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Abstract—We Present the sum of the Polygonal numbers of even order are derived from Stella Octangula number and Pronic 

number using division algorithm. 
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I.  INTRODUCTION  
 

The theory of numbers has always occupied a unique 

position in the world of Mathematics. It is a kind of general 

theory concerning the notion of number and its 

generalization starting from integers. 

 

In [1-4], theory of numbers were discussed. In [5], a 

function NNA :  is defined by mnA )(   where m  is the 

smallest  natural number  such that n   divides 
n

km

1

2  & 

in [6], a function )n(A  is given  by m)n(A    where k  is 

the smallest  natural number  such that n   divides 
n

mm

1

 

and  
n

1

3km were discussed. In [7&8] Stella Octangula 

number and Pronic number were evaluated using z-transform 

& Pronic number was analyzed for its special dio-triples. 

Recently, in [9&10] centered polygonal numbers and 

polygonal numbers were evaluated using division algorithm. 

In this communication, we determine a function )(nA  given 

by mnA )(  where m is the sum of the Polygonal numbers 

of even sides, such that nPro and nSO divides 

)polynomiala(m . 

 

Section I contains the introduction of the division algorithm, 

Section II contain the notations, Section III explain the 

methodology of determining the sum of the polygonal from 

Stella Octangula number and Pronic number using division 

algorithm, Section IV concludes research work with future 

directions. 

II. NOTATIONS 

 

nSO Stella Octangula number of rank ‘n’. 

nPro Pronic number of rank ‘n’. 

nmT , Polygonal number with sides ‘m’ and rank ‘n’. 

III. METHOD OF ANALYSIS 

 

SECTION A: 

Determination of the sum of the Polygonal numbers of 

even sides from Stella Octangula number: 

Let NNA :  be defined by mnA )(   where m  is the 

smallest natural number such that nSO  divides 

 nknknm )44()14(2 23  .  If nSO   divides 

nknkn )44()14(2 23  , then 

nknknA )34()14()( 2  , otherwise  

  rnknknA  )34()14()( 2 , where r  is the smallest 

non-negative remainder when nknkn )44()14(2 23   is 

divided by nSO . Hence A  is defined for all n . By division 

algorithm, such remainder is given by 

  nqSOnknkn  )44()14(2 23
 where q  is the quotient 

when nknkn )44()14(2 23   is divided by nSO  & is 

given by the greatest integer function of 

 
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nknkn )44()14(2 23 
,  

 i.e., 
 

nSO

nknkn
q

)44()14(2 23 
  



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                Vol. 6(6), Dec 2019, ISSN: 2348-4519 

  © 2019, IJSRMSS All Rights Reserved                                                                                                                                   47 

So that, 
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SECTION B: 

Determination of the sum of the Polygonal numbers of 

even sides from Pronic number: 

Let NNA :  be defined by mnA )(   where m  is the 

smallest natural number such that nPro  

divides  nknkm )24()24( 2  .  If nPro   divides 

nknk )24()24( 2  , then nknknA )34()14()( 2  , 

otherwise    rnknknA  )34()14()( 2 , where r  is 

the smallest non-negative remainder when 
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defined for all n . By division algorithm, such remainder is 
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From Section A & Section B, We attain, A(n) is the Sum of 

the Polygonal numbers of even sides for different values of k 

where k=1,2, ...7 is given in the table below. 

Table 1. Examples 
n A(n) Sum of the Polygonal 

numbers of even sides 

1 nn 23  nn TT ,6,4   

2 nn 57 2   nn TT ,10,8   

3 nn 911 2   nn TT ,14,12   

4 nn 1315 2   nn TT ,18,16   

5 nn 1719 2   nn TT ,22,20   

6 nn 2123 2   nn TT ,26,24   

7 nn 2527 2   nn TT ,30,28   

 

IV. CONCLUSION 
 

To conclude that, one may find the other special numbers 

using division algorithm. 
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