12786 

1.11094 

(0.02085) 

1.11875 

1.13257 

(0.02274) 

1.13846 

1.11065 

(0.01958) 

1.11847 

1.10581 

(0.01654) 

1.11257 

1.12476 

(0.02147) 

1.12814 
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CS 
ML̂  BST~  TBG1

~  TBG2

~  
BSMC~  MCBG1

~  MCBG2

~  

 

CS[17] 

 

CS[18] 

(0.02114) 

1.14237 

(0.01947) 

1.14856 

(0.01763) 

(0.02019) 

1.21854 

(0.01836) 

1.22746 

(0.01796) 

(0.01847) 

1.12537 

(0.01725) 

1.12630 

(0.01689) 

(0.02104) 

1.14257 

(0.01985) 

1.14847 

(0.01826) 

(0.01874) 

1.12436 

(0.01758) 

1.12846 

(0.01625) 

(0.01524) 

1.11876 

(0.01447) 

1.12573 

(0.01412) 

(0.02016) 

1.13175 

(0.01958) 

1.13764 

(0.01824) 

CS[19] 

 

CS[20] 

 

CS[21] 

 

CS[22] 

1.10690 

(0.01826) 

1.11846 

(0.01756) 

1.12134 

(0.01613) 

1.12384 

(0.01659) 

1.12476 

(0.01813) 

1.13846 

(0.01763) 

1.14261 

(0.01546) 

1.46810 

(0.01501) 

1.11583 

(0.01425) 

1.12317 

(0.01524) 

1.12576 

(0.01425) 

1.12879 

(0.01464) 

1.13864 

(0.02046) 

1.14174 

(0.01952) 

1.14258 

(0.01840) 

1.14759 

(0.01725) 

1.10584 

(0.01246) 

1.11584 

(0.01204) 

1.11179 

(0.01116) 

1.12753 

(0.01028) 

1.09654 

(0.01074) 

1.10569 

(0.00936) 

1.11873 

(0.00913) 

1.12863 

(0.00876) 

1.12694 

(0.01357) 

1.12824 

(0.01304) 

1.12957 

(0.01256) 

1.13785 

(0.01221) 

CS[23] 1.12463 

(0.01763) 

1.14865 

(0.01675) 

1.12854 

(0.01463) 

1.15169 

(0.01652) 

1.11463 

(0.01263) 

1.01054 

(0.01185) 

1.13470 

(0.01496) 

 

Table 3: MLEs and Bayes Estimates of Parameter β and their MSEs (in brackets) for various (n, m) 

CS ML̂  BST
~

 TBG1

~
  TBG2

~
  

BSMC
~

 MCBG1

~
  MCBG2

~
  

CS[1] 

 

CS[2] 

 

CS[3] 

 

CS[4] 

 

2.11934 

(0.07877) 

1.66085 

(0.08635) 

1.52807 

(0.09547) 

1.34335 

(0.11661) 

2.68053 

(0.07232) 

1.78284 

(0.08071) 

1.64672 

(0.09157) 

1.43507 

(0.09724) 

2.38235 

(0.06963) 

1.68368 

(0.07692) 

1.51934 

(0.08441) 

1.37648 

(0.09249) 

2.79582 

(0.07638) 

1.82671 

(0.08465) 

1.76913 

(0.09535) 

1.62584 

(0.10269) 

2.27841 

(0.07024) 

1.63468 

(0.07526) 

1.46927 

(0.08612) 

1.32667 

(0.09237) 

1.79203 

(0.06861) 

1.57259 

(0.07225) 

1.42337 

(0.081295) 

1.27691 

(0.08653) 

2.47246 

(0.07684) 

1.86729 

(0.08244) 

1.54732 

(0.08863) 

1.59058 

(0.09634) 

CS[5] 

 

2.10563 

(0.06636) 

2.13674 

(0.06325) 

1.68153 

(0.05273) 

2.62471 

(0.06885) 

1.76584 

(0.05674) 

1.4836 

(0.04726) 

2.37584 

(0.06386) 

CS[6] 

 

CS[7] 

 

CS[8] 

 

CS[9] 

 

1.58976 

(0.05648) 

1.38238 

(0.06155) 

1.30774 

(0.06402) 

1.19187 

(0.06959) 

1.63258 

(0.05376) 

1.45763 

(0.05726) 

1.36852 

(0.06125) 

1.24662 

(0.06376) 

1.54327 

(0.04786) 

1.374863 

(0.05211) 

1.31746 

(0.05763) 

1.17965 

(0.05963) 

1.67641 

(0.05485) 

1.55746 

(0.05964) 

1.43058 

(0.06274) 

1.27483 

(0.06672) 

1.58245 

(0.05195) 

1.38254 

(0.05571) 

1.25631 

(0.05863) 

1.23854 

(0.06157) 

1.47263 

(0.04637) 

1.33864 

(0.05186) 

1.23514 

(0.05374) 

1.16523 

(0.05548) 

1.63872 

(0.05426) 

1.48925 

(0.05752) 

1.33264 

(0.05876) 

1.27464 

(0.06557) 

CS[10] 

 

CS11] 

 

CS[12] 

 

CS[13] 

 

1.47383 

(0.06779) 

1.42562 

(0.06942) 

1.39675 

(0.07334) 

1.35258 

(0.07732) 

1.51328 

(0.06354) 

1.46674 

(0.06614) 

1.40527 

(0.06942) 

1.37135 

(0.07421) 

1.48362 

(0.05638) 

1.43265 

(0.05854) 

1.34506 

(0.06352) 

1.29562 

(0.06786) 

1.56254 

(0.06638) 

1.52137 

(0.06824) 

1.44583 

(0.07168) 

1.42637 

(0.07652) 

1.46852 

(0.05523) 

1.41639 

(0.05857) 

1.38504 

(0.06425) 

1.34675 

(0.06962) 

1.42637 

(0.05278) 

1.37654 

(0.05625) 

1.32476 

(0.06118) 

1.26849 

(0.06569) 

1.53271 

(0.05849) 

1.48365 

(0.06217) 

1.40587 

(0.06785) 

1.37692 

(0.07153) 

S[14] 

 

1.34332 

(0.05723) 

1.38157 

(0.04252) 

1.48367 

(0.04076) 

1.59258 

(0.05381) 

1.38351 

(0.04252) 

1.48236 

(0.04276) 

1.59158 

(0.05281) 
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CS[15] 

 

CS[16] 

 

CS[17] 

 

CS[18] 

 

1.34336 

(0.04660) 

1.12456 

(0.05176) 

1.05199 

(0.05713) 

1.24438 

(0.05905) 

1.39654 

(0.04352) 

1.23254 

(0.04624) 

1.14342 

(0.05248) 

1.27635 

(0.05561) 

1.32856 

(0.04063) 

1.19374 

(0.04317) 

1.12451 

(0.04682) 

1.23492 

(0.05168) 

1.47364 

(0.04581) 

1.31594 

(0.04776) 

1.15694 

(0.05520) 

1.32869 

(0.05832) 

1.37078 

(0.04126) 

1.20638 

(0.04652) 

1.13589 

(0.04812) 

1.24654 

(0.05321) 

1.28631 

(0.03765) 

1.16825 

(0.04214) 

1.10846 

(0.04563) 

1.21367 

(0.04752) 

1.44257 

(0.04695) 

1.26769 

(0.04725) 

1.16385 

(0.05162) 

1.33587 

(0.05695) 

CS[19] 

 

CS[20] 

 

CS[21] 

 

CS[22] 

 

1.19187 

(0.04959) 

1.12456 

(0.05574) 

1.14554 

(0.05876) 

1.08622 

(0.06314) 

1.24716 

(0.04321) 

1.17254 

(0.04755) 

1.20861 

(0.05456) 

1.12935 

(0.05873) 

1.18364 

(0.04158) 

1.13612 

(0.04472) 

1.16583 

(0.04773) 

1.10692 

(0.05472) 

1.31857 

(0.04732) 

1.23673 

(0.05325) 

1.27812 

(0.05753) 

1.24236 

(0.06192) 

1.21624 

(0.04527) 

1.13251 

(0.04876) 

1.18653 

(0.05124) 

1.12276 

(0.05381) 

1.14829 

(0.04185) 

1.12574 

(0.04691) 

1.15792 

(0.04967) 

1.10364 

(0.05036) 

1.23761 

(0.05119) 

1.20458 

(0.05475) 

1.21691 

(0.05723) 

1.15743 

(0.05868) 

CS[23] 

 

1.08627 

(0.05589) 

1.12671 

(0.04725) 

1.10546 

(0.04365) 

1.17365 

(0.05172) 

1.1224 

(0.04436) 

1.09584 

(0.04063) 

1.25761 

(0.04764) 

 

 

Table 4: MLEs and Bayes Estimates of Reliability Function R(t)t=7 and their MSEs (in brackets) for various (n, m) 

CS MLR̂  BSTR
~

 TBGR
1

~
 TBGR

2

~
 

BSMCR
~

 MCBGR
1

~
 MCBGR

2

~
 

CS[1] 

 

CS[2] 

 

CS[3] 

 

CS[4] 

 

0.42134 

(0.03257) 

0.42657 

(0.03124) 

0.43257 

(0.02985) 

0.44713 

(0.02736) 

0.42768 

(0.03148) 

0.43156 

(0.03014) 

0.44581 

(0.02814) 

0.45213 

(0.02416) 

0.41036 

(0.02985) 

0.42160 

(0.02814) 

0.43257 

(0.02716) 

0.43856 

(0.02358) 

0.43258 

(0.03252) 

0.43764 

(0.03146) 

0.44175 

(0.02958) 

0.44823 

(0.02714) 

0.38562 

(0.02746) 

0.39584 

(0.02642) 

0.40127 

(0.02425) 

0.42138 

(0.02310) 

0.36574 

(0.02514) 

0.37153 

(0.02476) 

0.38416 

(0.02214) 

0.39158 

(0.02107) 

0.39854 

(0.02963) 

0.41237 

(0.02685) 

0.42165 

(0.02349) 

0.43571 

(0.02214) 

CS[5] 

 

0.43257 

(0.02763) 

0.44861 

(0.02647) 

0.43571 

(0.02413) 

0.46275 

(0.02786) 

0.41573 

(0.02137) 

0.40564 

(0.01986) 

0.43287 

(0.02198) 

CS[6] 

 

CS[7] 

 

CS[8] 

 

CS[9] 

 

0.41238 

(0.02854) 

0.41758 

(0.02759) 

0.42637 

(0.02685) 

0.43254 

(0.02476) 

0.42865 

(0.02745) 

0.43168 

(0.02673) 

0.43856 

(0.02496) 

0.45138 

(0.02384) 

0.40136 

(0.02574) 

0.41263 

(0.02496) 

0.42168 

(0.02374) 

0.42859 

(0.02168) 

0.43524 

(0.02846) 

0.44518 

(0.02794) 

0.44879 

(0.02649) 

0.45563 

(0.02574) 

0.39584 

(0.02316) 

0.40698 

(0.02247) 

0.41693 

(0.02108) 

0.42691 

(0.01905) 

0.37196 

(0.02214) 

0.38165 

(0.02143) 

0.38675 

(0.02101) 

0.39572 

(0.01957) 

0.40197 

(0.02416) 

0.41856 

(0.02371) 

0.42749 

(0.02269) 

0.43854 

(0.02109) 

CS[10] 

 

CS[11] 

 

CS[12] 

 

CS[13] 

0.41846 

(0.02925) 

0.42179 

(0.02814) 

0.42864 

(0.02746) 

0.43254 

0.43527 

(0.02714) 

0.44861 

(0.02692) 

0.45138 

(0.02486) 

0.45894 

0.41095 

(0.02574) 

0.41685 

(0.02463) 

0.42861 

(0.02384) 

0.43158 

0.44257 

(0.02852) 

0.45248 

(0.02714) 

0.44263 

(0.02574) 

0.42965 

0.40967 

(0.02385) 

0.41257 

(0.02109) 

0.42864 

(0.02285) 

0.43852 

0.38467 

(0.02143) 

0.39854 

(0.01985) 

0.40528 

(0.01865) 

0.42857 

0.41632 

(0.02486) 

0.42163 

(0.02376) 

0.42286 

(0.02106) 

0.42746 
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 (0.02549) (0.02372) (0.02269) (0.02413) (0.02164) (0.01764) (0.02085) 

CS[14] 

 

0.42842 

(0.02769) 

0.43291 

(0.02651) 

0.41697 

(0.02413) 

0.44216 

(0.02714) 

0.40163 

(0.02374) 

0.38463 

(0.02174) 

0.42136 

(0.02485) 

CS[15] 

 

CS[16] 

 

CS[17] 

 

CS[18] 

 

0.38473 

(0.02184) 

0.39571 

(0.02015) 

0.40367 

(0.01846) 

0.42138 

(0.01763) 

0.41583 

(0.01985) 

0.42563 

(0.01826) 

0.43852 

(0.01769) 

0.44864 

(0.01689) 

0.40254 

(0.01724) 

0.41132 

(0.01695) 

0.41867 

(0.01618) 

0.42857 

(0.01526) 

0.43864 

(0.02196) 

0.44213 

(0.02045) 

0.44969 

(0.01958) 

0.45125 

(0.01846) 

0.39854 

(0.01658) 

0.40864 

(0.01523) 

0.41856 

(0.01426) 

0.42857 

(0.01475) 

0.37416 

(0.01413) 

0.38435 

(0.01317) 

0.41096 

(0.01395) 

0.43842 

(0.01284) 

0.41857 

(0.01825) 

0.43125 

(0.01726) 

0.43852 

(0.01625) 

0.44246 

(0.01592) 

CS[19] 

 

CS[20] 

 

CS[21] 

 

CS[22] 

 

0.39746 

(0.02219) 

0.41238 

(0.02136) 

0.42864 

(0.02015) 

0.43068 

(0.01987) 

0.41238 

(0.02075) 

0.43854 

(0.01863) 

0.45231 

(0.01765) 

0.45769 

(0.01703) 

0.36254 

(0.01856) 

0.38461 

(0.01746) 

0.39254 

(0.01674) 

0.41357 

(0.01536) 

0.43257 

(0.02274) 

0.44163 

(0.02141) 

0.44673 

(0.02014) 

0.46258 

(0.01856) 

0.35864 

(0.01625) 

0.36842 

(0.01541) 

0.38263 

(0.01598) 

0.41368 

(0.01466) 

0.33746 

(0.01426) 

0.34851 

(0.01316) 

0.35864 

(0.01256) 

0.37851 

(0.01196) 

0.38254 

(0.01863) 

0.39584 

(0.01726) 

0.41263 

(0.01523) 

0.42854 

(0.01486) 

CS[23] 

 

0.42863 

(0.02126) 

0.43257 

(0.02114) 

0.41267 

(0.02019) 

0.44257 

(0.02286) 

0.41213 

(0.01981) 

0.38462 

(0.01874) 

0.42137 

(0.02087) 

 

 

Table 5: MLEs and Bayes Estimates of Hazard rate Function h(t)t=5  and their MSEs (in brackets) for various (n, m) 

CS MLĥ  BSTh
~

 TBGh
1

~
 TBGh

2

~
 

BSMCh
~

 MCBGh
1

~
 MCBGh

2

~
 

CS[1] 

 

CS[2] 

 

CS[3] 

 

CS[4] 

 

0.26432 

(0.00989) 

0.17108 

(0.01266) 

0.13966 

(0.01457) 

0.12545 

(0.01764) 

0.31357 

(0.00862) 

0.23673 

(0.01025) 

0.18546 

(0.01227) 

0.21778 

(0.01322) 

0.27363 

(0.00716) 

0.21563 

(0.00842) 

0.17472 

(0.00972) 

0.21324 

(0.01016) 

0.38648 

(0.01052) 

0.26574 

(0.01264) 

0.24752 

(0.01331) 

0.25586 

(0.01563) 

0.28514 

(0.00732) 

0.25675 

(0.00868) 

0.18576 

(0.00934) 

0.15337 

(0.01064) 

0.24675 

(0.00628) 

0.19356 

(0.00746) 

0.16782 

(0.00871) 

0.1356 

(0.00946) 

0.34527 

(0.00814) 

0.29486 

(0.00953) 

0.26386 

(0.01032) 

0.22458 

(0.01243) 

CS[5] 

 

0.28779 

(0.00763) 

0.32531 

(0.00645) 

0.27654 

(0.00606) 

0.35763 

(0.00735) 

0.28457 

(0.00627) 

0.23536 

(0.00573) 

0.31764 

(0.00694) 

CS[6] 

 

CS[7] 

 

CS[8] 

 

CS[9] 

 

0.23863 

(0.01165) 

0.17959 

(0.01325) 

0.15619 

(0.01643) 

0.11595 

(0.01937) 

0.28736 

(0.00943) 

0.19357 

(0.01157) 

0.16334 

(0.01462) 

0.12867 

(0.01648) 

0.24826 

(0.00823) 

0.17567 

(0.00956) 

0.14348 

(0.01175) 

0.11467 

(0.01376) 

0.33657 

(0.01074) 

0.23568 

(0.01287) 

0.19354 

(0.01635) 

0.15538 

(0.01821) 

0.26657 

(0.00854) 

0.18564 

(0.00924) 

0.13642 

(0.01134) 

0.11368 

(0.01486) 

0.22636 

(0.00676) 

0.14347 

(0.00835) 

0.12452 

(0.00986) 

0.09328 

(0.01147) 

0.27383 

(0.00975) 

0.21471 

(0.01257) 

0.16258 

(0.01376) 

0.14748 

(0.01568) 
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CS[10] 

 

CS[11] 

 

CS[12] 

 

CS[13] 

 

0.20681 

(0.01245) 

0.19253 

(0.01436) 

0.17964 

(0.01725) 

0.16859 

(0.01904) 

0.25753 

(0.01076) 

0.23643 

(0.01252) 

0.18537 

(0.01534) 

0.17684 

(0.01678) 

0.22718 

(0.00895) 

0.18366 

(0.01027) 

0.15749 

(0.01345) 

0.12856 

(0.01470) 

0.32358 

(0.01183) 

0.27563 

(0.01357) 

0.24376 

(0.01667) 

0.19534 

(0.01843) 

0.23743 

(0.00972) 

0.21367 

(0.01168) 

0.16543 

(0.01341) 

0.14163 

(0.01513) 

0.19245 

(0.00893) 

0.15937 

(0.00926) 

0.13644 

(0.01173) 

0.12746 

(0.01367) 

0.26574 

(0.01047) 

0.23258 

(0.01249) 

0.21547 

(0.01463) 

0.16921 

(0.01768) 

CS[14] 

 

0.16753 

(0.01467) 

0.18645 

(0.01257) 

0.12836 

(0.01064) 

0.24548 

(0.01343) 

0.17463 

(0.01146) 

0.10645 

(0.00976) 

0.21768 

(0.01268) 

CS[15] 

 

CS[16] 

 

CS[17] 

 

CS[18] 

 

0.23868 

(0.01247) 

0.20659 

(0.01452) 

0.17327 

(0.01647) 

0.14249 

(0.01769) 

0.26943 

(0.01156) 

0.24675 

(0.01273) 

0.21834 

(0.01418) 

0.19047 

(0.01579) 

0.22672 

(0.00926) 

0.19575 

(0.01046) 

0.15941 

(0.01264) 

0.12764 

(0.01483) 

0.28735 

(0.01286) 

0.25968 

(0.01369) 

0.23764 

(0.01484) 

0.20342 

(0.01631) 

0.22415 

(0.01076) 

0.18734 

(0.01164) 

0.16943 

(0.01332) 

0.13941 

(0.01463) 

0.18657 

(0.00874) 

0.16494 

(0.00977) 

0.13825 

(0.01167) 

0.11532 

(0.01391) 

0.24758 

(0.01175) 

0.22849 

(0.01293) 

0.18294 

(0.01387) 

0.17596 

(0.01485) 

CS[19] 

 

CS[20] 

 

CS[21] 

 

CS[22] 

 

0.20774 

(0.01185) 

0.18974 

(0.01365) 

0.17867 

(0.01478) 

0.15305 

(0.01573) 

0.25861 

(0.00954) 

0.22435 

(0.01025) 

0.18674 

(0.01291) 

0.15879 

(0.01387) 

0.22652 

(0.00793) 

0.20365 

(0.00827) 

0.17541 

(0.01149) 

0.13943 

(0.01276) 

0.28632 

(0.01084) 

0.24745 

(0.01236) 

0.21547 

(0.01381) 

0.18964 

(0.01478) 

0.21892 

(0.00863) 

0.19675 

(0.00964) 

0.15264 

(0.01205) 

0.13761 

(0.01316) 

0.17684 

(0.00776) 

0.14483 

(0.00885) 

0.12879 

(0.01176) 

0.11975 

(0.01234) 

0.23582 

(0.00985) 

0.21368 

(0.01147) 

0.18726 

(0.01489) 

0.16992 

(0.01407) 

CS[23] 

 

0.18929 

(0.01468) 

0.23346 

(0.01207) 

0.19745 

(0.01096) 

0.27523 

(0.01357) 

0.20479 

(0.01153) 

0.14917 

(0.00964) 

0.24751 

(0.01253) 

 

 

 

VII. REAL DATA STUDY 

 

The following data from [19] report repair times (in hours) for 46 failures of an airborne communications receiver. 

 

Table 6: Real data on repair times (in hours) for 46 failures 

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 

0.7 0.8 0.8 1.0 1.0 1.0 1.0 1.1 1.3 1.5 

1.5 1.5 1.5 2.0 2.0 2.2 2.5 2.7 3.0 3.0 

3.3 3.3 4.0 4.0 4.5 4.7 5.0 5.4 5.4 7.0 

7.5 8.8 9.0 10.3 22.0 24.5     

 

Fig. 4 shows an empirical fit to PGWD. Two alternative popular lifetime models, namely Weibull and gamma are also fitted to 

the selected data sets. 
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                                                                  Fig. 4: Fitted Distribution Functions for Real data 

 

Extracted Type progressive II censored samples extracted 

from real data of Table 6 are presented in Table 7.  MLEs and 

Bayes estimates of unknown parameters α, β, reliability and 

hazard rate functions with two loss functions (SELF and 

GELF) under T-K and MCMC methods are given in the 

Tables 8-11. The ACI, Boot-p, Boot-t CIs, BCI and HPD for 

the parametric estimates are presented in the Tables 12 and 

13. GELF under MCMC is found to be the best estimate in 

terms of minimum MSEs, for all the parametric functions. It 

is observed that Boot-p intervals are mostly shorter as 

compared to Boot-t intervals for all the four parametric 

functions. The ACI s compete quite well with Boot-t  

intervals. However, these two interval estimates are 

incomparable across all censored samples in a similar way. 

As for some instances ACIs have shorter average length and  

in some cases, the opposite is true. HPD intervals are superior 

to all other interval estimates as they exhibit shortest average 

length. The average length of all confidence intervals tends to 

decrease with the increase in effective sample sizes m

 

Table 7: Progressive Censoring Schemes (C-S) for Real Data 

 

n m Censoring Scheme C-S
 

 

 

 

46 

 

 

30 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0 C-S[1] 

36 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0 C-S[2] 

40 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  

0, 0 

C-S[3] 

46 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 

C-S[4] 
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Table 8: Estimated Values of Parameter α for different Progressive Type II Censoring Scheme for Real data 

CS 

 
MLEs 

T-K method MCMC technique 

SELF 
GELF 

SELF 
GELF 

GELF1 GELF2 GELF1 GELF2 

C-S[1] 2.8547 2.8124 2.4512 2.8645 2.8227 2.4654 2.8245 

C-S[2] 2.0353 2.0125 1.8954 2.1214 2.0225 1.8854 2.1451 

C-S[3] 1.8584 1.8458 1.8102 1.9754 1.8624 1.8265 2.1210 

C-S[4] 1.4993 1.4954 1.4521 1.5214 1.4921 1.4754 1.5621 

*GELF1- underestimation and GELF2- overestimation 

 

Table 9: Estimated Values of Parameter β for different Progressive Type II Censoring Scheme for Real data 

*GELF1- underestimation and GELF2- overestimation 

 

Table 10: Estimated Values of Reliability Function R(t) for different Progressive Type II Censoring Scheme for Real data 

CS 

 

 

MLEs 

T-K method MCMC technique 

SELF 
GELF 

SELF 
GELF 

GELF1 GELF2 GELF1 GELF2 

C-S[1] 0.4345 0.4340 0.4012 0.4521 0.4315 0.4125 0.4496 

C-S[2] 0.3332 0.3312 0.3102 0.3485 0.3294 0.3162 0.3456 

C-S[3] 0.3213 0.3200 0.3025 0.3314 0.3301 0.3056 0.3312 

C-S[4] 0.2462 0.2412 0.2354 0.2612 0.2545 0.2317 0.2598 

*GELF1- underestimation and GELF2- overestimation 

 

 

Table 11: Estimated Values of Hazard rate Function h(t) for different Progressive Type II Censoring Scheme for Real data 

CS MLEs 

T-K method MCMC technique 

SELF 
GELF 

SELF 
GELF 

GELF1 GELF2 GELF1 GELF2 

C-S[1] 0.1772 0.1759 0.1412 0.1954 0.1759 0.1454 0.2088 

C-S[2] 0.2208 0.2189 0.2014 0.2419 0.2189 0.2045 0.2432 

C-S[3] 0.2141 0.2230 0.2031 0.2436 0.2230 0.1987 0.2387 

C-S[4] 0.2557 0.2542 0.2345 0.2781 0.2542 0.2401 0.2710 

*GELF1- underestimation and GELF2- overestimation 

      

 

CS MLEs 

T-K method MCMC technique 

SELF 
GELF 

SELF 
GELF 

GELF1 GELF2 GELF1 GELF2 

C-S[1] 1.6761 1.6645 1.5954 1.6954 1.6595 1.5854 1.6901 

C-S[2] 1.3742 1.3721 1.3452 1.4212 1.3820 1.3485 1.4385 

C-S[3] 1.2329 1.2254 1.1954 1.2513 1.2301 1.2041 1.2425 

C-S[4] 1.0918 1.0911 1.0754 1.1125 1.1025 1.0821 1.1114 
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Table 12: Confidence Intervals for Parameter α for Real data 

CS ACI Boot-p Boot-t BCI HPD 

C-S[1] 
(1.8485, 

3.8609) 

(1.8945, 

3.5422) 

(1.8012, 

4.0126) 

(2.165, 

3.3421) 

(2.254, 

3.3025) 

C-S[2] 
(1.3951, 

2.6755) 

(1.4215, 

2.452) 

(1.3821, 

2.9085) 

(1.5421, 

2.3122) 

(1.8242, 

2.2125) 

C-S[3] 
(1.3053, 

2.4114) 

(1.3215, 

2.2651) 

(1.2941, 

2.5412) 

(1.2205, 

1.4325) 
(1.2154, 1.5521) 

C-S[4] 
(1.0949, 

1.9036) 

(1.1295, 

1.7854) 

(1.1121, 

1.7912) 

(1.2402, 

1.6942) 

(1.3002, 

1.6442) 

 

   Table 13: Confidence Intervals for Parameter β for Real data 

CS ACI Boot-p Boot-t BCI HPD 

C-S[1] 
(1.1198, 

2.2325) 

(1.2001, 

2.0252) 

(1.1021, 

2.2426) 

(1.3121, 

1.9854) 

(1.4212, 

1.8540) 

C-S[2] 
(0.9429, 

1.8055) 

(0.9625, 

1.7855) 

(0.9541, 

1.8124) 

(0.9985, 

1.6592) 

(1.0125, 

1.6503) 

C-S[3] 
(0.8580, 

1.6078) 

(0.8812, 

1.5954) 

(0.9021, 

1.6950) 

(0.9521, 

1.5251) 

(0.9851, 

1.4850) 

C-S[4] 
(0.7784, 

1.4051) 

(0.7541, 

1.354) 

(0.7654, 

1.4211) 

(0.8521, 

1.2540) 

(0.9125, 

1.2425) 

 

VIII. CONCLUDING REMARKS  

 

In this paper, classical and Bayesian estimators of the 

unknown parameters, reliability and hazard functions of 

PGWD assuming progressive Type II censoring scheme 

are studied. It is observed from Tables 2-5 that Bayesian 

procedure provides more precise parametric estimates as 

measured by MSEs in comparison to the classical 

estimators. In the Bayes case, the estimators are obtained 

under SELF and GELF assuming two independent gamma 

priors by using T-K and MCMC approaches. Theoretical 

results are illustrated for a simulated data set. Real data 

based study reinforces the simulation study findings. 

Proposed estimates are then compared numerically and it 

is observed that the Bayes estimates under MCMC 

approach provide highest precision results which are 

followed by T-K based approximations. It is seen that as 

the effective sample sizes increase, MSEs of estimates 

based on progressive Type II censored data decrease for all 

the considered censoring scenarios. Thus, improved 

estimates are obtained when sample size is appreciable. 

The discussed methodology provides an alternative PGWD 

model which exhibits flexible hazard rates for data 

analysis under life testing situations and can be 

recommended for use in medical, engineering and areas 

beyond where life-testing experiments are regularly 

conducted under time and cost constraints. 
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