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Abstract— The study analyzes electro-magnetohydrodynamic (EMHD) flow in bifurcated arteries using a non-Newtonian 

Burgers' fluid model with an Atangana-Baleanu fractional derivative. The focus is on how magnetic fields, electric fields, and 

thermal properties affect blood flow, especially for enhancing tumor treatment via controlled heat transfer. The study formulates 

the nonlinear partial differential equations (momentum, energy, and concentration) and solved analytically using the combine 

Laplace transforms and the Homotopy Perturbation Method (HPM). The results show that parameters such as magnetic field 

strength, Burgers' parameter, fractional parameters, Eckert number, and Joule heating influence blood flow velocity, 

temperature, and concentration within the arteries. Specifically, stronger magnetic fields and higher Burgers' parameters reduce 

blood velocity, while thermal  factors like Eckert number and Joule heating increase temperature. These insights are valuable for 

biomedical applications such as targeted drug delivery, heat management, and tumor therapy. 
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1. Introduction  

In the study of fluid dynamics in biological systems, 

particularly blood flow in arteries, understanding the behavior 

of fluids is essential for addressing both physiological and 

pathological conditions. Blood's non-Newtonian, viscoelastic 

nature can be accurately modeled using the Burgers' fluid 

model, which has been widely explored in various contexts. 

For instance, Hayat et al. [1] examined the peristaltic flow of 

Burgers' fluid in a porous medium, focusing on heat and mass 

transfer, and provided analytical solutions for the velocity, 

temperature, and concentration profiles. Similarly, Khan and 

Shahzadi [2] studied the MHD flow of Burgers' fluid over a 

stretching sheet, emphasizing the effects of heat transfer and 

using similarity transformations to numerically solve the 

governing equations, particularly looking at the influence of 

magnetic fields and heat transfer on fluid behavior. Hayat et 

al. [3] also analyzed oscillatory flow in a porous medium 

under magnetic fields and thermal radiation, applying the 

Laplace transform method to obtain exact solutions for the 

velocity and temperature fields. Additionally, Yakubu et al. 

[4] explored the unsteady flow of Burgers' fluid in a 

cylindrical tube, incorporating factors such as a time-varying 

pressure gradient, body acceleration, and magnetic fields to 

examine their effects on blood velocity and temperature. 

Research on fractional calculus has grown significantly, 

particularly with the advent of the Atangana-Baleanu 

fractional derivatives, introduced by Atangana and Baleanu in 

2016 [6]. Their groundbreaking work, "New Fractional 

Derivatives with Non-Local and Non-Singular Kernel: 

Theory and Application to Heat Transfer Model," provided a 

theoretical framework and demonstrated applications in heat 

transfer, sparking further interest in the field. Smith and 

Johnson [7] applied these derivatives to control systems, 

highlighting their effectiveness in designing controllers for 

fractional-order dynamics. Meanwhile, Chen and Wang [8] 

focused on analytical solutions for fractional differential 

equations in viscoelasticity, advancing material modeling in 

engineering. 

 

2. Related Work  

In the context of non-Newtonian fluid modeling, Mirza et al. 

[9] investigated the effects of magnetic fields on blood flow 

in stenosed arteries, including wall-slip conditions, showing 

that the Lorentz force reduced both velocity and shear stress 

in magnetically conducting blood. Kumar et al. [10] explored 

the impact of heat sources and chemical reactions on MHD 

blood flow in permeable bifurcated arteries under an inclined 

magnetic field, with a focus on tumor treatment, 

demonstrating the potential for improving drug delivery and 
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managing high blood pressure. Isah et al. [11] examined the 

combined effects of electric and magnetic fields on MHD 

blood flow in permeable bifurcated arteries using a 

Newtonian fluid model, revealing key insights into the 

interaction of electromagnetic fields and heat radiation for 

clinical blood flow management. 

 
Previous studies have mostly focused on simplified models, 

neglecting the combined effects of magnetic fields, thermal 

radiation, and viscoelastic properties. Therefore, developing 

comprehensive models that integrate Burgers' fluid’s 

viscoelastic properties, fractional time derivatives, magnetic 

fields, and thermal radiation within bifurcated arteries is 

crucial for advancing our understanding of complex blood 

flow, especially for applications in tumor treatment. This 

research aims to analytically solve such models, providing 

exact solutions to capture the interaction of these factors and 

offering insights into blood flow dynamics in medical 

treatments. 

 

3. Theory/Calculation 
 

Definition1 Then 

the Atangana-Baleanu fractional derivative is defined as 

follows: left and right derivatives in Caputo sense; 
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where )(N > 0 is a normalization function satisfying 

,1)1()0(  NN  and E  is the well-Known Mittag–

Leffler function of one variable defined by 
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Definition 2. The Laplace transform of Atangana-Baleanu 

time-fractional derivative of equation (1) is defined by 

Atangana-Baleanu. (2016) as: 
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Definition 3. The Inverse Laplace transform of some special 

functions have the following properties: 
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3.1 Problem Formulation 

In the mathematical analysis of fluid dynamics, foundational 

assumptions are essential to model blood flow accurately 

within the circulatory system. Blood is considered a non-

Newtonian fluid, displaying compressibility, homogeneity, 

and viscosity, which moves through a parallel-plate, non-

conducting channel from the central artery trunk to branching 

arteries. The mass flow rate, determined at any cross-

sectional area perpendicular to the flow direction, is 

represented by m=2bV, where mmm is the mass flow rate, V 

is the mean fluid velocity, b represents the vessel's radius or 

diameter, and ρ is blood density. Due to the relatively small 

dimensions of the bifurcated wall compared to the overall 

circulatory system, the mass flow rate is effectively split in 

half at any cross-sectional plane within each branched 

channel, as depicted in Figure 1. 

 

 
Figure 1: Geometrical structure of bifurcated artery 

 

3.2 Basic flow equations 

In the study of fluid flow dynamics, particularly in the 

context of drug transport for tumor treatment through 

permeable bifurcated arteries, our focus typically centres on a 

fundamental group of equations. These equations encompass 

the momentum equation, the energy equation, the 

concentration equation, and the continuity equation, all of 

which are detailed in the research [10,11] 
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where   is the fluid density, 
t


is the material time 

derivative, e  denote the net charge density of the  applied 

electric field in the blood flow, xy  the Cauchy stress tensor, 

xE  is the external electric field imposed at the ends of the 

arterial bifurcated wall,   is the fluid density, PC is the 

specific heat capacity of the fluid, is the temperature,  is 

the current density given by the Ohm’s law,  is the 

electrical conductivity, 
Tk is the thermal conductivity of the 

fluid, 

e

jj


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 , is the Joule heating effect created by the current 

density, 
y

q




 is the radiative heat transfer u  and v  are the 

velocity components in the direction of x  and y  

respectively at time t in the flow field, )(1  CCkG  

is any constant (G = 1) and D is the diffusion coefficient, 

see[10,11,12]. The Cauchy stress tensor, xy is defined in [13] 

is given by: 
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The boundary conditions in consideration are: 
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3.3  Applied electric field 

This section investigates the behaviour of blood flow in a 

bifurcated artery, where a branch of diameter b, carries a 

compressible, homogeneous, viscous non-Newtonian fluid. 

The fluid moves through a parallel-plate, non-conducting 

channel with a uniform dielectric permittivity, and the 

bifurcation wall directs the flow from the main trunk into the 

branches, as shown in Figure 1. Based on these assumptions 

and using principles from electrostatics, the net charge 

density e can be derived via the Poisson equation, 

consistent with prior studies [10,11,14]. 
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In this context,  represents the electric potential within the 

bifurcation wall, and ε is the dielectric permittivity of the 

fluid. We assume the total electric potential is a linear 

combination of the externally applied electric potential in the 

x-direction and the equilibrium electric potential, which holds 

true for values of , valid for (-1 1 y ). 

Therefore, we can write 

)()( yx                           (12) 

 

Focusing on the upper and lower sections of the arterial wall, 

the primary fluid flow occurs in the y-direction, with velocity 

in the x-direction being negligible. Substituting (12) into the 

Poisson equation (11) leads to the result:   
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where the net charge density of the blood is given by the 

Boltzmann distribution: 
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where z, Bke,,,0  and T are the valence electron, ion 

density, fundamental charge, Boltzmann constant and 

absolute temperature, respectively. Equation (13) subject to 

the following boundary conditions at the top and bottom of 

the walls of the artery, are  
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is the Debye-Hückel parameter. 

The solution of equation (16) subject to the boundary 

conditions (15) is given by 
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where:   
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 is the ratio of zeta potential of an applied electric field.     

From equation (13) and (16) we have: 
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By applying equation (9), (21) and (22) into equations; 5-8 

and dropping the bars, we have: 
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M
2
 is the magnetic field parameter, Pr is the Prandtl number, 

R is the Thermal radiation parameter, S is the Heat source, 

parameter 
E is the dielectrically constant, JH is the Joule 

heating parameter, Ec is the Eckert number, CS is the 

Schmidt number, Brickman number, Soret Number and  is 

the Chemical reaction parameter respectively. 

 

4. Experimental Method/Procedure/Design 

 

A hybrid method was developed to solve the equations 

governing blood flow and heat transfer. It combines a 

modified Homotopy Perturbation Method (HPM) that 

incorporates He's polynomial with the traditional HPM 

framework and the Laplace transform technique. This section 

provides an overview of the classical Homotopy Perturbation 

Method (HPM) by He [15], designed to solve non-linear 

Ordinary Differential Equations (ODEs). Consider the 

following differential equation: 

      … (27) 

with boundary condition: 

 

    (28) 

where  represents any differential operator and B 

denotes a boundary operator. According to He, the 

differential operator E(u) is divided into two components: the 

linear and non-linear parts. 

      (29) 

The Homotopy equation is constructed as: 

   (30) 

where  is an embedding parameter. 

First, consider the linear part of equation (30) and express it 

in a series form: 
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which implies that 

      (31b) 

Next, consider the non-linear part of equation (30) and 

express it in polynomial form: 

 
which implies that 

 
where  is the He polynomial defined by 

 
Now, substituting equations (31a) and (33) into equation (30) 

and obtain the following: 

 
Now, applying equation (1) to equations (23), (24), and (25), 

we have; 
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Taking the Laplace transform of (29) and (10) yields 
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Where )(N > 0 is a normalization function satisfying 

,1)1()0(  NN 0)0()0()0(  Cu  . 

Now, after rearranging equation (37), we obtain: 
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4.1 Solution Procedure using HPM 

Using the method known as the HPM procedure, we 

formulate the following Homotopy in the manner described 

below: 
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expression. 
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By letting 0),(),(),( 321  puHpuHpuH ,  

We obtain equivalent equations in the following 

form:
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 Assuming the solutions of Equations (41) are represented as 

a power series in the form defined by Equation (35), we 
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Substituting Equation (42) into Equation (41), we derive the 

following system in terms of the powers of the perturbation 

parameter.
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The associated boundary conditions are expressed 

as:
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Subject to the boundary conditions; 
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By solving Equations (43), (45), and (47) under the boundary 

conditions given in Equations (44), (46), and (88), the 

approximate solutions for the various orders are obtained as 

follows:
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The terms, ),(),,( syusy nn and ),( syCn when 3n  

are too large to be mentioned graphically. The two-term 

solution of Eq. (42), when 1p  is expressed as follows: 
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We utilized Gaby-Stefan's algorithm to compute the inverse 

Laplace Transform of Equation (53) and visually represented 

the results through simulations using MATCARD software. 
 

5. Results and Discussion 

This section provides a visual presentation of the findings, 

examining the behavior of the Atangana-Baleanu fractional 

Burgers' fluid model in relation to non-Newtonian blood flow 

in bifurcated arteries. The primary focus is on analyzing the 

effects of applied magnetics and electric fields, particularly in 

the context of tumor treatments. The graphical representations 

are designed to highlight key factors and their influence on 

the system. The key parameters under investigation include 

the Burgers' parameter, magnetic field strength, heat source 

parameter, Eckert number, Joule heating parameter, and 

radiation parameter. 
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These visual representations, along with the following 

discussions, aim to provide valuable insights into how each of 

these factors influences the complex dynamics of blood flow 

in bifurcated arteries, particularly in the context of tumor 

treatment. 

 

5.1 Results of Velocity profile 
In this section, we provided a visual presentation of the 

findings. This phase primarily investigates the behaviour of 

the Atangana-Baleanu time fractional derivative of Burgers' 

fluid in the context of non-Newtonian blood flow through 

bifurcated arteries. The graphical representations of these 

results are designed to shed light on various critical factors 

and their effects on the system. 

   

 
Figure 2: Velocity profile of Fractional Burgers fluid model with 

Magnetic Field Parameter 

 
Figure 3: Velocity profile of Fractional Burgers fluid model with 

Burgers’ Parameter 

 

 
Figure 4: Velocity profile of Fractional Burgers fluid model with 

Fractional Parameter 

 

 
Figure 5: Velocity profile of Fractional Burgers fluid model with 

Fractional Parameter 
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Figure 6: Velocity profile of Fractional Burgers fluid model with 

Porosity Parameter 

 

Figure 2 examines how the magnetic field parameter affects 

the velocity of Burgers' fluid in bifurcated arteries. Increasing 

the magnetic field strength results in a notable decrease in 

fluid velocity, due to the Lorentz force acting against the 

flow. Figure 3: shows the impact of the Burgers' parameter on 

blood flow velocity. An increase in the Burgers' parameter 

which represents the viscoelastic properties of the fluid 

results in a reduction in velocity. This deceleration is more 

pronounced near the arterial wall, highlighting the fluid’s 

viscoelastic resistance under deformation, which aligns with 

previous studies [3,4,5] on viscoelastic fluid dynamics in 

biological systems. In Figure, the fractional parameter α's 

effect on velocity is depicted. Higher values of α, 

representing fractional derivatives, lead to a more gradual 

change in flow dynamics. This parameter reflects memory 

effects in the fluid; thus, as α increases, the blood flow 

exhibits a smoother transition in velocity distribution. 

 

Figure 5 explores the fractional parameter's role in controlling 

velocity. It demonstrates that as fractional derivative values 

increase, the velocity profile becomes more stable, suggesting 

a time-dependent behavior of blood flow in bifurcated arteries 

under various fractional orders, adding complexity to the 

viscoelastic flow model. Whereas Figure 6 shows how the 

porosity parameter influences velocity. Increased porosity 

reduces velocity, as porous arterial walls create additional 

resistance to blood flow. This result aligns with findings that 

porous media impede flow due to increased surface 

interaction. 
 

5.2 The Concentration profile 

In this part, we employ mathematical Modeling and analysis 

to visually represent and investigate numerical data on the 

concentration pattern of non-Newtonian blood flow in 

branched arteries. Our objective is to investigate how 

fractional parameters affect this concentration pattern, 

especially in relation to treating tumors. By using 

mathematical methods, we acquire important insights into the 

intricate dynamics of blood flow influenced by these critical 

factors. This research contributes significantly to the progress 

of medical science and treatment techniques. 

 
Figure 7: Concentration profile of Fractional Burgers fluid model 

with Brickman Number 

 

 
Figure 8: Concentration profile of Fractional Burgers fluid model 

with Soret Number 

 

 
Figure 9: Concentration profile of Fractional Burgers fluid model 

with Chemical Reaction Parameter 



Int. J. Sci. Res. in Mathematical and Statistical Sciences                                                                          Vol.11, Issue.6, Dec. 2024   

© 2024, IJSRMSS All Rights Reserved                                                                                                                                          56 

 
Figure 10: Concentration profile of Fractional Burgers fluid model 

with Schmidt Number 

 

 
Figure 11: Concentration profile of Fractional Burgers fluid model 

with Fractional Parameter (Alpha) 

 

 
Figure 12: Concentration profile of Fractional Burgers fluid model 

with Burgers’ Parameter 

 
Figure 13: Concentration profile of Fractional Burgers fluid model 

with Eckert Number 

 

Figure 7 illustrates the concentration profile as affected by the 

Brickman number, which relates to the fluid’s molecular 

diffusivity. Higher values lead to a sharper concentration 

gradient, indicating enhanced molecular diffusion, which 

could be useful for drug delivery in medical treatments. In 

Figure 8, the Soret number’s effect on concentration is shown 

here, with increased values leading to a higher concentration 

gradient. The Soret effect describes thermo-diffusion, where 

concentration increases in response to temperature gradients, 

aiding in targeted therapeutic delivery. Figure 9 displays the 

concentration profile influenced by chemical reaction rates. 

Higher reaction parameters reduce concentration in certain 

regions, suggesting that active biochemical reactions in blood 

flow, like those involved in tumor treatment, affect solute 

concentration. While Figure 10 shows the Schmidt number's 

effect on concentration. As the Schmidt number (a ratio of 

momentum to mass diffusivity) increases, diffusion is more 

restricted, resulting in a lower concentration spread. This 

behavior is essential for predicting solute dispersion in 

medical applications. 

 

In Figure 11, the fractional parameter's impact on 

concentration distribution is demonstrated. Increasing the 

fractional parameter smooths out concentration gradients, 

indicating a more stabilized concentration profile, relevant to 

understanding long-term drug diffusion in arterial flows. 

Figure 12, illustrates how the Burgers' parameter affects 

concentration. Higher Burgers' values, representing greater 

viscoelastic resistance, tend to limit concentration, as fluid 

structure hinders diffusion. In Figure 13 the Eckert number’s 

influence on concentration is shown here, indicating how 

energy dissipation affects diffusion rates. Higher Eckert 

values result in lower concentration, due to enhanced thermal 

effects and interaction with diffusion processes in the arterial 

wall. 

 

5.3 The Temperature profile 
In this section, we delve into the numerical findings that 

reveal the thermal properties of Burgers' fluid flow in 

bifurcated arteries. Our approach involves using detailed 

graphical representations to offer a comprehensive 
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understanding of the interplay among various influential 

variables. This segment primarily focuses on showcasing the 

significant effects of two crucial parameters: the Eckert 

number and the Joule heating parameter, on the dynamics of 

blood flow within this complex system. 

 

 
Figure 14: Temperature profile of Fractional Burgers fluid model 

with Prandtl number 

 

 
Figure 15: Temperature profile of Fractional Burgers fluid model 

with Heat source 

 

 
Figure 16: Temperature profile of Fractional Burgers fluid model 

with Joule heating Parameter 

 
Figure 17: Temperature profile of Fractional Burgers fluid model 

with Eckert Number 

 

 
Figure 19: Temperature profile of Fractional Burgers fluid model 

with Brinkman Number 

 

 
Figure 20: Temperature profile of Fractional Burgers fluid model 

with Radiation Parameter 
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Figure 21: Temperature profile of Fractional Burgers fluid 

model with Burgers ‘Parameter 

 

Figure 14 illustrates the effect of the Prandtl number on 

temperature distribution. Higher Prandtl values, which 

represent the ratio of momentum diffusivity to thermal 

diffusivity, result in a steeper temperature gradient, indicating 

that heat transfer is dominated by viscous effects rather than 

conduction. Figure 15 demonstrates how the heat source 

parameter impacts the temperature profile. A higher heat 

source parameter increases the temperature, especially near 

the arterial walls, which could be useful in tumor 

hyperthermia treatments requiring localized heating. Figure 

16 shows the effect of Joule heating, where electric currents 

within the blood raise the temperature. Increased Joule 

heating results in a steeper temperature rise, making it 

suitable for treatments needing controlled heating in specific 

areas. Figure 17 highlights the role of the Eckert number in 

temperature distribution. Higher Eckert values, representing 

kinetic energy dissipation, increase the temperature due to 

greater viscous dissipation in the fluid, consistent with non-

Newtonian heating models for blood flow. Figure 18 

illustrates the impact of the Brinkman number, which 

represents viscous heating relative to conduction. Higher 

Brinkman values result in greater temperature increases in 

high-shear areas, relevant for biomedical applications 

requiring precise temperature control. Figure 19 demonstrates 

the influence of the radiation parameter on temperature, with 

higher radiation values leading to elevated temperatures due 

to radiative heat transfer supplementing conductive and 

convective heat. This is important for treatments that require 

controlled energy absorption in biological tissues. Finally, 

Figure 20 examines how the Burgers' parameter affects the 

temperature profile, with higher values leading to reduced 

temperatures. The increased viscoelastic resistance limits heat 

dissipation, aligning with findings on non-Newtonian fluid 

systems' viscoelastic behavior. 

 

 

6. Conclusion and Future Scope  

This study presents a detailed analytical solution to the 

Burgers’ fluid model for magnetohydrodynamic (MHD) 

blood flow through bifurcated arteries, incorporating the 

Atangana-Baleanu fractional derivative. The findings 

illustrate those parameters such as magnetic field strength, 

Burgers' parameter, Eckert number, and Joule heating 

influence blood flow, temperature, and concentration profiles 

significantly. These results are promising for enhancing 

biomedical applications, particularly in tumor treatment, by 

controlling blood flow and heat transfer within bifurcated 

arteries. The reduction in velocity with increasing magnetic 

field and viscoelasticity suggests that MHD effects can be 

instrumental in precision-targeting treatments. The interplay 

of these parameters offers insights into designing more 

efficient drug delivery systems and improving the accuracy of 

heat-based therapies. 
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