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Abstract—Variational inequalities are used as models for sovinga large number of problems in mathematical, physical, 

economics, optimization,finance and engineering. The fixed point formulation of any variational inequality problem can be 

formulated as a fixed point problem and is useful for existence of solution of the variational inequality problem as well as it 

also provides the facility to develop algorithms for approximation of solution of VI problem. A lot of research has been carried 

out to approximate solution of a variational inequality problem. In this paper, we propose to investigate a generalized hybrid 

steepest descent method and develop a convergence theory for solving variational inequality problem over the fixed point set of 

a mapping which is not necessarily Lipschitz continuous.Our result extends and generalizes many known results in recent 

history 
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I.  INTRODUCTION  

Let H be a real Hilbert space. Let C be a nonempty closed 

convex subset of E and f : C C a mapping. A variational 

inequality problem over a nonempty closed convex subset D 

of C is formulated as finding an element x*D such that 

          
  0*,*  xxxF

 ………………….(1.1) 

The problem (1.1) is denoted by VIPD(F,C). The solution set 

of variational inequality problem (1.1) is denoted by 

[VIPD(F,C)], i.e., 

 

      [VIPD(F, C)]= {u D : <F(u),z- u>0 for all z D}. 

 

It is well known that convex minimization problem 

[4,9,11,13] of a differentiable convex function subject to a 

closed convex set D X of the form: find a point x*D such 

that  

(x*) = min {(x) : x D},……………….(1.2) 

 

where : X R is a differentiable convex function, can be 

casted into the variational inequality problem over D : 

 

find u D such that <(u),z – u>  0 for all z D, 

 

where  : X X is the gradient of . 

It is well known that if F is an -strongly monotone and k-

Lipschitz continuous, then, for (0,2/k
2
),the mapping  

PC(I -F) is contraction on C and hence VIPC(F,X) has a 

unique solution 

x*C and the projection gradient method: 

         xn+1 = PC(I- F)xn ,n N 

                                             ……………………………(1.3) 

converges strongly to x* (see [27, Theorem 46.C]). Note that 

computation of the metric projection, PC, onto C is not 

necessarily easy. In order to reduce such difficulty, which is 

caused by the metric projection PC, in [26, Theorem 3.3, p. 

486], Yamada introduced the following hybrid steepest 

descent method (for short, HSDM) for solving the variational 

inequality  

        VIPFix(T)(F,C):xn+1 = (I-nF)Txn     , nN              

                                           ……………………………..(1.4) 

Where {n} is a sequence in (0,1] and T is a nonexpansive 

mapping from X into itself with a nonempty fixed point set 

Fix(T). Yamada [26, Theorem 3.3, p. 486] proved that the 

http://www.isroset.org/
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sequence {n} defined by (1.4) converges strongly to a 

unique solution of VIPFix(T)(F,X).There are many papers 

dealing with variational inequality problems when the 

constrained set D is a set of fixed point of a nonexpansive 

mapping or set of common fixed points of a family of 

nonexpansive mappings (see [7,6,8,16,18,19,23,25,28]). 

 

It is well known that if  : X R is a differentiable convex 

function such that  is L-Lipschitz continuous for some     

L >0, then  is 1/L-inverse strongly monotone. Hence      

I- is nonexpansive for (0,2/L) (see [10]) and hence 

hybrid steepest descent method is applicable for solving the 

variational inequality problem VIPFix(I-)(F,X). The 

variational inequality problem VIPFix(I-)(F,X) is equally 

interesting when  is uniformly continuous, but not 

necessarily L-Lipschitz continuous. In [12], Goldstein 

studied weak convergence of a hybrid steepest descent 

method when  is uniformly continuous. 

 

The  problem is to find- Is it possible to develop a hybrid 

steepest descent method which converges strongly to a 

solution of the variational inequality problem              

VIPFix(I-)(F,X) for some >0 ? 

 

The main purpose of this paper is to investigate a hybrid 

steepest descent method for solving the variational inequality 

problem VIPD(F,C) when constrained set D is a set of fixed 

points of a selfmapping on C which is more general than 

nonexpansive.A strong convergence theorem for strongly 

asymptotically nonexpansive mapping is established in 

Section 3.Our results are definitive and solves problem (1.1) 

in the mathematical theory of nearly Lipschitzian mappings 

and also improve several known results for the class of 

Lipschitzian type mappings in Hilbert spaces. 

 

The paper is organized in follows, Section I contains the 

introduction of variational inequality problem  and hybrid 

steepest descent method , Section II contain the related work 

or preliminaries required for obtaining our result, Section III 

contain our main result and strong convergence of the 

method is established , Section IV  concludes research work 

with future directions 

 

II. PRELIMINARIES 

 

Let C be a nonempty subset of a normed space X and T 

:CX a mapping. T is called an L-Lipschitzmapping if there 

exists L [0,) such that 

||Tx-Ty||L||x-y|| for all x,yC. 

The L-Lipschitz mapping T is called a non-expansive 

operator if L = 1 and contraction if L [0,1). Wedenote by 

Br[x] the closed ball with center x X and radius r >0 and by 

Fix(T) the set of fixed points of T. 

A sequence {xn}in C is said to be an approximating fixed 

point sequence if  

limn ||xn- Txn||=0. 

Recall that T is called a demiclosed mapping if 

({xn} in C, xnx weakly and Txny                         

for some x,yX (xC and Tx = y) . 

The following technical lemmas will be required. 

 

Lemma 2.1. ([24]) Let {an} be a sequence of nonnegative 

real numbers and let {bn}be a sequence in R satisfying the 

following condition: 

              an+1(1-n)an+bn for all n N; 

where {an} is a sequence in (0,1]. If 





1n

n and 

0suplim 








 n

n

n

b


, then {an} converges to zero. 

 

Lemma 2.2.[2.2] Let {xn} and {zn}be bounded sequences in a 

Banach space X and let {bn} be asequence in [0,1] 

with 1supliminflim0 


n
n

n
n

 .Suppose that 

             xn+1=(1-n) xn+nzn for all n N 

 

and that 0||)||||(||suplim 11  


nnnn
n

xxzz . Then   

0||||lim 


nn
n

xz . 

 

Definition 2.1: A nearly Lipschitzian mapping T with 

sequence {((T
n
),an}is said to be 

(i) nearlynonexpansive if (T
n
) = 1 for all n N, 

(ii) nearly asymptotically nonexpansive if (T
n
)1 for all      

n N and limn(T
n
) = 1, 

(iii) nearly uniformly k-Lipschitzian if (T
n
)k for all n N 

and for some k [0,), 

(iv) nearly uniform k-contraction if (T
n
)k <1 for all nN. 

By the definitions, we have the following implication: 

contractionnearly uniformly k-contractionnearly 

nonexpansive: 

 

Definition 2.2. Let C be a nonempty subset of a normed 

space X and fix a sequence {an} in [0,) with an0. A 

mapping T : C C is said to be nearly asymptotically quasi-

nonexpansive with respect to {an} in [0,) with an0 if 

Fix(T) 0 and there exists a sequence {kn} in [1,) with 

limn kn=1 such that 

            ||T
n
x-p||  kn(||x-p||+an) for all x C, p Fix(T)     

and n N. 
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Remark 2.1. Nearly asymptotically quasi-nonexpansive 

mappings are also called generalized asymptoticallyquasi-

nonexpansive mappings (see [20]). 

 

Remark 2.2. Every nearly asymptotically nonexpansive 

mapping with nonempty fixed point set is 

nearlyasymptotically quasi-nonexpansive mapping. 

 

Lemma 2.3. (see[14, Corollary 4.3] ) Let C be a nonempty 

closed convex subset of a uniformly convex Banach space X 

and T : C C a demicontinuous nearly asymptotically 

nonexpansive mapping. Then Fix(T) is closed and convex 

 

III. MAIN RESULT 

 

From Lemma 2.5 and [27] we see that the 

variationalinequality problem 

VIPFix(T)(F,C) has a unique solution x*(T). 

We now introduce a hybrid steepest descent-like method for 

computation of unique solution x*F(T)of the variational 

inequality problem VIPFix(T)(F,C). 

 

 

Algorithm 3.1.Hybrid steepest descent-like method 

 

Step 0: Choose x1C and 1(0, 1] arbitrarily. 

Step 1: Given xnC; choose n(0, 1]  and define 

xn+1C by 

xn+1 := (1-n)yn+nT
n
(yn), 

yn = xn-nF(xn) for all n N.                          (3.2) 

 

We study convergence analysis of Algorithm 3.1 under the 

following assumptions: 

 

(A1) limnn= 0 and ;
1




n

n  

 

(A2) a nb for all n N and for some a, b (0,1); 

(A3)    0lim and 1
1

n







n n

nn a
T


  with a 

constant K [0,) such that an/n K 

for all n N. 

 

Theorem 3.1. Let C be a nonempty closed convex subset of 

a real Hilbert space X and T : C C a uniformly continuous 

strongly asymptotically nonexpansive mapping with 

sequence {((Tn
),un)} such that Fix(T) . Let F : C X  be 

-strongly monotone and L-Lipschitz continuous for some 

positive constants  and L and let (0,2 / L
2
) such that     

(I-F)(C) C for all (0,1]. Let {xn}nN be a sequence in 

C generated by Algorithm 3.1, where {n} is a sequence in 

(0,1). Assume that assumptions (A1) - (A3) hold. Then we 

have the following: 

 

(a) [VIPFix(T)(F,C)] = {x*} 

(b) The orbit {xn} of the Algorithm 3.1 is well defined in the 

closed convex set Br[x*]C, where r is a positive constant 

such that 

      max{||x1-x*||, 1/(||F(x*)||+K)} r. 

(c) If the following assumption holds: 

 

(A4),
 

0||)()(||lim and 0||)()(||lim 1

n

1  





 n

n

n

n

n

n

n

n

n xTxTxTxT  

then {xn}converges strongly to x*. 

Proof: (a) It follows from Remark 3.1 

(b) For every n N, we have 

||yn-x*|| = ||xn -nF(xn) – x*|| 

 = ||(I-n F)(xn) – (I-n F)(x*) - n F(x*)|| 

  ||(I-n F)(xn) – (I-n F)(x*)|| + n || F(x*)|| 

  (1-n) ||xn –x*|| + n || F(x*)||. 

Thus, 

||xn+1-x*|| = ||(1-n)yn+nT
n
(yn)-x*|| 

  (1-n) ||yn –x*|| + n|| T
n
(yn)-x*|| 

  (1-n) ||yn –x*|| + n (T
n
)(||yn-x*||) +un ) 

  (Tn
) [||yn-x*||) +un ] 

  (Tn
)[(1-n)||xn-x*|| + n|| F(x*)|| +un ] 

  (Tn
)[(1-n) ||xn-x*|| + n( / || F(x*)|| +K/) ] 

  (Tn
) max{||xn-x*||, 1/ (|| F(x*)|| +K)}.  

Inductively, we have 

||xn-x*|| 





1

1

2,)(
n

i

i nrT  

Since 





1

)1)((
n

nT , it follows that 







1

1

1)(
n

i

nT .Thus, {xn}is in Br[x*]C.Note 

||yn-x*||   (1-n) ||xn –x*|| + n || F(x*)|| 

  r +  || F(x*)||. 

(c) Note 

)()1(1 n

n

nnnn yTyx    

        = )())()(1( n

n

nnnnn yTxFx    

        = nnnn zx   )1(  

Where  )()1()(
1

nnnn

n

n

n xFyTz 


 . 

Note 
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)]F(x
)1(

-)(y[T-                  

)(
)1(
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1

1

1

n

nn
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n

n

nn xFyTzz












 










 

=  

   
).(

1
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1
)()()()( 1

1

1111

1

1




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

 



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n
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n

n
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n

n

n

n

n

n

n

n xFxFyTyTyTyT






  

Set T = supnN(T
n
). Hence 

||zn+1zn||

||)(||
)1(

||)(||
)1(

     

||)()(||)||)(||(

1

1

11nn

1

11

1





















n

n

n

n

n

n

n

n

n

n
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xFxF
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
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
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For some K1>0.It follows that 

0||)||||(||suplim 11  


nnnn
n

xxzz . 

From Lemma 2.2 , we obtain that 

0||)(||lim 


nn
n

zx     …..(3.3) 

From (3.2) and (3.3), we have 

.n as 0||||||||||| 1  nnnnnnn xzxzxx   

Note 

||)(||||)()(|||)(||||)(|| 1

nn

n

Tn

n

n

n

n

n

nnn xxTxTxTxTxxTx     

Which gives us that ||xn- T(xn)||0 as n. Since T is 

uniformly continuous, we have ||xn- T
m
(xn)||0 as n for 

all m N. 

Finally, we conclude that xnx* as  n. 

This completes the proof. 

 

IV. CONCLUSION 
 

For finding a solution of a variational inequality problem 

with a strongly monotone mapping over the set of fixed 

points of a strongly asymptotically nonexpansive mapping on 

Hilbert spaces, we have given a steepest descent method.Its 

strong convergence has been proved without the Lipschitz 

continuity of the mapping in the framework of Hilbert 

spaces. 
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