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I. INTRODUCTION 
 

Molodtsov [20] elaborated a lot of potential applications of 

soft sets in different fields including the smoothness of 

functions, game theory, operations research, Riemann 

integration, Perron integration, probability theory and 

measurement theory. Aktas and Cagman ( [4], [5] ) 

investigated the basic concepts of soft set theory and 

compared soft sets to fuzzy and rough sets, providing 

examples to clarify their differences. The complexities of 

modeling uncertain data in economics, engineering, 

environmental science, sociology, medical science and many 

other fields cannot be successfully dealt with by classical 

methods. While probability theory, fuzzy set 

theory( [28], [29] ), rough set theory([23], [24]), vague set 

theory [16] and the interval mathematics [6] are useful 

approaches to describing uncertainty, each of these theories 

has its inherent difficulties. Consequently, 

Molodtsov [20] proposed a completely new model for 

modeling vagueness and uncertainty, which is called soft set 

theory. Now, works on soft set theory are progressing 

rapidly. Maji et.al [21] described the applications of soft set 

theory and have published a detailed theoretical study on 

soft sets [9].They also defined and studied soft group and 

derived their basic properties by using Molodtsov’s 

definition of the soft sets. Ali et.al [6] introduced some new 

notions such as the restricted intersection, the restricted 

union, the restricted difference and the extended intersection 

of two soft sets. Feng et.al [15] introduced and investigated 

soft semirings, soft subsemirings, soft ideals, idealistic soft 

semirings and soft semiring homomorphisms. Acar 

et.al [2] introduced initial concepts of soft rings. Atagun and 

Sezgin [3] introduced the notions of soft near-rings, soft 

subnear-rings, soft (left, right) ideals, (left, right) idealistic 

soft near-rings and soft near-ring homomorphisms and 

investigated them with many corresponding examples. 

In [10], Cagman and Enginoglu defined soft matrices and 

their operations to construct a soft max–min decision 

making method which can be successfully applied to the 

problems that contain uncertainties. Sezgin 

et.al [27] extended the study of soft near-rings especially 

with respect to the idealistic soft near-rings as well. The 

algebraic structure of set theories dealing with uncertainties 

has also been studied by some authors. 

Rosenfeld [25] proposed the concept of fuzzy groups in 

order to establish the algebraic structures of fuzzy sets. 

Abou-Zaid [1]introduced the notion of a fuzzy subnear-ring 

and studied fuzzy ideals of a near-ring. This concept is also 

discussed by many authors (e.g., [19], [20], [21], [22]). 

Atagun [6] defined the notions of soft subnear-rings, soft 

ideals and soft N-subgroups of near-rings. Rough groups 

were defined by Biswas et.al [8] and some other authors 

(e.g., [8], [18]) have studied the algebraic properties of 

rough sets as well. In this paper, we discuss the analysis of 

fuzzy soft sub modules over subfields of a field. Some 

related properties about algebraic substructures of soft fields 

and soft sub modules are investigated and illustrated by 

many examples. Finally, we discuss the correlation 

coefficient between them. 
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II. PRELIMINARIES 

 

By a ring, we shall mean an algebraic system (R, +, • ), 

where 

(i) (R, +) forms an abelian group, 

(ii) (R, • ) forms a semi group and  

(iii) x• (y +z) = xy + xz and (x+y) • z = xz + yz  for all x,y,z 

∊ R (i,e ., left and right distributive laws hold) 

 

Through out this paper, R will always denote a ring. 

A left R-module over a ring R consists of an abelian group 

(M , +) and an operation R × M M such that for all r,s ∊ R, 

x,y ∊ M, we have  

(i) r (x +y ) = rx +ry 

(ii) (r+s)x    = rx +sx 

(iii) (rs)x    = r(sx). It is denoted by R
M

. 

 

Clearly R itself is a (left) R-module by natural operation. 

Suppose M is a left R-module and N is a subgroup of 

M.Then N is called a sub module (or R-sub module) if, for 

any n ∊ N and any         r ∊ R, the product rn is in N. 

Molodtsov [20] defined the soft set in the following manner; 

Let U be an initial universe set, E  be a set of parameters, 

P(U) be the power set of U  and A is subset of E. Then A is 

called a soft set of U. 

 

In fact, there exists a mutual correspondence between soft 

sets and binary relations as shown in [21] . That is, let A and 

B be non-empty sets and assume that α  refers to an arbitrary 

binary relation between an element of A and an element of 

B.A set-valued function δ : A  B can be defined as δ (x) = 

{ y ∊ B /(x, y) ∊ α }.  

 

Definition 2.1[Molodtsov]: Let δA and δB be two soft sets 

over a common universe U such that A ∩ B ≠ ɸ. The 

restricted intersection of δA and ∆B is denoted by δA ∩∆B , 

and it is denoted by  δA∩∆B =HC, where C  = A ∩ B  and for 

all c ∊ C, H(C) = δ(C) ∩ ∆(C). 

Through out this section, we denote a field by  ₣ and a 

subfield  S of  ₣ by S < ₣. 

 

Definition 2.2[Fuzzy set]: Let X is a set (space). A map A: 

X → [ 0,1] is called fuzzy set in X and it is defined as A = { 

(x , δA(x)) / x ∊ X } where δA(x) ∊ [ 0,1]. 

 

Definition 2.3 [Interval valued fuzzy set]:  Let [J] ∊ [0,1] 

and M = [ML, MU] ∊ [J], where ML and MU are the lower 

extreme and the upper extreme, respectively. For a set X, an 

interval valued fuzzy set [ IVFS]  A  = { (x, MA(x)) / x ∊X } 

where the function MA : X → [J] defines the grade of 

membership of an element x to A, and MA(x) = [ MAL(x), 

MAU(x)] is called an interval-valued fuzzy number.  

 

Throughout this section, we denote a module by M and a sub 

module (rep; ideal) N of M by       N < M. 

Definition 2.4:  Let N be a fuzzy sub module of M and let ( 

₣ , N)  be a soft set over M. If for all x,y ∊ N and for all r ∊ 

R, 

(SM1) ₣ (x
m

-y
m
) ⫄₣(x

m
) ⋂₣(y

m
) and  

(SM2) ₣(rx
m
) ⫄₣(x

m
), then the soft set (₣ , N)  is called a 

fuzzy soft sub module of M and denoted by (₣ , N) < M or 

simply ₣N< M. 

Example 2.5: Let R = (Z10, +, ∘ ), M= (Z10, + ) be a left R-

module with natural operation and   N1 = {0,5} be a sub 

module of M. Let the soft set (₣, N1) over M, where ₣ : N1→ 

P(M) is a set valued function defined by ₣(0) = (0,3,4,9} and 

₣ (5) = {0,9}. Then it can be easily seen that     (₣ , N1) < M. 

Let N2 = {0,2,4,6,8} < M  and the soft set (G, N2) over M, 

where G : N2→ P(M) is a set -valued function defined by 

G(0) = {0,2,5,7,9} and G(2) =   G(4) = G(6) =  G(8) = { 

2,9}. Then (G , N2) < M, too. However if we define the soft 

set ( H, N2) over M such that H(0) =  Z10, H(2) = { 1,7}, 

H(4) = {3,5,7}, H(6) = {1,2,8}, H(8) = {2,4,7}, then H(7 . 6 

) =  H(2) = {1,7} ⊉ H(6) = {1,2,8}. Therefore, (H, N2) is not 

a soft sub module over M. 

Theorem-2.6: The intersection of two fuzzy soft sub 

modules of M is also a fuzzy soft             sub module of M. 

Proof: Since S1 and S2  are soft sub modules of ₣, then S1⋂ 

S2 is a soft sub module of ₣. 

By definition 2.1 ,, let  

GS1⋂ HS2 = (G,S1) ⋂ (H,S2) = (T , S1⋂S2), where T(x
m
) = 

G(x
m
) ⋂ H(y

m
) for all x ∊ S1⋂ S2 ≠ ϕ, then for all x,y ∊ S1⋂ 

S2. 

(FSM1) T (x
m

- y
m
 ) = G(x

m
- y

m
) ⋂ H(x

m
-y

m
) 

⫄ (G(x
m
) ⋂ G(y

m
)) ⋂ (H(x

m
) ⋂ H(y

m
)) 

 = (G(x
m
) ⋂ H(x

m
)) ⋂ (G(y

m
) ⋂ H(y

m
)) 

= T(x
m
) ⋂ T(y

m
), 

(FSM2) T(rx
m
) = G(rx)

m⋂ H(rx)
m⫄(G(x

m
)⋂H(x

m
))=T(x

m
) . 

Therefore G S1⋂ HS2 = T S1⋂S2< M. 

Definition-2.7: Let M1  andM2 be fuzzy soft sub modules 

and let ( G , S1 ) and ( H, S2) be two fuzzy soft sub modules 

of M1 and M2, respectively. The product of fuzzy soft sub 

modules            (G, S1) and (H, S2) is defined as (G , S1) x (H 

, S2)  = (Q ,S1xS2), where Q(x,y) = M(x) x G(y)  for all (x,y) 

∊ S1x S2. 

Theorem-2.8:The product of two fuzzy soft sub modules of 

M is also a fuzzy soft sub module of M. 

Proof: Since S1 and S2  are soft sub modules of M, then S1⋂ 

S2 is a soft sub module of M.  

By definition 2.1 , let GS1x HS2 = (G,S1) x (H,S2) = (Q , 

S1xS2),where Q(x,y) = M(x) x G(y)  for all (x,y) ∊ S1x 

S2.Thern for all (x1,y1), (x2, y2) ∊ S1 x S2. 

(FSM1)Q((x1, y1)
m
 – (x2, y2)

m
) = Q(x1

m
-x2

m
, y1

m
-y2

m
 )  

= G(x1
m

-x2
m
) x H(y1

m
-y2

m
) ⫄(G(x1

m
) xG(x2

m
)) x (H(y1

m
) ⋂ 

H(y2
m
)) 

 = (G(x1
m
) xH(y1

m
)) x (G(x2

m
) ⋂ H(y2

m
))= Q(x1, y1) x Q(x2 , 

y2) 

(FSM2) Q(r(x1,y1))
m
  = G (x1y1)

m
 x H (x1y1)

m 

⫄(G(x1
m
)  xH(y1

m
)) = Q(x1, y1)  

Therefore  G S1x HS2 = QS1x S2 < M1 x M2. 
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Proposition 2.9: If GS < M, then G (0
m

M) ⫄ G(x
m
) for all x ∊ 

S. 

Proof: Since (G ,S) is not a fuzzy soft sub module of M, then 

for all x ∊ S,  

G(0
m

M) =  G ( x
m
 – x

m
 ) ⫄ G(x

m
) ⋂ G(x

m
) = G(x

m
) for all x ∊ 

S. 

Proposition 2.10: If Gs < M and G(1mM) = G(0
mM), then SG 

= {x ∊ S / G(x
m
) = G(0

mM)} is a fuzzy sub module of S. 

Proof : we need to show that 0
m

M∊ SG, 1mM∊ SG, x
m

-y
m∊ SG 

(y ≠ 0M) for all x,y∊ SG, which means that (i) G(0M
m) = 

G(0M
m),  (ii) G(1M

m) = G(0M
m)  and (iii) G(x

m
-y

m
) = G(0M

m
) 

and              (iv) G(rx)
m
 =  G(0M

m)  have to be satisfied. (i) is 

obivious and  (ii) comes from the assumption. Since x,y∊ SG, 

then G(x) = G(y) =  G(0M
m
). Since (G, S) is a sub module of 

M, then G(x
m

-y
m
) ⫄ G(x

m
) ⋂ G(y

m
) = G(0M

m
) and G(rx)

m⫄ 

G(x
m
)  =  G(0M

m
) for all x,y ∊ SG (y ≠ 0M). Moreover, by the 

proposition 2.9, G(0M
m
) ⫄ G(x

m
-y

m
) and G(0M

m) ⫄ G(rx)
m
. 

Therefore SG is a fuzzy soft      sub module of S. 

 

Definition-2.11:Let  (G , S ) be a fuzzy soft sub module of 

M. Then  

(i) (G, S ) is said to be trivial if G(x
m
) = {0

mM} for all x ∊ 

S. 

(ii) (G, S ) is said to be whole if G(x
m
) =  M for all x ∊ S. 

Proposition 2.12: Let ( G ,S1) and ( H, S2)  be fuzzy soft sub 

modules of M. Then 

(i) If ( G , S1) and (H , S2) are trivial fuzzy soft sub 

modules of M, then (G, S1) ⋒ (H , S2) is a trivial fuzzy 

soft sub module of M. 

(ii) If ( G , S1) and (H , S2) are whole fuzzy soft sub 

modules of M, then (G, S1) ⋒ (H , S2) is a whole fuzzy 

soft sub module of M. 

(iii) If ( G , S1) is a trivial fuzzy sub module of M and (H , 

S2) is a whole fuzzy soft          sub module of M, then 

(G, S1) ⋒ (H , S2) is a trivial fuzzy soft sub module of 

M. 

Proof: The proof is easily seen by definition- 2.1and  

definition-2.11 and theorem -2.6. 

Theorem-2.13: Let M1 and M2  be modules and (G1, S1) < 

M1, (G2, S2) < M2. If f : S1→ S2 is a module homomorphism, 

then  

(a) If f is epimorphism, then (G1, f
-1

(S2))  < M1, 

(b) (G2, f(S1)) < M2, 

(c) (G1, Ker f) < M1. 

Proof: (a) Since S1 < M1, S2 < M2 and f :M1→M2 is a module 

epimorphism, then it is obivious that f
-1

(S2) < M1. Since ( G1, 

S1) < M1 and f
-1

(S2) ⊆ S1, G1(x
m

-y
m
) ⫄ min { G1(x

m
) , 

G1(y
m
)}  

for all x,y ∊ f
-1

(S2) and G1(rx)
m⫄ G1(x

m
) . 

Hence (G1, f
-1

(S2)) < M1. 

(b) Since S1 < M1, S2 < M2  and f : S1 → S2 is a module 

homomorphism, then f(S1) < S2.Since            f (S1) < S2, the 

result is obivious by definition -2.7. 

(c) By theorem 2.13 (a), (G1, Ker f) < M1 . Then (G2, Ker f) 

= (G2, {0s2})) < M2 by theorem 2.13(b). 

Corollary2.14: Let  (G1, S1) < M1, (G2,S2) < M2 and f: S1→ 

S2 is a module homomorphism. Then (G2, {0s2})) < M2.  

Proof: By theorem 2.13 (c) ,(G1, Ker f) < M1 . Then (G2, Ker 

f) = (G2, {0s2})) < M2 by theorem 2.13(b). 

 

Definition-2.15: Let S be a soft subfield of M and let (G, S ) 

be a soft set over M. If for all       x,y ∊ S, 

(FS₣1) G(x
m
– y

m
) ⫄ G(x

m
) ⋂ G(y

m
) = min { G(x

m
), G(y

m
)}, 

(FS₣2) G(xy
-1

)
m⫄  G(x

m
) ⋂ G(y

m
) = min { G(x

m
), G(y

m
)} (y 

≠ 0M ), then the soft set (G, S) is called a fuzzy soft subfield 

of M and denoted by (G , S ) < M  or simply GS < M. 

Example 2.16: Let M = (Z3 , + , ∘ ) , S = Z3 < Z3  and the 

soft set (G, S) over ₣, where G : S → P(M) is a set- valued 

function by G(0) = Z3, G(1) = G(2) = {1,2}. Then it can be 

easily seen that (G ,S ) < M. 

However if we define the soft set ( H ,S ) over ₣ such that H 

: S → P(M) is a set-valued function defined by H(0) = Z3 , 

H(1) = {1,2} and  H(2) = {0,1}, then H(2.2
-1

) = H( 2.2 ) = 

H(1) = {1,2} ⊉ min{ H(2), H(2) } = H(2) = {0,1}. It follows 

that (H ,S ) is not a fuzzy soft subfield of M. 

 

Definition 2.17: Let I be an ideal of R and let ( ₣ , I ) be a 

soft set over R. If for all x,y ∊ I and    r ∊ R, 

(FSI1) ₣ (x
m
 –y

m
) ⫄ min { ₣(x

m
) , ₣ (y

m
)} = ₣(x

m
) ⋂ ₣ (y

m
) 

(FSI2) ₣ (rx)
m⫄ ₣(x

m
) 

(FSI3) ₣ (xr)
m⫄ ₣(x

m
), then (₣ , I ) is called a fuzzy soft ideal 

of R and denoted by ₣I < R. 

Example 2.18: Let R = (Z12 , + , ∘) , I1 = {0,6} < R and the 

soft set (₣ , I1) over R , where            ₣ : I1 → P(R)  is a set-

valued function defined by  ₣(0) = Z12  and ₣(6) = {1,7}. It is 

denoted as ₣I1 < R.Also let I2 = {0,4,8} < R and the soft set 

(G , I2) over R , where G : I2 → P(R)  is a set-valued  

function defined by G(0) = Z12, G(4) = G(8) = { 3,9 }. It is 

denoted as GI2 < R. 

 However if we define the soft set ( H ,I2 ) over R such that 

the soft set H : I2 → P(₣) is a set-valued function defined by 

H(0) = Z12 , H(4) = {1,3} and  H(8) = {1,2},  ⊉  H (4)  = 

{1,3}. It follows that (H , I2 ) is not a fuzzy soft subideal of  

R. 

 

III. OPERATIONS ON  SUBFIELDS STRUCTURES 

OVER A FIELD 

 

In this section, we study some operations on subfields over a 

field. 

Theorem3.1: The intersection of two fuzzy soft subfields  of 

₣ is also a fuzzy soft subfield of ₣. 

Proof: Since S1 and S2 are fuzzy subfields of ₣, then S1⋂ S2 

is a fuzzy subfield of ₣. 

By definition 2.15 , let  

GS1⋂ HS2 = (G,S1) ⋂ (H,S2) = (T , S1⋂S2), where T(x
m
) = 

G(x
m
) ⋂ H(y

m
) for all x ∊ S1⋂ S2 ≠ ϕ, then for all x,y ∊ S1⋂ 

S2. 

(FS₣1) T (x
m

- y
m
 ) = G(x

m
- y

m
) ⋂ H(x

m
-y

m
) 

⫄ (G(x
m
) ⋂ G(y

m
)) ⋂ (H(x

m
) ⋂ H(y

m
)) 
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= (G(x
m
) ⋂ H(x

m
)) ⋂ (G(y

m
) ⋂ H(y

m
)) 

= T(x
m
) ⋂ T(y

m
), 

(FS₣2) T(xy
-1

)
m
 = G(xy

-1
)

m⋂ H(xy
-1

)
m⫄ (G(x

m
) ⋂ G(y

m
)) ⋂ 

(H(x
m
) ⋂ H(y

m
)) = (G(x

m
) ⋂ H(x

m
)) ⋂ (G(y

m
) ⋂ H(y

m
)) =  

T(x
m
) ⋂ T(y

m
). Therefore G S1⋂ HS2 = T S1⋂S2 < ₣. 

 

Definition 3.2: Let ₣1  and₣2 be fields and let ( G , S1 ) and ( 

H, S2) be two fuzzy soft subfields of ₣1 and ₣2 respectively. 

The product of fuzzy soft subfields ( G, S1) and (H , S2 ) is 

defined as (G , S1) x (H , S2)  = ( Q ,S1xS2), where Q(x,y) = 

₣(x) x G(y)  for all (x,y) ∊ S1x S2. 

Theorem 3.3 : The product of two fuzzy soft subfields  of ₣ 

is also a fuzzy soft subfield of ₣. 

Proof: Since S1 and S2 are soft subfields of ₣, then S1⋂ S2 is 

a soft subfield of ₣. 

By definition 2.15 , let GS1x HS2 = (G,S1) x (H,S2) = (Q , 

S1xS2),where Q(x,y) = ₣(x) x G(y)  for all (x,y) ∊ S1x 

S2.Then for all (x1,y1), (x2, y2) ∊ S1 x S2. 

(FS₣1) Q((x1, y1)
m
 – (x2, y2)

m
) = Q (x1

m
-x2

m
, y1

m
-y2

m
 )  

= G(x1
m

-x2
m
) x H(y1

m
-y2

m
) ⫄(G(x1

m
) ∩ G(x2

m
)) x (H(y1

m
) ⋂ 

H(y2
m
)) 

 = (G(x1
m
) ∩H(y1

m
)) x (G(x2

m
) ⋂ H(y2

m
)) 

= Q(x1, y1) x Q(x2 , y2) 

(FS₣2) Q((x1,y1) (x2, y2)
-1

)
m
 = Q( (x1x2

-1
)

m
 ( y1y2

-1
)

m
) 

= G (x1x2
-1

)
m
 x H (y1y2

-1
)

m⫄(G(x1
m
) ∩ G(x2

m
)) x (H(y1

m
) ⋂ 

H(y2
m
))= (G(x1

m
) ∩ H(y1

m
)) x (G(x2

m
) ⋂ H(y2

m
))= Q(x1, y1) 

x Q(x2 , y2) 

Therefore G S1x HS2 = QS1x S2 < ₣1 x ₣2. 

Proposition 3.4: If GS < ₣, then G(0
m
₣) ⫄ G(x

m
) for all x ∊ 

S. 

Proof: Since (G ,S) is not a fuzzy soft subfield of ₣, then for 

all x ∊ S, G(0
m
₣) =  G ( x

m
 – x

m
 ) ⫄ G(x

m
) ⋂ G(x

m
) = G(x

m
) 

for all x ∊ S. 

Proposition 3.5: If Gs < ₣ and G(1
m₣) = G(0

m₣), then SG = 

{x ∊ S / G(x
m
) = G(0

m₣)} is a    fuzzy subfield of S. 

Proof :  we need to show that 0
m
₣∊ SG, 1

m
₣∊ SG, x

m
-y

m∊ SG 

(y ≠ 0₣) for all x,y∊ SG, which means that (i) G(0₣m) = 

G(0₣m),  (ii) G(1₣m) = G(0₣m), (iii) G(x
m

-y
m

) = G(0₣
m
) and 

(iv) G(xy
-1

)
m
 =  G(0₣m)  have to be satisfied. (i) is obivious 

and  (ii) comes from the assumption. Since x,y∊ SG, then 

G(x) = G(y) =  G(0₣
m
). Since (G, S) is a subfield of ₣, then 

G(x
m
-y

m
) ⫄ G(x

m
) ⋂ G(y

m
) = G(0₣

m
) and G(xy

-1
)

m⫄ G(x
m
) 

⋂ G(y
m
) =  G(0₣

m
) for all x,y∊ SG (y ≠ 0₣). Moreover, by the  

proposition- 3.4, G(0₣
m
) ⫄ G(x

m
-y

m
) and G(0₣m) ⫄ G(xy

-1
)

m
. 

Therefore SG is a fuzzy subfield of S. 

 

Definition 3.6 : Let  (G , S ) be a fuzzy soft subfield of ₣. 

Then  

(i)  (G, S ) is said to be trivial if G(x
m
) = {0

m₣} for all x 

∊ S. 

(ii) (G, S ) is said to be whole if G(x
m
) =  ₣ for all x ∊ S.  

Proposition 3.7: Let ( G ,S1) and ( H, S2)  be fuzzy soft 

subfields of ₣. Then 

(i) If ( G , S1) and (H , S2) are trivial fuzzy soft subfields 

of ₣, then (G, S1) ⋒ (H , S2) is a trivial fuzzy soft 

subfield of ₣. 

      (ii) If ( G , S1) and (H , S2) are whole fuzzy soft subfields 

of ₣, then (G, S1) ⋒ (H , S2) is a whole fuzzy soft subfield of 

₣. 

     (iii) If ( G , S1) is a trivial fuzzy soft subfield of ₣ and (H 

, S2) is a whole fuzzy soft subfield of ₣, then (G, S1) ⋒ (H , 

S2) is a trivial fuzzy soft subfield of ₣. 

Proof: The proof is easily seen by definition 2.15and  

definition-3.6 and theorem -3.1. 

Theorem 3.8: Let ₣1 and ₣2  be fields and (G1, S1) < ₣1, (G2, 

S2) < ₣2. If f : S1→ S2 is a field homomorphism, then  

(a) If f is epimorphism, then (G1, f
-1

(S2)) < ₣1, 

(b) (G2, f(S1)) < ₣2, 

(c) (G1, Ker f) < ₣1. 

Proof: (a) Since S1< ₣1, S2 < ₣2 and f :₣1→₣2 is a field 

epimorphism, then it is obivious that        f
-1

(S2) < ₣1. Since ( 

G1, S1) < ₣1 and f
-1

(S2) ⊆ S1, G1(x
m
-y

m
) ⫄ min { G1(x

m
) , 

G1(y
m
)} for all x,y∊ f

-1
(S2) and G1(xy

-1
)

m⫄ min { G1(x
m
) , 

G1(y
m
)}(y ≠ 0₣1). 

Hence (G1, f
-1

(S2)) < ₣1. 

(b) Since S1< ₣1, S2 < ₣2  and f : S1→ S2 is a field 

homomorphism, then f(S1) < S2.Since  

f(S1) < S2, the result is obvious by definition 3.2. 

(c) By theorem 3.8 (a), (G1, Ker f) < ₣1 . Then (G2, Ker f) = 

(G2, {0s2})) < ₣2 by theorem 3.8(b). 

Corollary 3.9 : Let  (G1, S1) < ₣1, (G2,S2) < ₣2 and f: S1→ S2 

is a field homomorphism, then   (G2, {0s2})) < ₣2. 

Proof: By theorem 3.8 (c) ,(G1, Ker f) < ₣1 .Then (G2, Ker f) 

= (G2, {0s2})) < ₣2 by theorem 3.8 

 

IV. CORRELATION COEFFICIENT’S BETWEEN 

INTERVAL VALUED FUZZY SOFT SUBFIELD (A) 

AND FUZZY SOFT SUB MODULE (B) 

 

Definition 4.1: Let A and B are two IVFS . The correlation 

between A and B is defined as CORR (A,B) = ∑AB divides 

∑A and ∑B. 

Example 4.2: Let A = [ 0.2 , 0.3 ] and B = [ 0.4 , 0.5 ]  be 

two IVFS. Then ∑AB = 0.23,           ∑A = 0.6 and ∑B = 0.8. 

Hence CORR (A,B) = 0.31. 

In general, when  i = 1,2,……..,n , correlation coefficient 

occurs whose value in [0 , 1] . 

 

Definition 4.3: Let A = [ 0.2 , 0.5 ] and B = [ 0.5 , 0.8 ] be 

two IVFS. 

Union : A U B =  max {A, B } = 0.8 

Intersection: A ∩ B = min {A , B } = 0.2. 

Note 4.4: The actual correlation score value between two 

IVFS’s A and B is given by  

Score value  υ= min max{ A U B, A∩B}. 

From the definition 4.3, score value is obtained by υ =  0.2. 

Remark 4.5: CORR (A) ≤ CORR(B) 

CORR(AB) ≤ CORR (A) 
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Score CORR(A) ≤ Score CORR(AB). 

In n
th

 occurrence of correlation is  ρ = ∑ ∑      
   

 
    

divides ∑     
   ∑     

    

Now  if x ∊ CORR(An) and y ∊ CORR(An) such that x ʌ y ∊ 

CORR(An).  

If x  CORR(An) and y   CORR(An) , then the following 

four cases arise. 

Case-1: x ∊ X / An  and y ∊ X /An 

Case-2: x ∊ X / An-1  and y ∊ X /An-1 

Case-3- x ∊ X / An  and y ∊ X /An-1 

Case-4: x ∊ An-1  and y ∊ R /An. 

 

The correlation measure is obtained for K and L 

ρ = C (K, L ) / √ (   )  (   ) 
Let {Ai / i = 0,1,2,........., k } be a family of IVFS  such that 

(i) CORR(An) ⊆  CORR (A1) ⊆ CORR (A2) 

............ ⊆  CORR(Ak) = X. 

(ii) An* = An / An-1 /........./ A-1.  

In this section, we form a new algorithm to find out suitable 

correlations between two interval-valued fuzzy sets. 

 

V. ALGORITHM 

 

Step-1: Set an IVFS according the problem. 

Step-2: Preparation of table for calculations. 

Step-3: find out AUB and A∩B. 

Step-4: Correlation coefficient  CORR (A,B) = ∑AB divides 

∑A and ∑B. 

Step-5: Actual score value using min max {AUB, A∩B}. 

Step-6: Compare the result. 

 

4.7 Problem: For an interval valued fuzzy sets A and B, 

supposed to be 5 observations, the correlation coefficient has 

been formulated according to the following IVFS sets A and 

B as  

X = { A / [0.2, 0.4],[0.3, 0.9],[0.1, 0.4],[0.2, 0.7],[0.8, 

0.9]and 

 B / [0.3, 0.6], [0.8, 0.4],[0.2, 0.7] ,[0.4, 0.8],[0.7, 0.4]}. 

 

Step-2: Preparation of table for calculations 

N Field A Field B 

1 [0.2, 0.4] [0.3, 0.6] 

2 [0.3, 0.9] [0.8, 0.4] 

3 [0.1, 0.4] [0.2, 0.7] 

4 [0.2, 0.7] [0.4, 0.8] 

5 [0.8, 0.9] [0.7, 0.4] 

 

Step-3: find out AUB and A∩B. 

In this problem, we have to find union and intersection can 

be calculated for 5 observations as  

AUB = { [0.3, 0.6], [ 0.8. 0.9], [0.2, 0.7],[0.4, 0.8],[0.8, 0.9] 

}  

A∩B = { [0.2, 0.4], [0.3, 0.4], [0.1, 0.4], [0.2, 0.7], [0.7, 0.4] 

}. 

 

Step-4: Correlation coefficient CORR (A,B) 

Using step-3, by routine calculations, we can calculate ρ =  

0.032. 

Step-5: by using Note-4.4, the Actual score value is 

calculated as υ = [0.1, 0.1] =0.1. 

Step-6: Comparing step-4 and step-5, all values lies in the 

interval [0, 1]. 

 

VI. CONCLUSION 

 

In this work, we discuss the analysis of fuzzy soft  sub 

modules over subfields of a field. Some related properties 

about algebraic substructures of soft fields and soft sub 

modules   are investigated and illustrated by many examples. 

we studied certain concept and derivations in which a new 

kind of interval-valued fuzzy correlation method. Also we 

compare the actual preparation value with calculation value 

in a simple manner. One can obtain squared value of IVFS 

by using the above algorithm. 
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