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Abstract: The simultaneous effect of chemical reaction and magnetic field on an unsteady laminar free convection flow 

past an isothermal vertical cone is studied in this paper. The non linear governing equations are first written into a 

dimensionless form, and then Alternating Direction Implicit (ADI) Technique is applied to obtain numerical solutions of 

the governing equations. Flow variables are obtained and are presented graphically for different values of Prandtl number, 

Schmidt number. From numerical results, it is noticed that higher values of Prandtl number as well as Schmidt number 

results in decrease in velocity. 
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I. INTRODUCTION 

 

The study of effect of chemical reaction and transverse 

magnetic field on heat and mass transfer has various 

applications in science and technology. Few applications 

where it plays important role are in the steel industry for 

magnetic controlling of molten iron flow and in nuclear 

reactors for cooling of liquid metal. Numerous researches 

have been done to study the problem of free convection in 

the presence of chemical reaction with the effect of a 

magnetic field. 

 
Anjali Devi and Kandasamy [1] used R.K. Gill’s method 

to study a non- linear MHD flow over an accelerating 

vertical surface with heat source and thermal stratification 

in the presence of suction or injection and obtained 

approximate numerical solution of the governing 

equations. Afify [2] applied similarity transformation 

technique to study the effect of radiation and chemical 

reaction on free convective flow and mass transfer past a 

vertical isothermal cone surface in the presence of a 

transverse magnetic field. Kandasamy, Periyasamy, and 

Sivagnana Prabhu [3] used Gill method to analyze the 

effect of chemical reaction, heat and mass transfer on 
MHD flow of an incompressible, viscous, electrically 

conducting and Boussinesq fluid over a vertical stretching 

surface with heat source and thermal stratification effects 

and obtained an approximate numerical solution for the 

flow problem. 

 

 Al-Odat and Al-Azab [4] applied an implicit finite-

difference scheme of Crank–Nicolson type to numerically 

investigate the effect of first order chemical reaction on 

transient MHD free convective flow over an impulsively 

started vertical plate. El-Kabeir and Abdou [5] studied the 
effect of chemical reaction, mass and heat transfer on 

nonlinear MHD flow of an electrically conducting and 

Boussinesq fluid over a vertical isothermal cone surface in 

micropolar fluids with heat generation/absorption. Abdou 

and EL-Kabeir [6] investigated MHD free convection heat 

and mass transfer flow in a micropolar fluid over a vertical 

porous plate with uniform surface temperature with 

radiation and chemical reaction. Rajeswari, Jothiram and 

Nelson [7] studied influence of chemical reaction, heat and 

mass transfer on non linear MHD boundary layer flow of 

an electrically conducting viscous incompressible fluid 
past a vertical porous plate in the presence of suction. 

Using similarity transformation, they transformed the 

governing nonlinear PDE into nonlinear ordinary 

differential equations and obtained solutions using 

shooting method.  

 

Rashad, Modather and Chamka [8] used shooting method 

to investigate the effect of chemical reaction and thermal 

radiation on free convective heat and mass transfer of an 

electrically conducting and chemically-reacting MHD 

fluid flow from over stretching surface embedded in a 

saturated porous medium. Chandrakala and Bhaskar [9] 
studied the effect of magnetic field and homogeneous 

chemical reaction of first order on the transient convection 

flow of an incompressible viscous fluid past an 

impulsively started infinite vertical plate having variable 

temperature. The effects of magnetic field parameter, 

chemical reaction parameter, Prandtl number, Schmidt 

number, thermal Grashof number and mass Grashof 

number on flow variables like velocity, temperature and 

concentration were studied. The effect of homogeneous 

chemical reaction of first order on the MHD convection 
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flow of an incompressible viscous fluid past an 

impulsively started isothermal vertical plate with uniform 

mass diffusion was studied by Chandrakala and  Bhaskar 

[10]. Sheri and Shamshuddin [11] used finite element 

method and presented results for heat and mass transfer on 
MHD flow of micro polar fluid in the presence of viscous 

dissipation and chemical reaction. Santhosha et al [12] 

used regular perturbation method to investigate the 

influence of radiation and chemical on MHD convective 

heat and mass transfer flow of electrically conducting 

elastic fluid through porous medium delimited by a porous 

plate accompanied by heat generation/absorption. Garg 

and Shipra [13] obtained exact solution of MHD free 

convective and mass transfer flow in presence of uniform 

magnetic field near a moving infinite vertical plate in the 

presence of heat source/sink. The results are in terms of 

exponential and complementary error function using 
Laplace transformation method.  

 

From these studies, it is clear that the study of combined 

effect of chemical reaction and transverse magnetic field 

on free convection flow past a semi infinite vertical cone 

have not received adequate attention. This has motivated 

the present study. In the present paper, the combined effect 

of chemical reaction and transverse magnetic field on 

unsteady flow past a vertical cone is analyzed. The 

dimensionless form of the governing boundary layer 

equations is used. The resulting system of equations is 
then solved by Alternating- direction-implicit technique. 

The paper has six sections. Section I contains the 

introduction of the problem. The formulation of the 

problem along with the initial and boundary conditions is 

done in Section II. Section III discusses the Alternating 

Direction technique and section IV consists of the stability 

analysis of the problem. Section V contains the results 

obtained and discussion of these results. Section VI 

concludes the research work. 

 

II. PROBLEM FORMULATION 

 
We consider an unsteady, two dimensional, viscous 

incompressible, electrically conducing fluid flow past a 

semi-infinite isothermal vertical cone in the presence of a 

chemical reaction as well as transversely applied magnetic 

field. We are making following assumptions 

1. The surface of the cone makes an angle θ with the 

horizontal. The local radius of the cone is r  .  
2. The X- axis is measured along the surface of the cone 

from the apex  0x  and the Y-axis is measured 

normally from the cone to the fluid. 

3. The ambient fluid temperature is T
 . At time      , 

the cone and the fluid are at the same temperature T
  and 

the concentration is equal toC
 . At     , the temperature 

of the cone surface is  wT T  and the species 

concentration is  wC C
  .  

4. The gravitational acceleration is acting downward.  

5. The chemical reaction between the fluid and the species 

is assumed to be homogenous and first-order. The heat 

generated during the reaction is assumed as neglected. 

Also, the concentration of species is low. 

6. A uniform magnetic field 
0B is applied along the Y-axis. 

7. The fluid properties are assumed to be constant.  

8. The effect of viscous dissipation is assumed to be 

negligible. 

The flow is described by the following governing 

equations under above assumptions and with application of 

the Boussinesq’s approximation 

 
   

0
r u r v
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The initial and boundary conditions are: 

0 :

0 , 0, ,

0 :

0 , 0, , 0

0 , ,

0 , , 0

w w

t

u v T T C C

t

u v T T C C at y

u T T C C at y

u T T C C at x

 

 

 

 

        

 

          

        

        

               (5) 

 

Where u and v are the velocity components in the x and 

y  directions, respectively;  is fluid density, g  is 

acceleration due to gravity , t   is time, T  and C  are 

temperature and species concentration of the fluid in the 

boundary layer,   is volumetric coefficient of thermal 

expansion, wT   is the temperature far away from the cone 

surface,
0B is the magnetic field induction, is electrical 

conductivity, is kinematic viscosity, is thermal 

diffusivity, D is chemical molecular diffusivity,
 

K   is 

chemical reaction,   concentration expansion coefficient.  

We introduce the non-dimensional quantities 

1/4 1/2 1/4

1/2

2

, , ,

( ) ( )
, , ,

( ) ( )w w

x y u L v L
x y Gr u Gr v Gr

L L
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L L T T C C

 
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 

 

   
   

      
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3 3

2 2

( )sin ( )sin
,w wg L T T g L C C

Gr Gc
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 



 
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 
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2
1/2Pr , , ,

K L
Sc K Gr

D

 

 


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2 2
1/20 ,

B L Gc
M Gr N

Gr




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where L is the reference length,   is the kinematic 

viscosity, Pr is Prandtl number,  Sc is Schmidt number, 

Gr  is the Grashof number, Gc is mass Grashof  number, 

K is porosity, M is magnetic field parameter, N is the 

buoyancy ratio parameter and sinr x   . 

 

We can write Eqn. (1)-(4) in non-dimensional form as 

0
u v u

x y x

 
  

 
                              (7)   

2

2

u u u u
u v T NC Mu

t x y y

   
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   
               (8)       

2

2

1
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T T T T
u v
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  
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                    (9)                                    

2

2

1C C C C
u v KC

t x y Sc y

   
   
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                      (10)      

 

The initial and boundary conditions (5) are written as

        

0 :

0 , 0, 0, 0 ,

0 :

0 , 0, 1, 1 0

0 , 0, 0

0 , 0, 0 0

t

u v T C x y

t

u v T C at y

u T C at y

u T C at x



    



    

   

   

 

(11) 

 

III. NUMERICAL TECHNIQUE 

 

Applying Alternating-Direction-Implicit technique, the 

two dimensional, unsteady and non-linear partial 

differential equations given by (7)-(10) with the initial and 

boundary conditions (11) are solved. This scheme consists 

of two steps which splits an unsteady two dimensional 

problem into two separate one-dimensional problems. In 

first step the difference equations are made implicit in   at 

an intermediate time level   
  

 
 and the unknowns 

associated with the  -derivatives are evaluated. The 

implicit difference equations at the time level   
  

 
 are 

written as 
1 1

2 2
1, 1, , 1 , 1 ,

0
2 2

n n
n n n
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x y x
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The Eqns. (12) -(15) reduces into tri-diagonal form, we 

obtain solution for
1

2
,

n

i ju


and 
1

2
,

n

i jT


for all  , keeping   

fixed, using Thomas Algorithm. This step is repeated for 

next value     and so on. In the end of this step, the 

values of 
1

2
,

n

i ju


and 
1

2
,

n

i jT


at intermediate time level   
  

   
 

is known for all  (i, j). 

 

In the next step, difference equations are made implicit in 

  at time level   and the unknowns associated with the  -

derivatives are evaluated. The implicit difference 

equations at the time level   are written as 
1 1 1

1 12 2 2
1, 1, , , 1 ,

0
2

n n n
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x y x
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Reducing eqns. (16)-(19) to tri-diagonal form we yield 

solution for
, ,,n n

i j i jv u and 
,

n

i jT  for all  , keeping   fixed, 

using Thomas Algorithm. The calculations are repeated for 

all values of   . The values of 
, ,,n n

i j i jv u and 
,

n

i jT at next 

time level   is known for all (i, j) at the end of this step. 

Here, the subscript i  in 
, , ,, ,n n n

i j i j i ju v T
 
represents the 

grid node along the x- direction and j  subscript 

represents the grid node along the y- direction.  

 

We are taking the domain of integration to be a rectangular 

region with sides 

                                 

0 , 1

0 , 14

x x

y y

 

 
 

where the boundary condition 14y  corresponds to 

conditions at infinity. The mesh size is taken as 

0.05, 0.25x y    with the time step as 0.01t  . 

Computations are performed to make the absolute 

difference between values of both u and T at two 

consecutive time steps as negligible.  

 

IV. STABILITY ANALYSIS 
 

We examine the stability of differencing scheme by 

employing Von-Neumann Technique. The general term of 

the Fourier expansion for u and T at an arbitrary time t=0 

is assumed to be of the form 
iax ibye e  where 1i   . At 

any time t, these can be written as 
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We substitute these in Eqns. (17), (18) and (19). We take 
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On simplification eqns. (17) - (19) gives  
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Equations (21) - (23) can be written in matrix form as 
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   
    

(24)  

 

The stability of the differencing scheme can be established 

if the modulus of each Eigen value of the matrix does not 

exceed unity. Eigen values of the component matrix in 

(24) are its diagonal elements i.e.  2 / t C M

A B

  


, 

 

 

2 /

/ Pr

t C

A B

 



 and  

 

2 /

/

t K C

A B Sc

  


.We first check if

     

 2 /
1

t C M

A B

  



 

Since 

 

  2

2 /

2 sin( )

2 2
sin( ) 1 cos

( )

t C M

A B

u a x
i M

t x
v

i b y b y
t y y

  




 

 

    
  

 
We can clearly see that the real part of the numerator is 

always less than or equal to the real part of the 

denominator. Therefore,  2 /
1

t C M

A B

  



. Similarly, 

we can easily prove that 

 

 

2 /
1

/ Pr

t C

A B

 



 and  

 

2 /
1

/

t K C

A B Sc

  




 Hence, the differencing scheme is unconditionally stable.  



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                               Vol. 7, Issue.3, June 2020 

  © 2020, IJSRMSS All Rights Reserved                                                                                                                            43 

V. RESULT AND DISCUSSION 
 

 The flow variablesu velocity and temperatureT  are 

obtained by carrying out numerical computations at 

different time intervals and for values of 

Pr 0.7, 7.0 ; 0.5 ,5.0 ; 0.5 ,1;Sc M    1 ,2N  and

0.2K   using the Alternating direction implicit technique 

discussed in section 3. Taking0 1 ; 0 14 ;x y   

0.05 ,x  0.25;y   0.01t  , the ADI algorithm 

has been implemented in MATLAB programming 

language. The behavior of flow variables is studied with 

change in Prandtl number, Schmidt number, magnetic field 

parameter and buoyancy ratio parameter of the fluid. 
In Fig.1,  transient velocity profiles are plotted for 

different values of Prandtl number  Pr 0.7, 7.0 and 

Schmidt number  0.5 ,5.0Sc  . In Fig. 2 the transient 

velocity profiles are plotted for different values of 

magnetic field parameter  0.5,1M   and buoyancy ratio 

parameter  1,2N  .

 

 
Fig. 1: Velocity profile at x=1.0 for 0.5, 1M N  at t=1.0 

 

As expected, the velocity for Pr 7.0 (water) is always 

less than the velocity for Pr 0.7  (air) for fixed values of 

other parameters. It is noticed that an increase in Sc results 

in a fall in the velocity. It can be seen that as N increases, 

the velocity increases near the cone surface. As expected, 

an increase in value of magnetic field parameter M, results 

in decrease in velocity since a magnetic field retards the 

free flow of the fluid. 

 

 
Fig. 2: Velocity profile at x=1.0 for Pr 0.7, 0.5Sc  at t=1.0 

 

The effect of different values of Prandtl number

 Pr 0.7, 7.0 and Schmidt number  0.5 ,5.0Sc   on the 

temperature can be seen in Fig. 3. Fig. 4 represents the 

transient temperature profiles for different values of 

magnetic field parameter  0.5,1M   and buoyancy ratio 

parameter  1,2N  High values of Prandtl number results 

in steeper temperature profiles because of higher heat 

transfer rate. It is noticed that the temperature increases 

with increase in value of Sc as well as M. It can be seen 

that an increment in value of N results in fall in the 
temperature. 

 

 
Fig. 3: Temperature profile at x=1.0 for 0.5, 1M N  at t=1.0 

  

 
Fig. 4: Temperature profile at x=1.0 for Pr 0.7, 0.5Sc  at 

t=1.0 

 

 
Fig. 5: Concentration profile at x=1.0 for 0.5, 1M N  at 

t=1.0 

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

U

Y

 

 

Pr=0.7,Sc=0.5

Pr=0.7,Sc=5.0

Pr=7.0,Sc=0.5

Pr=7.0,Sc=5.0

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Y

U

 

 

N=1,M=0

N=1,M=0.5

N=1,M=1

N=2,M=0

N=2,M=0.5

N=2,M=1

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

T

 

 

Pr=0.7, Sc=5.0

Pr=0.7, Sc=0.5

Pr=7.0, Sc=5.0

Pr=7.0, Sc=0.5

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

T

 

 

M=1.0,N=1

M=0.5,N=1

M=1.0,N=2

M=0.5,N=2

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

C

 

 

Pr=7.0,Sc=0.5

Pr=0.7,Sc=0.5

Pr=0.7,Sc=5.0

Pr=7.0,Sc=5.0



  Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                               Vol. 7, Issue.3, June 2020 

  © 2020, IJSRMSS All Rights Reserved                                                                                                                            44 

 
Fig.6: Concentration profile at x=1.0 for Pr 0.7, 0.5Sc  at 

t=1.0 

 

The transient concentration profiles are shown in Fig 5 for 

different values of Prandtl number  Pr 0.7, 7.0 and 

Schmidt number  0.5 ,5.0Sc  Fig. 6 shows the transient 

concentration profiles for different values of magnetic 

field  0.5,1M   and buoyancy ratio parameter  1,2N  . It 

is seen that the species concentration increases with 

increase in value of Pr, whereas it decreases with higher 

values of the Schmidt number. The species concentration 

increases with increase in value of M but it decreases with 

increase in value of N. 

 

VI. CONCLUSION 
 

An MHD flow past a semi-infinite vertical cone with a 

chemical reaction is studied in this paper. The 

dimensionless governing equations are solved numerically 
using ADI technique. The conclusions of the study are as 

follows: 

1. When Pr, Sc or M increases, the velocity of the fluid 

decreases. With increased values of N velocity of the fluid 

increases 

2. With increased value of Pr or N, the temperature near 

the cone surface decreases; whereas it increases with 

higher values of Sc or M. 

3. The species concentration increases in the case of higher 

values of Pr or M and decreases for higher values of Sc or 

N. 
The results obtained are in good agreement with the 

previous studies [14] available. 
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