Vol.6, Issue.4, pp.58-61, August (2019)

E-ISSN: 2348-4519

DOI: https://doi.org/10.26438/ijsrmss/v6i4.5861

Some Common Fixed Point Theorems in 2-Metric Spaces for Contractive **Type Conditions**

Tarun Gain^{1*}, Kalishankar Tiwary²

^{1,2}Dept. of Mathematics, Raiganj University, Raiganj, India

*Corresponding Author: tarun.gain55@gmail.com

Available online at: www.isroset.org

Received: 15/Jul/2019, Accepted: 14/Aug/2019, Online: 31/Aug/2019

Abstract: Our aim of this paper is to find some common fixed point theorems in 2-metric spaces by using Nesic type contractive condition, which are generalizations of various known results.

Keywords: Fixed point, 2-metric space, Contraction, Nesic type.

AMS Subject Cassification: 47H10, 54H25

I. INTRODUCTION

There have been a number of generalizations of a metric space. One such generalization is 2-metric space. The concept of a 2- metric space was introduced by Gähler in [2], having the area of a triangle in R³ as the inspirational example. Similarly, several fixed point results were obtained for mappings in such spaces. After the introduction of the concept of 2-metric space, many authors have established an analogue of Banach's contraction principle in 2-metric space. Also the researchers like Iseki [3], Lal and Singh [5], Nesic [7] etc. have proved many fixed points in this space.

II. MATHEMATICAL PRELIMINARIES

Now we will give some basic definitions and well known results that will be needed in the sequel.

Definition 1.1{[3][4]}:

Let X be a non-empty set and R₊ is the set of all non negative reals. Let

d: $X \times X \times X \rightarrow R_{+}$. If for all x, y, z and u in X. We have

- (d_1) d(x, y, z) = 0 if at least two of x, y, z are equal,
- (d_2) for all $x \neq y$, there exists a point z in X such that d(x, y, y) $z) \neq 0$,
- $(d_3) d(x, y, z) = d(x, z, y) = d(y, z, x)$ and so on.
- $(d_4) d(x, y, z) \le d(x, y, u) + d(x, u, z) + d(u, y, z), \forall x, y, z$ and u in X

Then d is called a 2- metric on X and the pair (X, d) is called a 2-metric space.

Definition 1.2:

A sequence $\{x_n\}_{n\in\mathbb{N}}$ in a 2-metric space (X, d) is called a Cauchy sequence [7] when $d(x_n,x_m,a) \rightarrow 0$ as $n,m \rightarrow \infty$.

Definition 1.3:

A sequence $\{x_n\}_{n \in \mathbb{N}}$ in a 2-metric space (X, d) is said to be convergent [7] to an element x in X when $d(x_n,x_n)\rightarrow 0$ as $n \rightarrow \infty$ for all $a \in X$.

Definition 1.4:

A sequence $\{x_n\}_{n \in \mathbb{N}}$ in a 2-metric space (X, d) is said a Cauchy sequence if $d(x_n,x_m,a) \rightarrow 0$ as n, $m \rightarrow \infty$ for all $a \in X$.

Definition 1.5:

A 2-metric space (X,d) is said to be complete if every Cauchy sequence in X is convergent.

Definition 1.6:

A 2-metric space (X,d) is said to be bounded if there exist a constant K such that

 $d(x, y, z) \le K$ for all $x, y, z \in X$.

Definition 1.7:

A mapping f in 2-metric space (X,d) is said to be orbitally continuous if for all z in X,

 $d(f^nx, u, z) \rightarrow 0$ as $n \rightarrow \infty$ implies that

 $d(ff^nx, fu, z) \rightarrow 0$ as $n \rightarrow \infty$.

Definition 1.8: A mapping G form a 2- metric space (X,d) into itself is said to be sequentially continuous at a point $x \in X$ if every sequence $\{x_n\}$ in X such that

$$\lim_{n\to\infty} d(x_n, x, z) = 0 \text{ for all } z \in X$$

$$\lim_{n\to\infty} d(Gx_n, Gx, z) = 0$$

For every convergent sequence in a 2-metric space is a Cauchy sequence.

Lemma 1.1: Let $\{x_n\}$ be a sequence in complete 2-metric space in X if there exists h \in [0,1] such that

$$d(x_n, x_{n+1}, a) \le hd(x_{n-1}, x_n, a)$$

for all a \in X then $\{x_n\}$ converges to a point in X.

III. MAIN RESULTS

Theorem 1: Let f and g be an orbitally continuous self – map from complete 2-metric space X into itself, f and g satisfies -

$$\begin{split} &[1+pd(x,y,a)]d(fx\ ,\ gy\ ,a) \leq p\ max\ \{\ d(x,\ fx\ ,a)\ .d(y,\ gy\ ,a)\ ,\\ &d(x,\ gy\ ,a).\ d(y,\ fx\ ,a)\}\\ &+\ q\ max\ \{\ d(x,y,a),\ d(x,\ fx\ ,a)\ ,\ d(y,\ gy\ ,a)\ \} \end{split}$$

for all x,y and a $\in X$ and $p \ge 0$, $0 \le q \le 1$, then for each $x \in X$, the sequence $\{x_n\}$ converges to a common fixed point of f and g.

Proof:

....(1.1)

```
Vol. 6(4), Aug 2019, ISSN: 2348-4519
         \leq p d(x_{2n}, x_{2n+1}, a) .d(x_{2n+1}, x_{2n+2}, a)
         + q \max \{ d(x_{2n}, x_{2n+1}, a), d(x_{2n}, x_{2n+1}, a), d(x_{2n+1}, a) \}
      x_{2n+2},a) }
      i.e., d(x_{2n+1}, x_{2n+2}, a) \le q \max \{ d(x_{2n}, x_{2n+1}, a),
      d(x_{2n+1}, x_{2n+2}, a)
                            .....(1.3)
  Case 1: If d(x_{2n+1}, x_{2n+2}, a) is maximum, then
      d(x_{2n+1}, x_{2n+2}, a) \le q d(x_{2n+1}, x_{2n+2}, a) \Rightarrow (1-q)
      d(x_{2n+1}, x_{2n+2}, a) \le 0
  \Rightarrow (1-q) \leq 0 [Since d(x<sub>2n+1</sub>, x<sub>2n+2</sub>, a) \neq 0]
  \Rightarrow q >1 which is contradiction, since q<1.
  Case 2: So, in (1.3) d(x_{2n}, x_{2n+1}, a) is maximum.
      Now from (1.3) we get
                                       ≤
                                                  q d(x_{2n}, x_{2n+1}, a)
  d(x_{2n+1}, x_{2n+2}, a)
      .....(1.4)
Also q<1 \Rightarrow (1+q) <2 \Rightarrow 1< (2-q) \Rightarrow 1> \frac{1}{(2-q)}
\Rightarrow q > \frac{q}{(2-q)}
 Now, from (1.4) we get d(x_{2n+1}, x_{2n+2}, a) \le \frac{q}{(2-q)}
   d(x_{2n},x_{2n+1},a)
Therefore, d(x_{2n+1}, x_{2n+2}, a) \le h d(x_{2n}, x_{2n+1}, a), putting
   h = \frac{q}{(2-q)} .....(1.5)
Now (1.5) hold for all a \in X. Hence in view of lemma Nesic
   type contractive definition, the
                                                     sequence \{x_n\}
   converges to some common fixed point u \in X, then for all
   a \in X, since f is orbitally continuous, we have
   \lim_{n\to\infty} d(f(f^{2n}(x_0), f(u), a)=0
\Rightarrow \lim_{n\to\infty} d(f^{2n+1}(x_0), f(u), a)=0.
From the definition of 2-metric space,
    d(u,f(u),a) \le d(u,f(u),f^{2n+1}(x_0)) + d(u,f^{2n+1}(x_0),f(u)) +
   d(f^{2n+1}(x_0),f(u),a)
      Which tends to zero as n \rightarrow \infty.
Consequently, d(u,f(u),a) = 0 \Rightarrow f(u)=u.
Similarly, for the mapping g, we have
d(u,g(u),a) = 0 \Rightarrow g(u)=u.
Therefore f(u)=g(u)=u. Hence f and g have common fixed
We now prove that this common fixed point is
unique. For the uniqueness of u, suppose v \in X be another
   common fixed point of f and g such that
v≠u .
   Hence there exists a point a \in X such that
 d(u,v,a)\neq 0 then from (1.1) we have,
[1+pd(u,v,a)]d(f(u),g(v),a) \le p \max \{ d(u, f_u,a) \}
```

 $, d(u, g_v, a). d(v, f_u, a)$

+ q max { d(u,v,a), $d(u, f_u, a)$, $d(v, g_v, a)$ }

 $[1+pd(u,v,a)]d(u,v,a) \le p \max \{ d(u,u,a) \}$ d(v, v, a), d(u, v, a), d(v, u, a) $+ q \max \{ d(u,v,a), d(u, u,a), d(v, v,a) \}$ i.e., $d(u,v,a) \leq q d(u,v,a) \Rightarrow d(u,v,a) < 0$, since q<1, which is a contradiction. Hence, d(u,v,a)=0 which implies that u=v. Similarly, for the mapping g, we have d(u,v,a)=0. Therefore the sequence $\{x_n\}$ converges to a common fixed point of f and g.

We now have the following corollary:

Corollary 1.1:

Let f and g be an orbitally continuous self -map from complete 2-metric space X into itself, f and g satisfies – $[1+pd(x,y,a)]d(fx, gy,a) \le p \max \{ d(x, fx,a) . d(y, gy,a) \}$, d(x, gy, a). d(y, fx, a)....(1.6)

for all x,y and a $\in X$ and $0 \le q \le 1$, then for each $x \in X$, the sequence $\{x_n\}$ convergence to a common fixed point of f and g.

Proof: If we put p = 0 in theorem 1, the we get our required result.

Theorem 2: Let I and J be an orbitally continuous selfmapping from complete 2-metri space X into itself, I and J satisfies-

 $d(Ix,Jy, \leq$ a_1 {d(x,Ix,z)d(y,Jy,z)+d(x,Jy,z)d(y,Ix,z)} $+a_2\{d(x,y,z)d(y,Ix,z)+d(x,Ix,z)d(y,Jy,z)\}+$ $a_3d^2(y,Jy,z)$(2.1)

For all x,y and z $\in X$ and $a_1,a_2,a_3 \ge 0$, with $0 < a_1 + a_2 + a_3 < 1$. Then I and J have a common unique fixed point.

Proof: Fix any $x \in X$. Define $x_0=x$ and let x_1 $\in Ix_0$, $x_2 \in Jx_1$ such that $x_{2n+1} = Ix_{2n}$, $x_{2n+2} = Jx_{2n+1}$. Now, we have

$$\begin{array}{l} d(Ix_{2n,}Jx_{2n+1},z)^2 \leq a_1\{d(x_{2n},Ix_{2n},z)d(x_{2n+1},Jx_{2n+1},z)\\ +d(x_{2n},Jx_{2n+1},z)d(x_{2n+1},Ix_{2n},z)\}+\\ a_2\{d(x_{2n},x_{2n+1},z)d(x_{2n+1},Ix_{2n},z) \end{array}$$

$$+d(x_{2n},Ix_{2n},z)d(x_{2n+1},Jx_{2n+1},z)\}+a_3d^2(x_{2n+1},Jx_{2n+1},z)$$

$$\leq a_1\{d(x_{2n},x_{2n+1},z)d(x_{2n+1},x_{2n+2},z) + d(x_{2n},x_{2n+2},z)d(x_{2n+1},x_{2n+1},z)\}+$$

$$+u(x_{2n},x_{2n+2},z)u(x_{2n+1},x_{2n+1},z)$$
 + $a_2\{d(x_{2n},x_{2n+1},z)d(x_{2n+1},x_{2n+1},z)+$

$$d(x_{2n},x_{2n+1},z)d(x_{2n+1},x_{2n+2},z)\}+a_3d^2(x_{2n+1},x_{2n+2},z)$$

$$\Rightarrow d(x_{2n+1}, x_{2n+2}, z)^2 \le a_1 d(x_{2n}, x_{2n+1}, z) d(x_{2n+1}, x_{2n+2}, z) + a_2 d(x_{2n}, x_{2n+1}, z) d(x_{2n+1}, x_{2n+2}, z) + a_3 d^2(x_{2n+1}, x_{2n+2}, z)$$

i.e,
$$d(x_{2n+1},x_{2n+2},z) \le a_1 d(x_{2n+1},x_{2n+2},z)$$

$$+a_2d(x_{2n},x_{2n+1},z) +a_3d(x_{2n+1},x_{2n+2},z)$$

i.e,
$$(1-a_3) d(x_{2n+1}, x_{2n+2}, z) \le (a_1+a_2) d(x_{2n}, x_{2n+1}, z)$$

i.e,
$$d(x_{2n+1}, x_{2n+2}, z) \le \frac{(a_1 + a_2)}{(1 - a_3)} d(x_{2n}, x_{2n+1}, z)$$

i.e,
$$d(x_{2n+1},x_{2n+2},z) \le hd(x_{2n},x_{2n+1},z)$$
,

[putting
$$h = \frac{(a_1 + a_2)}{(1 - a_2)}$$
](2.2)

Therefore the above equation holds for all z ∈X. Hence in view of lemma[1.1] Nesic type contractive definition, the sequence $\{x_n\}$ converges to some common fixed point $u \in X$, then for all $z \in X$ we have –

$$\lim_{n\to\infty} d((x_{2n}), u, a) = 0 \Rightarrow$$

 $\lim_{n\to\infty} \frac{d(I^{2n}(x_0), u, a)}{d(I^{2n}(x_0), u, a) = 0}$ Since f is orbitally continuous, $\lim_{n\to\infty} \frac{d(I^{2n}(x_0), u, a)}{d(I^{2n}(x_0), I(u), a) = 0}$ have

$$\Rightarrow \lim_{n \to \infty} d(I^{2n+1}(x_0), I(u), a) = 0.$$

Now from the definition of 2-metric space,

$$\begin{array}{lll} d(u,I(u),a) & \leq & d(u,I(u),I^{2n+1}(x_0)) & + & d(u,I^{2n+1}(x_0),I(u)) & + \\ d(I^{2n+1}(x_0),I(u),a) & & & \end{array}$$

Which tends to zero as $n \to \infty$.

Consequently, $d(u,I(u),a) = 0 \implies I(u)=u$.

Similarly, for the mapping J, we have $d(u,J(u),a) = 0 \Rightarrow$ J(u)=u.

Therefore I(u)=J(u)=u. Hence I and J have common fixed point.

We now prove the uniqueness of the common fixed point. For that case we first show that u is a unique fixed point. We suppose that $v \in X$ be another common fixed point of I and J such that $v\neq u$. Hence there exists a point $z \in X$ such that $d(u,v,z)\neq 0$ then we have,

 $d(Iu,Jv,z)^2 \leq a_1\{d(u,Iv,z)d(u,Jv,z)+d(u,Jv,z)d(v,Iu,z)\}$ $a_2\{d(u,v,z)d(v,Iu,z)+d(u,Iu,z)d(v,Jv,z)\}+a_3d^2(v,Jv,z)$

i.e,
$$d(u,v,z)^2 \le a_1\{d(u,v,z)d(u,v,z)+d(u,v,z)d(v,u,z)\} + a_2\{d(u,v,z)d(v,u,z)+d(u,u,z)d(v,v,z)\} + a_3d^2(v,v,z)$$

i.e, $d(u,v,z) \le a_1 d(u,v,z) + a_2 d(u,v,z)$

i.e,
$$d(u,v,z) \le (a_1 + a_2)d(u,v,z)$$

$$\Rightarrow$$
 d(u,v,z) < d(u,v,z) ,(2.3)

which is a contradiction. Hence d(u,v,z)=0 that implies u=v. \therefore The sequence $\{x_n\}$ convergences to a common fixed point of I.J.

We have the following corollaries:

Corollary 2.1: Let I be an orbitally continuous self-mapping from complete 2-metri space X into itself, I satisfies the

 $d(Ix,Iy,z)^2 \le a_1 \{d(x,Ix,z)d(y,Iy,z)+d(x,Iy,z)d(y,Ix,z)\} + a_2 \{d(x,Iy,z)d(y,Ix,z)\} + a_3 \{d(x,Ix,z)d(y,Iy,z)+d(x,Iy,z)d(y,Ix,z)\} + a_3 \{d(x,Ix,z)d(y,Iy,z)+d(x,Iy,z)d(y,Ix,z)\} + a_3 \{d(x,Ix,z)d(y,Iy,z)+d(x,Iy,z)d(y,Ix,z)\} + a_3 \{d(x,Ix,z)d(y,Iy,z)+d(x,Iy,z)d(y,Ix,z)\} + a_3 \{d(x,Ix,z)d(y,Ix,z)+d(x,Iy,z)d(y,Ix,z)\} + a_3 \{d(x,Ix,z)d(y,Ix,z)+d(x,Iy,z)d(y,Ix,z)\} + a_3 \{d(x,Ix,z)d(y,Ix,z)+d(x,Iy,z)d(y,Ix,z)\} + a_3 \{d(x,Ix,z)d(y,Ix,z)+d(x,Iy,z)d(y,Ix,z)\} + a_3 \{d(x,Ix,z)d(y,Ix,z)+d(x,Ix,z)d(y,Ix,z)\} + a_3 \{d(x,Ix,z)d(x,Ix,z)d(x,Ix,z)+d(x,Ix,z)d(x,Ix,z)\} + a_3 \{d(x,Ix,z)d$ y,z)d(y,Ix,z)+d(x,Ix,z)d(y,Iy,z)(2.4)

For all x,y and $z \in X$ and $a_1,a_2,a_3 \ge 0$, with $0 < a_1 + a_2 + a_3 < 1$. Then I has a unique fixed point.

Proof: If we put I=J in theorem 2, then we get our result.

Corollary 2.2: Let I and J be an orbitally continuous selfmapping from complete 2-metri space X into itself, I and J satisfies $\begin{array}{ll} d(Ix,\!Jy, & \leq & a_1 \{ d(x,\!Ix,\!z) d(y,\!Jy,\!z) \! + \! d(x,\!Jy,\!z) d(y,\!Ix,\!z) \} \\ + a_2 \{ d(x,\!y,\!z) d(y,\!Ix,\!z) \! + \! d(x,\!Ix,\!z) d(y,\!Jy,\!z) \} & \dots \dots \dots \dots (2.5) \end{array}$

For all x,y and $z \in X$ and $a_1,a_2,a_3 \ge 0$, with $0 < a_1 + a_2 < 1$. Then I and J have a common unique fixed point.

Proof: If we put $a_3=0$ in theorem 2, then we have our result.

Corollary 2.3: Let I and J be an orbitally continuous self-mapping from complete 2-metri space X into itself, I and J satisfies-

$$d(Ix,Jy,z)^2 \le a_1\{d(x,Ix,z)d(y,Jy,z)+d(x,Jy,z)d(y,Ix,z)\} + a_3d^2(y,Jy,z)$$
(2.6)

For all x,y and $z \in X$ and $a_1,a_3 \ge 0$, with $0 < a_1 + a_3 < 1$. Then I and J have a common unique fixed point.

Proof: If we put $a_2=0$ in theorem 2, then we have our result.

Corollary 2.4: Let I and J be an orbitally continuous self-mapping from complete 2-metri space X into itself, I and J satisfies-

$$d(Ix,Jy,z)^2 \le a_2\{d(x,y,z)d(y,Ix,z)+d(x,Ix,z)d(y,Jy,z)\} + a_3d^2(y,Jy,z)$$
(2.7)

For all x,y and $z \in X$ and $a_2,a_3 \ge 0$, with $0 < a_1 + a_2 + a_3 < 1$. Then I and J have a common unique fixed point.

REFERENCES

- [1]. M. E. Abd EL-Monsef A. Donia, H. M. & AbdRabou, Kh, "New types of common fixed Point theorems 2- Metric spaces", Chaos, Soliton and Fractals, 41, 1435-1441, 2009.
- [2]. S. Gahler, "2-metrische Raume und iher topologische structur", Math.Nachr, 26, 115-148, 1963.
- [3]. K. Iseki, P. L. Sharma, B.K. Sharma, "Contraction type mapping on 2-metric Space", Math.Japonica, 21, 67-70, 1976.
- [4]. M. Imdad, M. S. Kumar and M. D. Khan, "A Common fixed point theorem in 2-Metric Spaces", Math., Japonica, 1991, 36(5), 907-914. Int J Anal Appl., 1(2):127-132, 2013.
- [5]. S. N. Lal & A. K. Singh, "An analogue of Banach's Contraction principle for 2-metric space", Bull. Austral. Math. Soc. Vol. 18, pp. 137-143, 1978.
- [6].D. Lateef, "Fixed point theorems in 2-metric space for some contrative conditions", IJSIMR, Volume 6, Issue 1, PP 16-20, 2018.
- [7]. S. C. Nesic, "A theorem on contractive mapping", Mat. Vesnik, 51-54, 1992.
- [8]. S. V. R. Naidu and J. R. Prasad, "Fixed point theorems in 2-metric spaces", Indian J. Pure. Appl. Math, 17(8) 97-993, 1986.
- [9]. L. S. Singh and S. Singh, "Some fixed point theorems in 2-metric space", International transactions in Mathematical Sciences and Computer. Vol-3 No. 1, H. pp.121-129, 2010.