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Abstract- In this paper we prove some common fixed point theorems for single-valued and multi-valued mappings, with the
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I. Introduction

Ahmed [2] has obtained a common fixed point theorem for
multi-valued mappings which actually extends the result of
Fisher [11]. Bouhadjera and Djoudi [4] have generalized
the results of Ahmed [2] using D-mappings.

In this paper, we prove some common fixed point
theorems with the help of CLR property and OWC
property which generalize, extend and improve the results
of Bouhadjera and Djoudi [4].

Abdou [1] has introduced the notion of occasionally
weakly compatible mappings (shortly, OWC property) and
the Common limit in the range (shortly, CLR property) for
two single-valued and two multi-valued mappings in
metric spaces.

I1. Preliminaries

Let (X,d) be a metric space and B(X) be the family of all
non-empty bounded subset of X. We define two function
3(A,B) and D(A,B) by

8(A,B)=sup{d(a,b): aE A, b £ B},
D(AB)= inf{d(a,b): aEA, bEB } VA, BE B(X).
If A contains a single point a, then we will write

3(A,B)=5({a},B).
If A={a} and B={b}, then we will write 5(A,B)=d(a,b).
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It follows from the definition of & that,
3(A,B)=6(B,A)=0;
3(A,B)< 3(A,C)+ 6(C,B);

8(A,B)=0 & A=B={a};
8(A,A)=diam A, ¥ AB,C E B(X).

Now, CB(X) means the class of all non-empty bounded
closed subsets of X.

I11. Definitions & Examples

Definition: [4,14]: The mappings F: X—B(X) and f:
X—X are §-compatible if 1111 §(Ffx,,fFx,)=0.

n— oo

Whenever {x,} is a sequence in X such that fFx, & B(X),

Fx,— {t} and fx, —t for some t £ X.

Jungck and Rhoades [13] generalized the above definition
as follows:

Definition[4,13]: The mappings F: X—B(X) and f: X—X
are weakly compatible if they commute at coincidence
points , that is

{t € X: Ft={ft}} S{tE X: Fft=fFt}.
It can be easily proved that 5-compatible maps are weakly
compatible but the converse is not true.[13]
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Definition[1]: Let, (X,d) be a metric space. Two mappings
I, J: X—X are said to be occasionally weakly compatible
(shortly OWC property) if there exists a point

u & X such that lu=Ju and 1Ju=Jlu.

Definition[1]: A single-valued mappings I:X—X and a
multi-valued mapping F:X—CB(X) are said to be
occasionally weakly compatible (shortly OWC property) if

IFx C FIx for some x & X with Ix & Fx.

Definition[1]: Let, 1,J:X—X be single-valued mappings
and F,G: X—CB(X) be multi-valued mappings.

(@ A point x £ X is said to be a coincidence point

of I and F if Ix &£ Fx. We denote by C(l,F) the set
of all coincidence points of | and F.

(b) A point x &£ X is said to be a common fixed
point of 1,J,F and G
if x=Ix & Fx and x=Ix=Jx & Gx.

Definition[1]: Let, (X,d) be a metric space. Two mappings
I,J: X—X are said to satisfy the common limit in the range
of | with respect to J (shortly CLR, property with respect to
J) if there exists a sequence {X,} in X such that

lim Ix,= lim Jx,= lu for some u € X.

n— oo n—oo

Example 1: Let, X=[0,00) be a metric space with usual
metric. Define two single-valued mappings 1,J: X—X such

x
that IX:E and Ix=kx; ¥ x € X and k is any constant.

1
Define the sequence {X,} in X by x,= —, for each n>1.
n

Then we get, lim Ix, = 1im Jx,= 1(0)

n—oo n—oo
So, the mappings | and J satisfy (CLR;) property with
respect to J.

Definition[1]: Let, (X,d) be a metric space. A single-
valued mapping I:X—X and a multi-valued mapping F:
X—CB(X) are said to satisfy the common limit in the
range of | with respect to F (shortly CLR, property with

respect to F) if there exists a sequence {x,} in X and A &

CB(X) such that lim Ix,= lu EA=lim Sx, for some u

n— oo n—coo

E X

Now, we will give an example of CLR, property with
respect to F.

© 2018, IJSRMSS All Rights Reserved

Vol. 5(4), Aug 2018, ISSN: 2348-4519

Example 2: Let, X=[0,00) be metric space with usual
metric. Define a single-valued mapping I: X—X and a
multi-valued mapping F:X—CB(X) such that Ix=x+k,

Fx=[0,x+k]; ¥ x € X and k is any constant.

1
Define the sequence {x,} in X by x,= —, for each n>1.
n

Then we get,
lim 1x, =k = 1(0) € [0,k]= lim Fx,
n— oo nm—co

So, the mappings | and F satisfy (CLR,) property with
respect to F.

IV. Main Results

(A). We prove this main result with the help of OWC
property.
Theorem 1:
Let, (X,d) be a metric space. Let, F,G: X— B(X) be set
valued mappings and I,J: X—X be single valued mappings
and satisfy the following conditions:

1. FX)= J(X) and G(X) = I(X).

2. 8°(Fx,Gy)<amax{d’(Ix,Jy),8°(Ix,Fx),

3"y, Gy)}+(1-0)[aD"(1x,Gy)+ bD"(Jy,Fx)]

for all x, y in X and p>1, 0<oa<l, a,b>0, and a+(1-
a)(atb)<1 (1) The
pairs (F,I) and (G,J) are OWC property.
Then, F,G,1,J have a unique common fixed point in X.
Proof:
Since the pairs (F,I) and (G,J) are OWC then there exist

u, v in X such that lu & Fu, IFu < Flu;
Jv £ Gv, JGVCGlv

So,lluE IFUCFIu. 2
and
JIVEIGVCGv. 3

Now, we will prove that lu=Jv.

If popssible let, Iu #Jv, then using the equation (1) we
have,

8P (Fu,Gv) < a max{d°(Iu,Jv), 8°(Iu,Fu), 8"(Jv,Gv)} +
(1-a) [aDP(lu,Gv) + bDP(Jv,Fu)]

<a &°(Fu,Gv) + (1-a) [a 8°(Fu,Gv) + b 3°(Gv,Fu)]
Or,8°(Fu,GVv)<[o-+(1-a)(a+b)]8°(Fu,Gv) <8°(Fu,Gv) as
at(1-a)(atb)<l

which is a contradiction.

So,lu=Jv. (@)

Now, we will prove that lu is a fixed point of I.

If possible let, [Tu# Tu.

Then, using (1) we get,

8°(1u,lu) = &°(11u,dv) (by (2))

< 8°(Flu,Gv)

< o max{d’(Ily,Jv), &°(IIu,Flu), &°(Jv,Gv)} + (1-a)
[aDP(11lu,Gv) + bDP(Jv,Flu)]
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< ad®(1u,lu) + (L-a)(a+b) 3°(11u, lu)
= [a+(1-a)(a+b)]5°(11u, 1u)

<&°(llu,lu) (as o+(1-a)(at+b)<l)
which is a contradiction.
So,lu=Iu. ®)

Now, we will prove lu=Jlu.Next,

8P(1u,d1u) = °(lu,ddv) (by (2))

< 8°(Fu,Glv)

< o max{d°’(lu,dlv), &°(Iu,Fu), 8°(JIv,GIV)} + (1-o)
[aDP(lu,GJv) + bDP(JJv,Fu)]

< a 8°(lu,ddv) + (1-a)(a+b) 6°(1u,Jdv)
=[a+(1-a)(a+b)]5°(1u,dIu)

<&"(lu,dIu) (as o+(1-a)(atb)<l)

which is a contradiction.

So,lu=Jlu. (6)
Then from (3) and (4) we get,
lu= lu=Jlu, )

Therefore, Iu is a common fixed point of | and J.

(8)

Now, from (2) and (5) we get,

lu=llu EFlu. 9)
And, from (4) and (6) we get,

lu=JIu=JIviEGIv=Glu. (10)

So, from (9) and (10) we get,

lu is a common fixed point of Fand G. (11)

From (8) and (11) we conclude that lu is a fixed point of
F,G,l and J.

Now, from (1) we have ,

8°(FIu,GIu) < o max{d°’(Ilu,J1u), 8°(ITu,FIu), 6°(JIu,Glu)}
+ (1-a) [aDP(11u,Glu) + bDP(JIu,Flu)]

< a max{0,0,0} +(1-a)[a.0+b.0]=0.

So, Flu=Glu={lu}. (12)
Let, lu=z.
And, we have to prove that z is a unique common fixed
point of F,G,I and J.

If possible let, there exist another fixed point w(#z) of
F,G,Jand I.

So, from (1) we have,

Fzw)= &(Fz,Gw) < a max{d’(IzJw), &°(Iz,Fz),
3°(Iw,Gw) }+(1-a)[aDP(I1z,Gw) + bDP(Jw,Fz)]

=0 max{d’(z,w), &°(z,z), "(w,w)} + (1-0) [aDP(z,w) +
bDP(w,2)]

<[o+(1-0)(a+b)]3°(z,W)

<8°(z,w) as a+(1-o)(a+b)<1
which is a contradiction.

So, z=w i.e., the fixed point z is unique.

Hence, z is a unique common fixed point of F, G, J and .

Corollary 1: Let, (X,d) be a metric space. Let, F,G: X—
B(X) be set-valued mappings and 1,J: X—X be single
valued mappings, and satisfy the following conditions:

1. FX)C I(X) and G(X) = I(X).
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2. 3(Fx,Gy) < a max{d(Ix,Jy), 8(Ix,Fx), 6(Jy,Gy)} + (1-
a) [aD(Ix,Gy) + bD@Jy,Fx)] for all x,y in X and
p>1,0<a<1,a,b>0, and

at+(1-a)(at+b)<l. (13)

3. The pairs (F,I) and (G,J) are OWC property.
Then, F,G,1,J have a unique common fixed point in X.
Proof: Put p=1 in theorem 1, and we will get the result.
This corollary is the main theorem of Bouhadjera and
Djoudi [4].

Corollary 2: Let, (X,d) be a metric space. Let, F: X—
B(X) be set valued mappings and 1,J: X—X be single
valued mappings, and satisfy the following conditions:
1. F(X)= J(X) and F(X)= I(X)
2. 8°(Fx,Fy) < o max{d°(Ix,Jy), 8°(Ix,Fx), °(Qy,Fy)}
+ (1-a)) [aDP(Ix,Fy) + bDP(Jy,FX)].
for all x,y in X and p>1, 0<o<l, a,b>0, and o+(1-
a)(atb)<l. (14)
The pair (F,I) OWC property.
Then, F,I and J have a unique common fixed point in X.
Proof: Put G=F in Theorem 1, and get the result.

Corollary 3: Let, (X,d) be a metric space. Let, F,G: X—
B(X) be set valued mappings and I: X—X be single valued
mappings, and satisfy the following conditions:
1. FX)Z= I(X) and G(X) = I(X).
2. PFx,Gy) < o max{d’(Ixly), &°(Ix,Fx),
3°(ly,Gy)} + (1-w) [a D*(Ix,Gy) + b D*(ly,Fx)]
for all x,y in X and p>1, 0<a<1, a,b>0, and a+(1-
a)(at+b)<l1. (15)
The pairs (F,1) and (G,l) OWC property.
Then, F,G and | have a unique common fixed point in X.
Proof: Put J=I in theorem 1, and get the results.
Remark 3: If we put p=1 in corollary 3, we will get the
Corollary 3.2 of Bouhadjera and Djoudi [4]

Corollary 4: Let, (X,d) be a metric space. Let, F: X—
B(X) be set valued mappings and I: X—X be single valued
mappings, and satisfies the following conditions:
1. FX)=1(X)
2. 8°(Fx,Fy) < a max{d°(Ix,ly), 6°(Ix,Fx), 8°(ly,Fy)}
+ (1-0) [a DP(Ix,Fy) + b DP(ly,Fx)]
for all x,y in X and p>1, 0<o<l, a,b>0, and o+(1-
a)(atb)<l. (16)
3. (F,1) is OWC property.
Then, F and | have a unique common fixed point in X.
Proof: If we put G=F and J=I in our main theorem then,
we will get the result.
Remark 4: If we put p=1, in Corollary 4 , we will get the
Corollary 3.1 of Bouhadjera and Djoudi [4]

Corollary 5: Let, (X,d) be a metric space. Let, F; : X—
B(X), ¥ iEN be set valued mappings and L,J: X—X be
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single valued mappings , and satisfies the following
conditions:

1. F(X)= J(X) and Fi (X) < I1(X).

2. Sp(FiX,FHly)S o
max{d"(1x,Jy),8"(Ix,Fix),8°(Jy,Fis1y) }+(1-
a)[aD’(Ix,Fi.1y) + bDP(Jy,Fix)]
for all x,y in X and p>1, 0<0<1, a,b>0, and
at+(1-a)(atb)<l. 17)

3.The pairs (F;,I) and (Fi.1,J) OWC property.
Then, F;,I and J have a unique common fixed point in X,

ViEN.

Remark 5: Corollary 5 is a generalization of Theorem 3.2
and Theorem 3.3 of Bouhadjera and Djoudi [4]

(B) Common fixed point of mappings with the help of
CLR, property.

In this section, we prove common fixed point theorems for
two single valued mappings and two multi-valued
mappings by CLR, property.

Definition[1]: Let, (X,d) be a metric space. Let L,J:X—X
and F,G: X—CB(X). Then I,J,F and G are said to satisfy
the common limit in the range of | (shortly, CLR, property)
if there exists two sequences {x,} and {y,} in X and A, B

in CB(X) such that lim Fx,=A, lim Gy,=B

— oo n— oo
and
lim 1x,=lim Jy,=lu € A N B.
n— oo n— oo
Theorem 2:

Let, (X,d) be a metric space. Let, F,G: X— B(X) be set
valued mappings and 1,J: X—X be single valued
mappings, and satisfy the following conditions:

(@) F(X) & J(X) and G(X) = I(X).

(b) Fx,Gy) < o max{d’(IxJy), 8°(Ix,Fx),
Iy,Gy)} + (1-0) [a D(Ix,Gy) + b D°(Jy,Fx)]
for all x,y in X and p>1, 0<o<1, a,b>0, and

at(1-a)(atb)<l. 1)

The pairs (F,1) and (G,J) satisfy CLR, property.

If 1(X) and J(X) are closed subsets of X, then the following
holds:

1. land F have a coincidence point.

2. Jand G have a coincidence point.

3. land F have a common fixed point if | and F are
weakly compatible at v and IlIV=Iv for any v

Ec(1,F).

4. Jand G have a common fixed point if J and G are
weakly compatible at v and JJV=Jv for any v

£ C(J,G).

5. F,G, I and J have a common fixed point in X if
both (3) and (4) hold.
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Proof: Since, the pairs (F,I) and (G,J) satisfy CLR,
property then there exists two sequences {x,} and {y,} in
X and A,B in CB(X) such that

lim Fx,=A, lim Gy,=B and

n—oo n— oo
lim I1x,= lim Jy,=lu E AM B forsome uin X .
N— oo N— oo
Also, as 1(X) and J(X) are closed, we have lu=Iv and
lu=Jw, for some v,w in X.

Now, we will show that JwE Gw.

If possible let Jw & Gw.

Then, put X=X, y=w in equation (1) and get,

P (FX,,Gw)

< o max{d’(IX,,Jw), &"(IX,,Fx,), 3" (Qw,Gw)} + (1-a)

[aDP(Ix,,Gw) + bDP(Jw,Fx,)] for all n&= N.
Taking lim in the above inequality we get,

n—co
SP(A,Gw) < a max{d°(Iu,Jw), 3°(1u,A), SP(Iw,Gw)} + (1-0)
[aDP(lu,Gw) + bDP(Jw,A)]=0
i.e., 3"(A,GW)=0
Now, 8°(Jw,Gw)< 8°(A,Gw)=0

S0,JwEGw, )
i.e, w is a coincidence point of J and G. (3)
Now, we will show that IvE Fv.

If possible, let Iv & Fv.
Then, put X=v, y=y, in equation (1) and get,
°(Fv,Gy,) < a max{d"(Iv,Jy,), 8°(Iv,Fx), 8’ (Qy,Gy.)} + (1-
a) [aDP(ly,,Gyn) + bD"(Jy,Fyn)]
Taking lim in the above inequality we get,
n— oo
°(Fv,B) < a max{d’(Iv,Jw), &°(Iv,Fv), 8"(Qw,B)} + (1-a)
[aD"(1u,B) + bDP(Jw,B)]=0
8°(Fv,B) < a 8°(lv,Fv)
< a 8°(B,Fv)<&”(B,Fv) as 0<a<I.
which is a contradiction.
So, 8P(Fv,B)=0
Now, 3°(Iv,Fv)< 8°(B,Fv)=0

So,IVEFv. 4)

i.e., v is a coincidence point of | and F. (5)
As | and F are weakly compatible mapping, i.e., IFv=Flv.
(6)

And J and G are also weakly compatible
mapping,i.e.,JGW=GJw. @

Now, we will prove that Flv=Gw.

From (1) we get,

P (FIv,Gw) < a max{d°’(Ilv,Jw), 8°(1lv,FIv), 6" (Qw,Gw)} +
(1-o)[aDP(1lv,Gw) + bDP(Iw,FIv)]

< [o+(l-o)(atb)] SP(FIv,Gw) <O&P(FIv,Gw) as o+(1-
a)(atb)<l
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i.e.,Flv=Gw. (8)
ie, llv & IFv=Flv=Gw. (by (6) and (8)). 9)
Now, we will prove Iv=llv.

From (1) we get,

°(Fv,Gw) < a max{d°(Iv,Jw), 8°(Iv,Fv), 8"(Jw,Gw)} + (1-
a) [aDP(lv,Gw) + bDP(Iw,Fv)]

< (1-a)(a+b) 8P (Fv,Gw)

<8"(Fv,Gw) as (L-a)(atb)<l,

i.e.,0°(Fv,Gw)=0. (10)
Now, 8°(Iv,IIv) < 8°(Fv,Gw) (by (4) and (9))

=0 ('by (10)),

i.e.,lv=llv. (11)

From (9) and (11) we get, Iv=llv & IFv=Flv.
Let, lv=z

ie,z=lzE Fz

i.e., z=lv is a common fixed point of | and F.
Similarly we can prove that Jw=JJw & GJw
i.e., Jwis a common fixed point of J and G

Corollary 6:Let, (X,d) be a metric space. Let, F,G: X—
B(X) be set valued mappings and 1,J: X—X be single
valued mappings, and satisfy the following conditions:

(@ F(X)=J(X) and G(X) = I(X).

(b) 3(Fx,Gy) < a max{d(Ix,Jy), 8(Ix,Fx), 6(Jy,Gy)} +
(1-0) [a  D(Ix,Gy) + b D(y,Fx)]
for all x,y in X and p>1, 0<0<1, a,b>0, and o+(1-
a)(at+b)<l

(c) The pairs (F,1) and (G,J) satisfy CLR, property.

If 1(X) and J(X) are closed subsets of X, then the following
holds:

1. land F have a coincidence point.

2. Jand G have a coincidence point.

3. land F have a common fixed point if | and F are
weakly compatible at v and IlIV=Ilv for any v

EC(1,F).
4. Jand G have a common fixed point if J and G are
weakly compatible at v and JJV=Jv for any v
E C(J,G).
5. F,G,l and J have a common fixed point in X if
both (3) and (4) hold.
Proof: If we put p=1 in Theorem 2, then we will get the

results. This corollary is the main theorem of Bouhadjera
and Djoudi [4].

Corollary 7: Let, (X,d) be a metric space. Let, F: X—
B(X) be set valued mappings and LJ: X—X be single
valued mappings , and satisfy the following conditions:

@ F(X)C J(X) and F(X) < I(X).

(b) P(Fx,Fy) < a max{d’(Ix,Jy), 8°(Ix,Fx), 8"(Jy,Fy)} +
(1-0) [a DP(Ix,Fy) + b DP(Jy,Fx)]
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for all x,y in X and p>1, 0<a<l, a,b>0, and o+(1-
a)(atb)<l.

(c) The pairs (F,1) and (F,J) satisfy CLR, property.

If 1(X) and J(X) are closed subsets of X, then the following

holds:

(1). I and F have a coincidence point.

(2) J and G have a coincidence point.

(3) I and F have a common fixed point if | and F are

weakly compatible at v and 11V=Iv for any v & C(I,F).
(4) J and G have a common fixed point if J and F are

weakly compatible at v and JJV=Jv for any v £C(J,F).

(5) F,land J have a common fixed point in X if both (3)
and (4) are true

Proof: If we put G=F in theorem 2 then we will get the
result.

Corollary 8: Let, (X,d) be a metric space. Let, F,G: X—
B(X) be set valued mappings and I: X—X be single valued
mapping, and satisfy the following conditions:
(@). FOX)S 1(X) and G(X) = I(X).
(b) 8°(Fx,Gy) < a max{d°(Ix,ly), §°(Ix,Fx), 8°(ly,Gy)} +
(1-a) [a DP(Ix,Gy) + b DP(ly,Fx)]
for all x,y in X and p>1, 0<a<l, a,b>0, and o+(1-
a)(atb)<l
() The pairs (F,1) and (G,I) satisfy CLR, property.
If I(X) and J(X) are closed subsets of X, then the following
holds:
1. land Fhave a coincidence point.
2. land G have a coincidence point.
3. land F have a common fixed point if | and F are
weakly compatible at v and IlIV=Ilv for any v

EC(1,F).

4. Jand G have a common fixed point if J and G are
weakly compatible at v and llv=lv for any v

EC(1,6).
5. F,G and | have a common fixed point in X if
both (3) and (4) are true

Proof: If we put J=I in our main Theorem 2, then we will
get the result.

Corollary 9: Let, (X,d) be a metric space. Let, F: X—
B(X) be set valued mapping and I: X—X be single valued
mapping, and satisfy the following conditions:
(@). FOX)= 1(X)
(b) 8°(Fx,Fy) < a max{d°(Ix,ly), 8°(Ix,Fx), 8°(ly,Fy)}+(1-
a)[aDP(Ix,Fy)+bDP(ly,Fx)] for all
x,y in X and p>1, 0<o<1, a,b>0, and o+(1-a)(a+b)<I.
(c) The pair (F,1) satisfies CLR, property.
If 1(X) is a closed subsets of X, then the following holds:

1. 1 and Fhave a coincidence point.
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2. | and F have a common fixed point if | and F are
weakly compatible at v and IlIV=Iv for any v

€ C(I,F).

3. Fand I have a common fixed point in X if both
(3) and (4) are true
Proof: If we put G=F and J=I in our main theorem 2, then
we will get the result.

Corollary 10: Let, (X,d) be a metric space. Let, F; : X—
B(X),¥ iEN be set valued mappings and 1J: X—X be

1. land F;have a coincidence point.

2. Jand Fj,; have a coincidence point.

3. land F; have a common fixed point if | and F; are
weakly compatible at v and IlIV=Iv for any v

& C(I,F).
V. Conclusion

In this paper we prove some Common fixed point theorem
of single-valued and multi-valued in metric spaces, and
this is a generalization of many existing results in this
literature. We gave examples, corollaries, remarks which
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